Final Presentation
Thursday, July 28, 2011
Week 8

Sensor and Technology Applications in Port Security Team

Danielle Holden Brandon Gorton
Hasan Shahid Fatima Diop
Hector Pacheco Kai Gemba
Daniel Reynolds Samuel Otu-Amoah
Tyler Hee Wai Enrique Questell
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
SRI Objective and Architecture

To study and address the threat of pirated ships in the MTS being used as a weapon of terror

Define the strengths and limitations of sensor technologies to detect, classify, and track vessels in, near, and approaching the urban port environment

- Satellites, HF Radar, AIS
- Acoustics, Electro-optics
- Vessel categorization, threat assessment
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Steens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Acoustic Data Collection and Processing
Stevens Passive Acoustic Detection System (SPADES)

In Water System
- Passive Acoustic Detection with four hydrophones
- Data from hydrophone acquired and recorded
- SPADES GUI
- Spectral Analysis
- Cross-Correlation Analysis
- Data pre-processed in underwater system and transmitted digitally

Land based system
- Frequency (Hz)
- Time (s)
- Boat Signal
DEMON Analysis

- **Detection of Envelope Modulation on Noise**
- Allows for classification by demodulating vessel specific noise
- Demonogram (top) shows how the spectral density of a vessel characteristic signal varies with time
- Demon Spectrum (bottom) shows the time averaged (60 s) representation of a vessel's signal in the frequency domain
Infrared vs. High-resolution video

Video taken on July 4, 2011 from Maritime Security Laboratory

Infrared Image
- Thermal image does not change
- Vessels can be tracked independently of light source

Optical Image
- Vessels are hard to track as natural light decreases (use their self lightening)
- Vessels are impossible to track w/o own light
Introducing Digital Image Processing

• Set of computational techniques for analyzing, enhancing, compressing and reconstructing images

• Applications:
 – Image Subtraction: pixel by pixel intensity subtraction between two images to form a better contrast image with the potential target
 – Image Overlay: Alignment of overlapping HR and IR images to construct one seamless composite image with more detail
 – Noise and glare reduction
 – Edge and corner detection
Image Subtraction

Goal: contrast enhancement (for edge detection)

Image of interest (1) is subtracted from a time averaged reference image.

Resulting image (2) is the contrast enhanced image:
- eases operator decision
- further processing
Image Processing

• Conclusions
 • Image subtraction was established as a viable surveillance technology
 • You can detect things better & nice for further processing
 • Suggests automation

• Recommendations
 • Create a database of background images sorted by significant changes in the environment
 • Fully automate the algorithm so it continually analyzes IR images
 • Make the algorithm do successful image vessel classification
 • Create a fully-functional GUI that could be integrated into a surveillance system such as BOOM
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Satellites - Introduction

Early detection
- Low to high resolutions
- Monitor environmental conditions
- Limited availability
- Required trained personnel to operate
- High operational cost
- Processing time depends on orbit, post-processing, and image download time

TerraSAR-X-Satellite (EADS-Astrium)

SAR image of NJ, Manhattan and Brooklyn
Types of Satellite Imaging

Optical
- Uses visible and infrared light
- Passive detection
- No image distortion

Synthetic Aperture Radar (SAR)
- Uses radio waves
- Active detection
- Higher resolution images, covering larger areas
- Flight path simulates large antenna
- Images are distorted
- Can look through clouds
- Ship wakes are more easily visible
Satellite image comparison: Optical vs. SAR

EROS-B at 18:57:00 GMT on 7/11/2011
- Clouds covering bridge
- Wakes of vessels barely visible

- No clouds
- Wakes of vessels visible
- Buildings leaning to right
Automatic Identification System (AIS)

- Tracks time and location of vessels
- Provides name, type of vessel, MMSI #, country of origin
- Class A and Class B
- Stevens, Rutgers, and Coast Guard receivers
- Compatible with Google Earth
- Only effective when AIS transmitter is turned on in vessels
Ship Identification-AIS

