Unmanned Systems Research with Maritime Security Applications

Brendan Englot
Assistant Professor of Mechanical Engineering
Stevens Institute of Technology

June 11, 2015
Outline of the Talk

• Brief overview of my prior research activities
• Autonomous Ship Hull Inspection – Path Planning for Sensor Coverage (2009-2012)
• Planning Under Uncertainty (2012-Present)
• Exploration and Mapping with Sparse and Noisy Data (2014-Present)
Overview of Prior Research Activities

- Massachusetts Institute of Technology (Cambridge, MA) 2007-2012
 - Research Assistant, Department of Mechanical Engineering
 - Path Planning in Support of Autonomous, In-Water Ship Hull Inspection (testing and validation on Navy and Coast Guard vessels)
Overview of Prior Research Activities

- United Technologies Research Center (East Hartford, CT) 2012-2014
 - Sikorsky Aircraft Corporation: Contributor to Development of the Sikorsky Autonomous Research Aircraft (SARA)

- Applications of Interest: Safe flight in obstacle-rich environments, shipboard landing, cargo transport
Overview of Prior Research Activities

- United Technologies Research Center (East Hartford, CT) 2012-2014
 - Autonomous and Intelligent Robotics Laboratory (AIRLab):
 Principal Investigator in Low-Level Autonomy Area

- Robust, Hierarchical Planning of Complex Missions via Multi-Objective Planning and Optimization
Robust Field Autonomy Lab
Department of Mechanical Engineering

- PI: Brendan Englot, 3 Ph.D. Students, 2 M.S. Students, 2 Undergraduate Students
- Goal: Develop control systems and algorithms that extend the reach of autonomy into complex environments
Robust Autonomy for Structure Monitoring

• Developing new and promising methods for autonomous operation in the close vicinity of offshore structures, suitable for varying amounts of prior information:
 • High-precision inspection of a known environment
 • Navigating a known environment under uncertainty
 • Exploring an unknown environment

• Long term goal: comprehensive, continuous, and multi-domain (air, surface, and subsea) structural health monitoring

Devaurs, Simeon and Cortes, WAFR 2014
Outline of the Talk

• Brief overview of my prior research activities

• Autonomous Ship Hull Inspection – Path Planning for Sensor Coverage (2009-2012)

• Planning Under Uncertainty (2012-Present)

• Exploration and Mapping with Sparse and Noisy Data (2014-Present)
Hovering Autonomous Underwater Vehicle (HAUV)

- Free-floating, fully actuated (in 6 D.O.F.), hover-capable robot
- Perform autonomous, in-water ship hull inspection to detect mines
- Joint effort by MIT Sea Grant and Bluefin Robotics, beginning 2002
- Now produced by Bluefin, 15 ordered by US Navy for inspections
A Full-Coverage Hull Inspection: Forward Hull

- “Non-Complex Areas” (~80% of ship)
- HAUV navigates relative to the hull, DIDSON collects 2D images

Back-and-forth sweeping covers the forward sections
Using Sonar as a Navigation Aid

Hover, Eustice, Kim, Englot, Johannsson, Kaess and Leonard
IJRR 2012
Using a Camera as a Navigation Aid

- Small field of view, limited viewing range in turbid water.
- However, when structures are feasible, imagery often contains rich visual feature content that is beneficial for navigation.
- Imagery above the surface can be used to aid the sub-sea navigation process.
Using a Camera as a Navigation Aid

(a) Raw imagery for two keyframes i and j.

(b) Radially undistorted and histogram equalized imagery.

(c) Extracted SIFT features.

(d) Pose constrained correspondence search (PCCS).

(e) Putative correspondences resulting from PCCS.

(f) Resulting inliers from geometric model selection framework.
A Full-Coverage Hull Inspection: Stern

- “Complex Areas” (~20% of ship)
- HAUV navigates relative to seafloor, DIDSON collects range scans
- Aviation Logistics Ship SS Curtiss shown as a motivating example:

How should we pursue full coverage at the stern?

