USCG Sector New York
Risk Management Dashboard

Danielle Dobbs, Suny Maritime College
Tristan Goers, University of Alaska Anchorage
Emily Jannace, EIT, Virginia Tech
Mathew Seedhom, Stevens Institute of Technology
Acknowledgements

USCG Sector NY
Mr. John Hillin, Safety and Security Division Chief, USCG Sector NY
Lt. Christopher Clifton, Deputy Chief, Enforcement Division, USCG Sector NY

Maritime Security Center
Dr. Barry Bunin
Dr. Paul Rohmeyer
Ms. Beth Austin-DeFares

This material is based upon work funded by the U.S. Department of Homeland Security under Cooperative Agreement No. 2014-ST-061-ML0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Overview

I Introduction
1. Background
2. Research Question

II Results
1. Methodology
2. Dashboard

III Conclusions
1. Next Steps
2. Recommendations

Background
Current Data Quality Problem

Turning Data into Information

<table>
<thead>
<tr>
<th>notification_datetime</th>
<th>notification_type</th>
<th>incident_type</th>
<th>incident_subtype</th>
<th>uninvestigated_cause_type</th>
<th>incident_location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-08-15 01:45:00</td>
<td>Telephone call to Co...</td>
<td>Marine Safety</td>
<td>Equipment Failure</td>
<td>Engine Failure</td>
<td>Territorial waters - wi...</td>
</tr>
<tr>
<td>2014-09-30 15:53:00</td>
<td>NRC Notification</td>
<td>Marine Environment...</td>
<td>Pollution - Oil</td>
<td>UNSPECIFIED</td>
<td>UNSPECIFIED</td>
</tr>
<tr>
<td>2014-09-14 17:51:00</td>
<td>NRC Notification</td>
<td>UNSPECIFIED</td>
<td>UNSPECIFIED</td>
<td>UNSPECIFIED</td>
<td>Unknown Location</td>
</tr>
<tr>
<td>2014-08-15 04:19:00</td>
<td>VHF/FM (Channel 16)</td>
<td>Search and Rescue</td>
<td>Disabled Vessel</td>
<td>Engine Failure</td>
<td>Inland waters (lake/...</td>
</tr>
<tr>
<td>2014-08-14 19:33:00</td>
<td>Telephone call to Co...</td>
<td>Search and Rescue</td>
<td>Person in Water (PIW)</td>
<td>UNSPECIFIED</td>
<td>Inland waters (lake/...</td>
</tr>
<tr>
<td>2014-08-14 17:02:00</td>
<td>NRC Notification</td>
<td>Marine Environment...</td>
<td>Pollution - Oil</td>
<td>UNSPECIFIED</td>
<td>Unknown Location</td>
</tr>
<tr>
<td>2014-08-15 14:24:00</td>
<td>Telephone call to Co...</td>
<td>Marine Safety</td>
<td>Hazardous Vessel Operation</td>
<td>UNSPECIFIED</td>
<td>UNSPECIFIED</td>
</tr>
</tbody>
</table>
Current Data Quality Problem

Turning Data into Information

<table>
<thead>
<tr>
<th>primary_location_lat</th>
<th>primary_location_long</th>
</tr>
</thead>
<tbody>
<tr>
<td>numeric (18,15)</td>
<td>numeric (19,15)</td>
</tr>
<tr>
<td>40.725930633100000</td>
<td>-74.034304409000000</td>
</tr>
<tr>
<td>null</td>
<td>[null]</td>
</tr>
<tr>
<td>null</td>
<td>[null]</td>
</tr>
<tr>
<td>40.572077132400000</td>
<td>-73.832971638200000</td>
</tr>
<tr>
<td>null</td>
<td>[null]</td>
</tr>
<tr>
<td>40.631738437800000</td>
<td>-74.201420469700000</td>
</tr>
<tr>
<td>null</td>
<td>[null]</td>
</tr>
<tr>
<td>40.843212249400000</td>
<td>-73.664628032800000</td>
</tr>
</tbody>
</table>
How can United States Coast Guard Sector New York incident data be displayed and analyzed more efficiently to identify trends and help quantify risk?
What is a Dashboard?

- U.S. Mentions by Location
 - Texas: 172
 - Florida: 132
 - California: 144
 - New York: 45
 - Minnesota: 20

- Executive Mentions
 - Walter White: 42%
 - Jesse Pinkman: 32%
 - Gus Fring: 65%

- Share of Voice Comparison
 - Company Name: 42%
 - Company Name: 65%
 - Company Name: 45%

- Social Media
 - 123 Links
 - 20 Share
 - 50 Mentions

- Local
 - Texas: 42%
 - Dallas: 32%
 - San Antonio: 65%
 - Houston: 10%

- Media Values
 - Television: $1,685,948
 - Radio: $597,574
 - Newspaper: $23,821

- Sentiment
 - Positive: 42%
 - Neutral: 65%
 - Negative: 45%
Importance to the USCG
and to the Homeland Security Enterprise

- USCG has massive amounts of data with inconsistencies
- Dashboards allow an indepth look into trends
- Allows for quick visualization of incident data
- Allows USCG to be data driven
- Proactive versus reactive
- Dashboard uses the Coast Guards pre-existing system to give meaning to thousands of rows of data

Methodology

Overview

- Brainstorm & Analyze
- Design
- Build
Brainstorming & Analyzing

Methodology Step 1

- Interpreted and assessed incident data
- Collectively created an initial design
- Met with Sector New York and revised with feedback
Designing
Methodology Step 2

• Dashboard Graphical Time Scales
 • Structured to present data in an informative, but non-cumbersome way

• Analysis Page
 • In order to provide the option to “drill down” into the data

• Geographic Understanding of Data
 • Give context to data through zone clustering
Building
Methodology Step 3

Excel Files
1. Received open source data
2. Analyzed the data

Data Parsing
1. Parsed the data for use in a database
2. Upload data to database

Database
1. Created a spatial database
2. Ran queries on the data

Display
1. Fed the results to graphs and maps
2. Derived statistical benefits
Dashboard

Status: Incomplete Prototype
Next Steps

Transition Dashboard
- Hand over to Sector New York

Improve Functionality
- E.g. Customizable Graphs and Maps

Improve Design
- E.g. Color Coding by Incident Type

Improve Capabilities
- Predictive Modeling
Recommendations for Sector New York

- Ensure Data Integrity
- Separate category for vessels types
- Integrate dashboard with the CGBI System
- Reduce the delay in the data reporting systems to near real time
Summer Research Institute
www.stevens.edu/SummerResearchInstitute

Questions?