- Comparison of SAR Satellite image and AIS Google overlay
- SAR image taken by TerraSAR-X on 10:56:19 GMT on 7/12/2011
- Vessel's Details
 - Speed recorded (Max): 10.2 knots

Source: marinetracking.com
Vessel Detection
- Detection range: 0 to 70 km
- Detects vessels trajectory, distance and velocity
- Effective in fog and rain
- Cannot characterize type of vessel
- Requires surface disturbance
- Strong winds and lightning can damage radar
Cross Spectral Image
- Three plots show 2 directional loops and monopole
- Doppler spectrum determines vessels direction and speed
- Bragg Waves: ⭐ A measure of radar signals scattered by waves

Range Cell Image
- 95 range cells with each range cell being ~3 km long
- Three colors represent three loops, or antennae on the radar
Presentation Outline

- SRI Objectives and Architecture
- Technology Overview
 - Near Shore Systems:
 - Acoustics, Optical with Image Processing
 - Long Range Systems
 - Satellites, AIS, HF Radar
- Data Collection Process
- Tracking Examples & Exercise
- Decision Support
 - User Interface & Resources
 - Layered Architecture
 - BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky
Data Collection Process

- AIS
- RADAR
- SPADES
- HF Radar
- Satellite

- Record and review

- Optical and IR Camera

- NYHOPS

- AIS, Radar, and Spades Map

- HF Radar Map (Google Earth)
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
22:49:02 GMT on 7/12/2011
Pacific Huron

- Example of acoustic layered architecture
- AIS ID: 305535000
 - Ship Type: Cargo
 - Length x Breadth: 190 m X 25 m
 - Flag: Antigua Barbuda [AG]

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Time (GMT)</th>
<th>Distance* (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic detection</td>
<td>22:41</td>
<td>2023</td>
</tr>
<tr>
<td>Video detection</td>
<td>22:46</td>
<td>872</td>
</tr>
<tr>
<td>Satellite</td>
<td>22:49</td>
<td>646</td>
</tr>
<tr>
<td>Video loses contact</td>
<td>22:52</td>
<td>944</td>
</tr>
<tr>
<td>Acoustic loses contact</td>
<td>22:55</td>
<td>1475</td>
</tr>
</tbody>
</table>

*Distance measured from SPADES
Tracking Redundancy: Pacific Huron

Ferry Signal

Pacific Huron

SPADES

Video

COSMO SkyMed, 20110712 224902 GMT w/ Google Overlay

135 Hz 22:49:00
Detection Distances

- Acoustic detection depends on several factors
 - background noise (bridges, rain)
 - interferences from other targets (coherent noise)
- Maximum detection distance for SPADES bounded by two ferry terminals (2.5 km N, 750 m S)

Carnival Miracle: Cruise Ship
Detection: 1200 m, Loss: 1200 m

Robert Fulton: NY Ferry
Max Detection Distance: 2500 m

Thomas D. Witte: Tug Boat
Detection: 550 m, Loss 1000 m

Small Pleasure Craft
Detection: 450 m, Loss 800 m
Simulation Results - GPS Tracking route

- Pin ups represent Savitzky’s positions at time of Satellite images
- Routes also confirmed with SPADES and Video

- Savitsky confirmed with satellite image
- Savitsky not confirmed on satellite image
- Savitsky’s explosion site (confirmed)
Acoustic detection distance: 550 m at 22:48:00 GMT
Acoustics loses contact: 460 m at 22:50:50 GMT due to ferry noise from the north
Stability of Demonogram