- Propeller (7m diameter)
- Shaft (1.5m diameter)

Englot and Hover, IJRR 2013
An Example of the Desired Result

- Stabilize at each of a series of waypoints
- Pitch the sensor through its full range of motion at each waypoint to collect a volumetric scan
- Plan an efficient collision-free path that achieves 100% coverage of the hull among all view configurations
Sampling-Based Path Planning

• Rather than optimize over problem geometry, sample robot configurations and incrementally construct feasible solution

• Project each sample from robot's Configuration Space (C-Space) to the Euclidean Workspace to check against constraints

• Goal is to efficiently connect the free space despite high D.O.F., complex geometry, and challenging constraints/costs

Probabilistic Roadmap (PRM) (Kavraki et al. 1996)
A Sampling-Based Planning Approach

- Coverage problem is solved by Monte Carlo sampling, a probabilistic roadmap (PRM) is used as the basis for constructing an inspection route.
- Sampling is limited to regions where the structure is within viewing range, occurs until requisite sensor coverage of the structure is achieved.
- Coverage-based sampling approach shown to be probabilistically complete with exponential convergence to a feasible solution.

Englot and Hover, IJRR 2013
Producing a Locally Optimal Inspection Route

- Randomized inspection tours are substantially improved by iterative sampling procedure to replace existing configurations
- Coverage is maintained while locally shortening the length of the inspection tour
Heat maps show the relative algorithm runtime required to obtain coverage of each primitive in the mesh.

- Majority of both structures is open and accessible.
- Is it possible to improve regularity in the survey of these open areas?
- Regularized planning approach segments the structure and covers as much as possible using uniform, sweeping patterns.

Englot and Hover, IROS 2012
Results from Field Experiments

- USCGC Seneca, Boston Harbor, 2012 – Planned and Deployed a Full-Coverage Stern Inspection
- Planned vs. Obtained views used to improve initial, coarse model
Lessons Learned: Planning Adaptively, and Under Uncertainty

- **Adaptive Planning:** Revise the mission in real-time based on the data acquired; we will always see more or less of the structure than intended.

- **Robust Planning:** Propagate uncertainty (process and sensor noise) over planned paths, plan a series of measurements that offers guarantees on collision probability and structure coverage.
Outline of the Talk

- Brief overview of my prior research activities
- Planning Under Uncertainty (2012-Present)
- Exploration and Mapping with Sparse and Noisy Data (2014-Present)
Toward Robust Path Planning

• Robust path planning requires:
 • Reliable models of vehicle dynamics and the surrounding environment
 • A collision-free plan
 • Confidence that vehicle will follow the trajectory as planned

• To obtain the latter, we must simulate the execution of the plan
 • Goal is to complete the plan with high likelihood of successful arrival

• Must propagate uncertainties over candidate paths under anticipated actions and measurements

Patil, van den Berg and Alterovitz, ICRA 2012
Prior Work in Planning Under Uncertainty

- Algorithms have been proposed for planning under uncertainty in:
 - Actions [Alterovitz et al. 2007]
 - Environment Map [Missiuro and Roy 2006, Guibas et al. 2008]
- Assuming Gaussian noise in actions and measurements, candidate plans may be evaluated by propagating a Kalman Filter over candidate paths – The Belief Roadmap Algorithm (BRM)
- BRM minimizes uncertainty in vehicle state, at the goal state – trace of error covariance matrix is the scalar metric of uncertainty

The Belief Roadmap (BRM)
Prentice and Roy, IJRR 2009
Environment Likely to Induce Sensor Failures

- Not only will sensors return measurements with additive noise, sometimes they will fail to produce a measurement altogether.
- Probability of a “misdetection” may depend on:
 - Obstacle locations
 - Lighting conditions
 - Material composition
- If we understand the source of this probability, we can include this in the planning process.
- Applicable to range beacons, environment features measured by camera or laser.

Bopardikar, Englot and Speranzon ICRA 2014
Path Planning with a Novel Uncertainty Metric

- A novel uncertainty metric (which upper bounds the error covariance maximum eigenvalue) is used to identify the path of minimum goal-state uncertainty under probabilistic measurements, actions, and misdetections.

- A probabilistic roadmap (PRM) is used as the basis for selecting paths, and the search is adapted from the belief roadmap (BRM) algorithm – a best-first search similar to Dijkstra’s algorithm, with non-additive costs.

- UWB range beacons (10% successful) and obstacle corners (90% successful) are characterized by different misdetection probabilities.
Planned Paths Depend on Reliability of Sensors

- Laser has a higher sensor noise covariance than beacons do at close range – beacons are preferred for reducing uncertainty until a reliability threshold is reached.

