Sulfur Emissions Detection

Student Team: Amar Bindra, Christine Huang, Edhar Muradov, Satesh Ramnath
Mentor(s): Dr. Bruce Kim, Dr. Barry Bunin, Jonathan Adamson

HOMELAND SECURITY CHALLENGE
Create a hand-held device which can aid the United States Coast Guard in monitoring ship compliance to the International Maritime Organization’s (IMO) sulfur content standards by detecting sulfur dioxide (SO₂) emissions at anchor points or ports. As of January 1st, 2020, IMO standards limit sulfur content in fuel to 0.5%.

APPROACH / METHODOLOGY

Zinc Oxide (ZnO) nanowire solution
- High surface area to volume ratio
- Sufficient resolution
- Ease of interface within microelectronics
- Consistent operation
- High scalability

Chemical Bath deposition (CBD)
- "Dip coating" technique
- Control of bath quality and temperature
- Reinforce the nanowires’ structural build

Plume modeling using ANSYS CFX, a computational fluid dynamics tool
- Determine if SO₂ is measurable on vessel and the optimal measurement location
- Replicate realistic conditions, such as creating a realistic ship structure as shown

OUTCOMES / RESULTS
- Functionalization of alumina on ZnO nanowires provides high specificity towards SO₂ sensing
- Higher wind speeds reduce amount of SO₂ detectable. Wind direction causes pressure areas
- Prototype able to distinguish different levels of SO₂ in indoor vs outdoor testing

CONCLUSION
- ZnO nanowire sensors will be fast, recoverable, and provide high accuracy
- Chemical team proposed a receptor for functionalizing ZnO nanowires for lab testing
- Mechanical team found optimal locations to detect SO₂ on ships
- Hardware team produced first prototype to be used with ZnO nanowires in the future

ACKNOWLEDGEMENTS
The Sulfur Emission Detection project was conducted as part of the DHS Minority Summer Research Team Program (MSI SRTP) and the Maritime Security Center’s 2020 Summer Research Institute. www.stevens.edu/SummerResearchInstitute

This research was performed under an appointment to the U.S. Department of Homeland Security (DHS) Science & Technology (S&T) Directorate Office of University Programs Summer Research Team Program for Minority Serving Institutions, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and DHS. ORISE is managed by ORAU under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors' and do not necessarily reflect the policies and views of DHS, DOE, or ORAU/ORISE.