Abraham Lincoln Ferry 7/11 19:04

Savitsky 7/11 11:51

Douglas B Guarin Ferry 6/30 20:34

Savitsky 7/11 11:59
DEMON Spectra Classification

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Fundamental Frequency range [Hz]</th>
<th>1st Harmonic [Hz]</th>
<th>2nd Harmonic [Hz]</th>
<th>3rd Harmonic [Hz]</th>
<th>Other frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cruise</td>
<td>5-6</td>
<td>10-12</td>
<td>15-18</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Tanker</td>
<td>4-6</td>
<td>8-12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Tugboat</td>
<td>14-20</td>
<td>28-40</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Pleasure boat</td>
<td>88-97</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>154-172</td>
</tr>
<tr>
<td>34 foot Zurn</td>
<td>81</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>141,222</td>
</tr>
<tr>
<td>Jet Ski</td>
<td>26</td>
<td>53</td>
<td>79</td>
<td>105</td>
<td>n/a</td>
</tr>
</tbody>
</table>

![Small cruise](image1.png)

![Tugboat](image2.png)
Engine Speed Effects on DEMON Signature

- DEMON analysis gives us a signal which is dominated by the engine and propellers
- As the engine speed changes, the DEMON spectra will as well
- Signatures show that the vessel dependent frequencies change proportionally when the engine speed changes

Unknown Boat 6/30 18:57.
Peaks change by a factor of .72

Unknown Boat 6/30 18:42.
Peaks change by a factor of 1.08
Near Shore Technologies

• Conclusions
 – SPADES is a reliable system in tracking vessels of interest (real time!) in the absence of dominant noise (i.e. other vessels or rain)
 – Successful in detection, tracking and classification

• Recommendations
 – Add 2nd set of hydrophones to obtain distance information
 – Assess accuracy of system (w/ known vessel positions)
 • Variations in Sound Speed, Positioning of the Array
 – Detailed study of DEMON stability (separate a particular signal in the presence of other signals)
Long Range Tracking: HF Radar

Cross-spectra, 10:10:59 GMT on 7/19/2011

Ship Detection GUI, 10:20:00 GMT to 11:10:00 GMT on 7/19/2011
Long Range Tracking: AIS and Satellite (SAR)

AIS data overlaid onto Google Earth, 10:13:45 GMT on 7/19/2011

Satellite image taken by COSMO-SkyMed, 10:13:06 GMT on 7/19/2011

Joan Moran (MMSI # 368669000) Miss Gill (MMSI# 367122680)
Long Range Tracking: Complimenting HF Radar with AIS

Cross-spectra, 18:24:58 GMT on 7/26/2011

AIS data overlaid onto Google Earth, 18:26:59 GMT on 7/26/2011
Long Range Technologies

• Conclusions
 – Best used in a layered approach
 – Successful in detection, not identification
 – Good for port security because:
 • Satellite gives a large overview of the area
 • Good tools to display post effects (i.e. oil spill)
 • HF Radar can see over the horizon, “eyes”

• Recommendations
 – Add higher frequency HF RADARs to the area of interest
 – Make the technology real time
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Putting It All Together
How To Make Sense of Sensor Information

Common Operational Picture

Inform The User
Who Uses Sensor Networks?

Law Enforcement:
United States Coast Guard

Problem:
Vessels without AIS

Needs:
- Tracking
- ID or Classification

Emergency Response:
OEM & First Responders

Problem:
No Modeling Input Data

Needs:
- Visual Information
- Vessel Information

CLASSIFICATION
Contact ID and Assessment Process

CONTACT!

Classify Vessels Without AIS

Vessels With AIS

Threat ID
How do you get from this...