- Beyond this threshold, robot takes a lengthy detour to collect laser measurements of the obstacles; not as precise as beacon measurements but they are more reliable.
Implementation of a Larger-Scale Test Case

- Reliability of laser-based feature detection depends on lighting conditions.
- Algorithm plans over a square-kilometer block of an urban environment using dense PRM.
- Neglecting environment-induced intermittency, probability of collision with surrounding obstacles is dangerously high.
Variable-Resolution Planning Under Uncertainty

- Use an expanded graph that represents varying levels of uncertainty in the localization process.
- Search the graph to achieve a minimum-cost path subject to desired upper limit on uncertainty.
- Typical issues with history dependence in planning under uncertainty are addressed by graph organization scheme (all nodes have the same cost associated with belief).

Bopardikar, Englot and Speranzon ACC 2014
• Use an expanded graph that represents varying levels of uncertainty in the localization process

• Search the graph to achieve a minimum-cost path subject to desired upper limit on uncertainty

• Typical issues with history dependence in planning under uncertainty are addressed by graph organization scheme (all nodes have the same cost associated with belief)
Improving on Optimal Search

• Given a probabilistic roadmap or other representative graph, our approaches thus far emphasize search methods – why not construct a graph with optimal limiting behavior?

• This perspective typically emphasizes tree-based graphs used only once by the robot, planning from its current location to others

• The search of a tree is trivial, but construction to achieve asymptotically optimal limiting behavior is not

• A key challenge in optimal tree construction is optimization with respect to a fluctuating cost – robot uncertainty – rather than an additive cost, such as distance, time, or fuel consumption

• We will attempt to capture the spirit of minimizing the “mean” uncertainty while obeying the required optimality criteria
• Proposal: plan a path of **minimum max uncertainty** as captured using the robot’s state estimate error covariance

• We assume our robot navigates using odometry and GPS to localize, but GPS availability is limited to specific zones (depicted in yellow)

• Minimizing cumulative uncertainty will bias the solution in favor of short paths – these may contain individual states of high uncertainty
Comparison of Three Cost Criteria

After 5,000 Samples:

• Comparison of min-max approach with standard min-distance approach (left) and a cumulate uncertainty approach (center)

• Cumulative vs Min-Max approaches generate some solutions of different homotopy
Comparison of Three Cost Criteria

After 10,000 Samples:

- Comparison of min-max approach with standard min-distance approach (left) and a cumulate uncertainty approach (center)
- Cumulative vs Min-Max approaches generate some solutions of different homotopy
Comparison of Three Cost Criteria

After 20,000 Samples:

- Comparison of min-max approach with standard min-distance approach (left) and a cumulate uncertainty approach (center)
- Cumulative vs Min-Max approaches generate some solutions of different homotopy
Outline of the Talk

• Brief overview of my prior research activities
• Autonomous Ship Hull Inspection – Path Planning for Sensor Coverage (2009-2012)
• Planning Under Uncertainty (2012-Present)
• Exploration and Mapping with Sparse and Noisy Data (2014-Present)
Planning Over Uncertain and Data-Derived Maps

- Robot mapping is largely focused on ground and aerial platforms with high-precision, well-behaved sensors (Kinect, Hokuyo)
- Occupancy grid mapping is a highly successful approach amenable to planning and exploration over a data-derived map
- Typically no consideration of the underlying probability distribution in the planning process
- Thresholding is often applied to the map; all cells assumed independent; no consideration of underlying sensing process
Planning Over Uncertain and Data-Derived Maps

- For underwater, sonar-based occupancy grid mapping and navigation to succeed, must utilize sparser, noisier data
- Gaussian process regression succeeds at capturing correlation and properties of underlying sensor – a sound basis for planning
- Goal: Develop algorithms for efficient and safe planning over the rich probability distributions associated with GP occupancy grid maps – a complement to min. localization uncertainty planning
Tools for Efficient Exploration of Unknown Environments

- 3D Frontiers Derived from GP Occupancy Maps, an aid for deciding where to explore next (top, left)
- GP regression over continuous, spatial action spaces, predicting the most informative sensing action (top, center)
- Multi-Resolution Gaussian Process occupancy maps (bottom, left)
Experimental Goals

• Develop algorithms using sound theory and analysis that achieve high performance in real-time, over real data

• Clearpath Turtlebot is our rapid prototyping platform for validation of algorithms over sensor data and real-time, feature-based autonomous navigation processes

• Final testing and validation of algorithms through rigorous experimentation on a marine robot platform, VideoRay Pro 4 remotely operated vehicle (ROV)
On the Hudson River this Spring
Thanks for listening!

Complex, highly cluttered seabed in a confined area

Questions?