Tian Han (than6)

Tian Han

Assistant Professor

Charles V. Schaefer, Jr. School of Engineering and Science

Department of Computer Science

Education

  • PhD (2019) University of California, Los Angeles (Statistics)
  • Other (2013) The Hong Kong University of Science and Technology (Computer Science)

Research

Unsupervised/Semi-supervised Learning, Probabilistic Generative Modeling, Explainable AI, Computer Vision.

Institutional Service

  • CS Graduate Advisor Member

Selected Publications

Conference Proceeding

  1. Lu, C.; Han, T.; Ning, Y. (2022). Context-aware health event prediction via transition functions on dynamic disease graphs. Proceedings of the AAAI Conference on Artificial Intelligence (4 ed., vol. 36, pp. 4567-4574). AAAI.
    https://www.aaai.org/AAAI22Papers/AAAI-6800.LuC.pdf.
  2. Zhao, Y.; Qiu, L.; Lu, P.; Shi, F.; Han, T.; Zhu, S. (2022). Learning from the Tangram to Solve Mini Visual Tasks (3 ed., vol. 36, pp. 3490--3498). The Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022.
    https://www.aaai.org/AAAI22Papers/AAAI-10312.ZhaoY.pdf.
  3. Pang, B.; Han, T.; Nijkamp, E.; Zhu, S.; Wu, Y. (2020). Learning Latent Space Energy-Based Prior Model. Advances in Neural Information Processing Systems (NeurIPS 2020).
  4. Nijkamp, E.; Pang, B.; Han, T.; Zhou, L.; Zhu, S.; Wu, Y. (2020). Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference. 16th European Conference on Computer Vision, ECCV 2020.
  5. Han, T.; Nijkamp, E.; Zhou, L.; Pang, B.; Zhu, S.; Wu, Y. (2020). Joint Training of Variational Auto-Encoder and Latent Energy-Based Model (pp. 7978--7987). Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020.
  6. Nijkamp, E.; Hill, M.; Han, T.; Zhu, S.; Wu, Y. (2020). On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models (pp. 5272--5280). The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020.
  7. Han, T.; Nijkamp, E.; Fang, X.; Hill, M.; Zhu, S.; Wu, Y. (2019). Divergence Triangle for Joint Training of Generator Model, Energy-based Model, and Inferential Model. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019.
  8. Han, T.; Lu, Y.; Zhu, S.; Wu, Y. (2017). Alternating Back-Propagation for Generator Network. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

Conference Workshop Contribution

  1. Han, T.; Zhang, J.; Wu, Y. (2020). From em-projection to Variational Auto-Encoder. NeurIPS 2020 Workshop on Deep Learning through Information Geometry.

Journal Article

  1. Xing, X.; Gao, R.; Han, T.; Zhu, S.; Wu, Y. (2020). Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry. Transactions on Pattern Analysis and Machine Intelligence (PAMI). IEEE.

Courses

[CS559-B]: Machine Learning: fundamentals and applications --Fall 19, Spring 20, Fall 20, Fall 21, Fall 22
[CS515-A]: Fundamental of Computing --Spring 21
[CS483-A, B]: Deep Learning --Spring 22