Multisource Data Interpretation:

Demon Spectrum

Blurry Camera

HF Radar Screen

HF Radar, Speed and Range

Vessel Specifics

...to This?
Process Breakdown:

Contact:
- Fundamental Frequency: -88Hz

Small Recreational Vessel
- Length: 20-50’
- Draft <4’
- Beam: 6’

Suspicious:
- Should It be Broadcasting AIS?
- Is it Where Expected?
- Is it Acting as Expected?
Decision Support

• Conclusions
 – Generated BOOM as a GUI that allows the user to select which technologies to integrate into an interactive map
 – Decision Support Database providing consistent vessel classification and target identification

• Recommendations
 – Continue to define the operational boundaries of each type of vessel
 – Ensure that there is a ‘memory’ of the work conducted this year to provide a foundation for future research programs
Presentation Outline

• SRI Objectives and Architecture
• Technology Overview
 – Near Shore Systems:
 • Acoustics, Optical with Image Processing
 – Long Range Systems
 • Satellites, AIS, HF Radar
• Data Collection Process
• Tracking Examples & Exercise
• Decision Support
 – User Interface & Resources
 – Layered Architecture
 – BOOM: Interactive Bay and Ocean Observation Management System

Stevens’ Research Vessel, RV Savitsky

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Bay and Oceanographic Observation Management System (BOOM)

Integration of sensor displays

Law enforcement official

BOOM

Acoustic
HD cameras
CODAR
RADAR

DETECTION SYSTEMS

Data Fusion

Laboratory setting

Single Integrated display
Layered Architecture

- **SPADES**
 - max detection range: 2.5 km
 - usual detection range: 1.2 km

- Coverage hole in the layer between SPADES and HF Radar

Satellite Overlay

RADAR coverage

HF Radar coverage

HD Camera coverage
BOOM!: Interactive Bay and Oceanographic Observation Management System

- AIS
- SPADES
- NYHOPS
- MACOORA
- RADAR
- Satellite
- Coverage Zones
- Live Feeds
Thank you for your time!

Are there any questions?

This material is based upon work supported by the U.S. Department of Homeland Security under Grand Award Number 2008-ST-061-ML0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
Example Image Overlay

Original HR Image

Overlaying Image

Original IR image
IR Imaging Overview

- All objects radiate thermal energy
 - As the temperature increases, the amount of thermal energy increases while the peak wavelength of the radiated energy decreases

- IR cameras detect radiated energy, NOT Temperature
 - Heat energy is emitted by the object so no light or heat source is needed
 - Emissivity is a characteristic of the material. Two objects at the same temperature can emit a different amount of energy and thus appear different on an IR image

Aluminum emissivity of 0.1, Electrical tape emissivity of 0.95.

IR represents the wavelengths slightly longer than visible
Image Processing for Detecting Multiple Targets
Acoustic Data Collection & Processing

SPADES
Stevens Passive Acoustic Detection System

Data from hydrophone acquired and recorded

Data pre-processed in underwater system and transmitted digitally

NEW BUOY
Graphical User Interface

Spectral Analysis

Cross-Correlation Analysis

Signature Analysis

Demon Spectrum

Cross-Correlogram

Circular Cross-Correlation
DEMON Spectra Classification

Circle Line Cruise Ship

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Fundamental Frequency range</th>
<th>1st Harmonic</th>
<th>2nd Harmonic</th>
<th>3rd Harmonic</th>
<th>4th Harmonic</th>
<th>Other frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cruise</td>
<td>5-6</td>
<td>10-12</td>
<td>15-18</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Ferry</td>
<td>10-12</td>
<td>n/a</td>
<td>n/a</td>
<td>30-36</td>
<td>40-48</td>
<td>n/a</td>
</tr>
<tr>
<td>Tanker</td>
<td>4-6</td>
<td>8-12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Tugboat</td>
<td>14-20</td>
<td>28-40</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Savitsky</td>
<td>47-54</td>
<td>95-109</td>
<td>163</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Small pleasure boat</td>
<td>88-97</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>172</td>
</tr>
<tr>
<td>34 foot Zum</td>
<td>81</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>141</td>
</tr>
<tr>
<td>Jet Ski</td>
<td>26</td>
<td>53</td>
<td>79</td>
<td>105</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Appendix 1: Acoustic Classification

