BIA 672 Marketing Analytics
In this course, students will learn about marketing analytics techniques such as segmentation, positioning, and forecasting, which form the cornerstone of marketing strategy in the industry. Students will work on cases and data from real companies, analyze the data, and learn to present their conclusions and make strategic recommendations.
Choose 3 out of the following courses:
BIA 652 Multivariate Data Analysis I
This course introduces basic methods underlying multivariate analysis through computer applications using R, which is used by many data scientists and is an attractive environment for learning multivariate analysis. Students will master multivariate analysis techniques, including principal components analysis, factor analysis, structural equation modeling, multidimensional scaling, correspondence analysis, cluster analysis, multivariate analysis of variance, discriminant function analysis, logistic regression, as well as other methods used for dimension reduction, pattern recognition, classification, and forecasting. Students will build expertise in applying these techniques to real data through class exercises and a project, and learn how to visualize data and present results. This proficiency will enable students to become sophisticated data analysts, and to help make more informed design, marketing, and business decisions.
BIA 658 Social Network Analysis
This course introduces concepts and theories of social networks as well as techniques to conduct marketing research from a network perspective. Network concepts covered include graph-theoretic fundamentals, centrality, cohesion, affiliations, equivalence, and roles. Network theories covered include embeddedness, social capital, homophily, and models of network growth. Design issues will also be covered, including data sampling and hypothesis testing. Another focus of this course is on marketing applications of social network analysis, in particular the use of knowledge about network properties and behavior, such as hubs and paths, the robustness of the network, and information cascades, to better broadcast products and search targets. Application areas include customer profiling, community detection, targeting, sentiment analysis, and development of recommendation systems. Knowledge and skills learned in these required courses (e.g., R, python, machine learning) are applied to social network analysis.
BIA 660 Web Mining
In this course, students will learn through hands-on experience how to extract data from the web and analyze web-scale data using distributed computing. Students will learn different analysis methods that are widely used across the range of internet companies, from start-ups to online giants like Amazon or Google. At the end of the course, students will apply these methods to answer real scientific question or to create a useful web application.
MIS 637 Data Analytics and Machine Learning
This course will focus on Data Mining & Knowledge Discovery Algorithms and their applications in solving real world business and operation problems. We concentrate on demonstrating how discovering the hidden knowledge in corporate databases will help managers to make near-real time intelligent business and operation decisions. The course will begin with an introduction to Data Mining and Knowledge Discovery in Databases. Methodological and practical aspects of knowledge discovery algorithms including: Data Preprocessing, k-Nearest Neighborhood algorithm, Machine Learning and Decision Trees, Artificial Neural Networks, Clustering, and Algorithm Evaluation Techniques will be covered. Practical examples and case studies will be present throughout the course.