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Fundamental Frequency range</th>
<th>1st Harmonic</th>
<th>2nd Harmonic</th>
<th>3rd Harmonic</th>
<th>4th Harmonic</th>
<th>Other frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cruise</td>
<td>5-6</td>
<td>10-12</td>
<td>15-18</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Ferry</td>
<td>10-12</td>
<td>n/a</td>
<td>n/a</td>
<td>30-36</td>
<td>40-48</td>
<td>n/a</td>
</tr>
<tr>
<td>Tanker</td>
<td>4-6</td>
<td>8-12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Tugboat</td>
<td>14-20</td>
<td>28-40</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Savitsky</td>
<td>47-54</td>
<td>95-109</td>
<td>163</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Small pleasure boat</td>
<td>88-97</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>172</td>
</tr>
<tr>
<td>34 foot Zurn</td>
<td>81</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>141</td>
</tr>
<tr>
<td>Jet Ski</td>
<td></td>
<td>26</td>
<td>53</td>
<td>79</td>
<td>105</td>
<td>n/a</td>
</tr>
<tr>
<td>Vessel type</td>
<td>Fundamental Frequency range [hz]</td>
<td>1st Harmonic</td>
<td>2nd Harmonic</td>
<td>3rd Harmonic</td>
<td>4th Harmonic</td>
<td>Other frequency</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Small cruise</td>
<td>5-6</td>
<td>10-12</td>
<td>15-18</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Ferry</td>
<td>10-12</td>
<td>n/a</td>
<td>n/a</td>
<td>30-36</td>
<td>40-48</td>
<td>n/a</td>
</tr>
<tr>
<td>Tanker</td>
<td>4-6</td>
<td>8-12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Tugboat</td>
<td>14-20</td>
<td>28-40</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Savitsky</td>
<td>47-54</td>
<td>95-109</td>
<td>143-163</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Small pleasure boat</td>
<td>88-97</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>154-172</td>
</tr>
<tr>
<td>34 foot Zurn</td>
<td>81</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>141</td>
</tr>
<tr>
<td>Jet Ski</td>
<td>26</td>
<td>53</td>
<td>79</td>
<td>105</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Appendix 2: Stability of Savitsky Signal

<table>
<thead>
<tr>
<th></th>
<th>Peak</th>
<th>49.8 Hz</th>
<th>99.1 Hz</th>
<th>148.9 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savitsky 1</td>
<td>Relative Intensity</td>
<td>1</td>
<td>0.342</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>54.7 Hz</td>
<td>109.4 Hz</td>
<td>163.1 Hz</td>
</tr>
<tr>
<td>Savitsky 2</td>
<td>Relative Intensity</td>
<td>1</td>
<td>0.406</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>47.9 Hz</td>
<td>95.2 Hz</td>
<td>143.1 Hz</td>
</tr>
<tr>
<td>Savitsky 3</td>
<td>Relative Intensity</td>
<td>1</td>
<td>0.418</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>50.3 Hz</td>
<td>100.6 Hz</td>
<td>150.9 Hz</td>
</tr>
<tr>
<td>Savitsky 4</td>
<td>Relative Intensity</td>
<td>1</td>
<td>0.366</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>49.8 Hz</td>
<td>100.1 Hz</td>
<td>149.9 Hz</td>
</tr>
<tr>
<td>Savitsky 5</td>
<td>Relative Intensity</td>
<td>1</td>
<td>0.433</td>
<td>0.218</td>
</tr>
</tbody>
</table>
Appendix 3: Engine Speed Effects

<table>
<thead>
<tr>
<th></th>
<th>1st Frequency (Hz)</th>
<th>2nd Frequency (Hz)</th>
<th>3rd Frequency (Hz)</th>
<th>4th Frequency (Hz)</th>
<th>5th Frequency (Hz)</th>
<th>6th Frequency (Hz)</th>
<th>7th Frequency (Hz)</th>
<th>8th Frequency (Hz)</th>
<th>9th Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial peak</td>
<td>25</td>
<td>100</td>
<td>175</td>
<td>83.5</td>
<td>146.5</td>
<td>0.72</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Final peak</td>
<td>18</td>
<td>78</td>
<td>137</td>
<td>89</td>
<td>156</td>
<td>0.76</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Ratio (Final/Initial)</td>
<td>0.76</td>
<td>0.78</td>
<td>0.78</td>
<td>0.76</td>
<td>0.78</td>
<td>0.76</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>2</td>
<td>Initial peak</td>
<td>66</td>
<td>200</td>
<td>400</td>
<td>78.5</td>
<td>138</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Final peak</td>
<td>56.5</td>
<td>170</td>
<td>340</td>
<td>97</td>
<td>171.5</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Ratio (Final/Initial)</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
<td>0.86</td>
<td>0.85</td>
<td>0.86</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>Initial peak</td>
<td>65</td>
<td>87</td>
<td>152</td>
<td>98</td>
<td>172</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Final peak</td>
<td>70</td>
<td>94</td>
<td>165</td>
<td>82.5</td>
<td>144.5</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Ratio (Final/Initial)</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>4</td>
<td>Initial peak</td>
<td>97</td>
<td>169</td>
<td></td>
<td>81.5</td>
<td>143</td>
<td>0.72</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Final peak</td>
<td>70</td>
<td>123</td>
<td></td>
<td>88</td>
<td>154</td>
<td>0.72</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Ratio (Final/Initial)</td>
<td>0.72</td>
<td>0.73</td>
<td>0.73</td>
<td>0.72</td>
<td>0.73</td>
<td>0.72</td>
<td>0.73</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Ten Satellite Flyovers

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (GMT)</th>
<th>Satellite</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11:01:30</td>
<td>COSMO-SkyMed</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>11:13:25</td>
<td>TerraSAR-X</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>18:57:00</td>
<td>EROS-B</td>
<td>Optical</td>
</tr>
<tr>
<td></td>
<td>22:49:02</td>
<td>COSMO-SkyMed</td>
<td>SAR</td>
</tr>
<tr>
<td>7/12/2011</td>
<td>10:56:19</td>
<td>TerraSAR-X</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>11:01:28</td>
<td>COSMO-SkyMed</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>18:40:00</td>
<td>EROS-B</td>
<td>Optical</td>
</tr>
<tr>
<td></td>
<td>22:49:00</td>
<td>COSMO-SkyMed</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>23:04:06</td>
<td>COSMO-SkyMed</td>
<td>SAR</td>
</tr>
</tbody>
</table>
SAR: Image Distortion

- Beam reaches top of target before it reaches its bottom
- Image appears compressed
Ship Identification-Wakes

- Large vessels are easy to see
Types of Satellite Imaging

- Optical
 - Passive
 - Uses visible and Infra-Red light

- Synthetic Aperture Radar (SAR)
 - Active
 - Flight path simulates large
Long Range Flow Chart

- AIS
 - Transas AIS
 - USCG AIS
 - Rutgers AIS
 - Google Earth
 - Ship Detection GUI

- CODAR
 - Surface Velocities and Vessel Detection
 - Microwave signals hit water surface and ships
 - Seabright Website
 - Tools for viewing raw data
 - Tools for interpreting processed data
 - Range Cells
 - Spectral Images
 - Timbuktu

- Bearing, Velocity and Range
 - SNR
 - Manipulating SNR that can be viewed by tools
 - Filters
 - Threshold
Threat ID: Check For Normal Behavior
User Information Tools

How do you get from this…

89 Hz

Demon Spectrum + Blurry Camera Image + HF Radar Screen

HF Radar – Speed and Range

…to This?
Bay and Oceanographic Observation Management System (BOOM)

Integration of sensor displays

Law enforcement official

Laboratory setting

Acoustic HD cameras

CODAR RADA R

DETECTION SYSTEMS

Data Fusion

Single Integrated display