MINOR REQUIREMENTS

Students may qualify for minors in structural engineering, coastal engineering, water resources, or environmental engineering by taking the required courses indicated below. Completion of a minor indicates a proficiency beyond that provided by the Stevens engineering curriculum in the basic material of the selected area. The minor program must be in a discipline other than that of a student's major program of study, and at least two courses in the minor must be overload courses, beyond the credit requirements for all other programs being pursued by the student.

**Requirements for a Minor in Structural Engineering**

A minimum of six of courses must be selected from the following:

- CE 345 Modeling and Simulation
Introduction to linear systems and eigenvalue problems. Matrix analysis of trusses and frames, stress analysis, free and forced vibrations of structures. Introduction to nonlinear ODEs and PDEs with applications to civil engineering problems. Use of MATLAB or equivalent to simulate solutions.

- CE 373 Structural Analysis
Shear and bending moment diagrams for beams and frames. Statically determinate trusses influence lines and moving loads, deflection of beams using moment-area and conjugate-beam methods, introduction to energy methods, deflection of beams and frames using unit-load method, introduction to statically indeterminate structures, approximal methods, moment-distribution and slope-deflection methods.

Two of the following two courses:

- CE 484 Reinforced Concrete Design
Ultimate strength design for bending and shear of rectangular sections, slabs, "T" sections and continuous beams, girders, columns, retaining walls and footings. Code requirements.

- CE 486 Structural Steel Design
ASD and LRFD design for tension members, beams and columns. Design of steel frame systems. Code requirements.

- CE 519 Advanced Structural Analysis
Analysis of structures using methods of work, slope deflection and moment distribution; force acceleration and energy methods; variable moments of inertia; continuous beams, trusses and frames; arch analysis; plasticity and limit design; slab and shell structures.

- CE 681 Introduction to Finite Element Methods
A concise introduction for advanced undergraduate and graduate engineering students. Includes numerical discretization, finite-differences, variational principle, weighted residual method, Galerkin approximations, continuous and piecewise-defined basis functions, finite-element methods, computer coding of one-dimensional problems, triangular elements - coding of two-dimensional problems, time-dependent problems.

And two of the following:

- CE 579 Advanced Reinforced Concrete Structures
Ultimate Strength Design of beams, deep beams, slender columns, walls, two-way and plate slabs. Study of bending, shear, torsion, deflections, shrinkage, creep and temperature effects. Code Requirements.

- CE 623 Structural Dynamics
Introduction to theory of structural dynamics with emphasis on civil engineering problems. One-degree systems; lumped parameter and multi-degree systems; approximate methods; analysis and design applications using computers.

- CE 660 Advanced Steel Structures
Ultimate Strength Design, deep beams, torsion, deflections, shrinkage, creep and temperature effects, biaxially loaded columns, slender columns, walls, two-way and plate slabs.

**Requirements for a Minor in Water Resources**

- CE 304 Water Resources Engineering
Principles of engineering hydrology, the hydrologic cycle, rainfall-runoff relationships, hydrographs, hydrologic and hydraulic routing; groundwater resources; planning and management of water resources; probabilistic methods in water resources, reservoir design, water distribution systems.

- CE 342 Fluid Mechanics
Fluid properties: fluid statics, stability of floating bodies, conservation of mass, Euler and Bernoulli equations, impulse-momentum principle, laminar and turbulent flow, dimensional analysis and model testing, analysis of flow in pipes, open channel flow, hydrodynamic lift and drag. Practical civil engineering applications are stressed.

- CE 525 Engineering Hydrology
Principles of hydrology and their application to engineering projects, including the hydrologic cycle, measurement and interpretation of hydrologic variables, stochastic hydrology, flood routing and computer simulations in hydrology.

- CE 578 Coastal and Flood Plain Engineering
Identification, assessment, and risk analysis of river and coastal flood hazards. Introduction to flood plain analysis, surge, and overland wave propagation. Development of flood, surge, and wave load analysis. Presentation of flood hazard mitigation techniques and engineering design of flood proofing techniques.

- CE 685 Advanced Hydraulics
Fundamentals of open channel flows; types of open channels and their properties; velocity distribution in open channels. Specific energy, momentum and specific force principles; critical flows; principles of uniform flow and its computation. Gradually varied flow; channel transitions and controls. Rapidly varied flow; hydraulic jump and energy dissipaters. Unsteady flows; waves and wave propagation; flood routing. Applications of numerical methods in hydraulic engineering.

- EN 686 Groundwater Hydrology and Pollution
Fundamental concepts in groundwater hydrology and pollution, occurrence, and movement of groundwater; flow nets; well hydraulics; and numerical methods in groundwater hydraulics. Chemical properties of groundwater, sources, and effects of contamination; principles of mathematical modeling of containment transport in groundwater; and numerical methods in groundwater pollution.

**Requirements for a Minor in Coastal Engineering**

- CE 304 Water Resources Engineering
Principles of engineering hydrology, the hydrologic cycle, rainfall-runoff relationships, hydrographs, hydrologic and hydraulic routing; groundwater resources; planning and management of water resources; probabilistic methods in water resources, reservoir design, water distribution systems.

- CE 342 Fluid Mechanics
Fluid properties: fluid statics, stability of floating bodies, conservation of mass, Euler and Bernoulli equations, impulse-momentum principle, laminar and turbulent flow, dimensional analysis and model testing, analysis of flow in pipes, open channel flow, hydrodynamic lift and drag. Practical civil engineering applications are stressed.

- CE 578 Coastal and Flood Plain Engineering
Identification, assessment, and risk analysis of river and coastal flood hazards. Introduction to flood plain analysis, surge, and overland wave propagation. Development of flood, surge, and wave load analysis. Presentation of flood hazard mitigation techniques and engineering design of flood proofing techniques.

- OE 501 Oceanography
Geophysical description of the earth; the extent, shape. and structure of ocean basins; relief of the sea floor; chemistry of sea water; geochemical balances; physical properties of water and sea water; solar and terrestrial radiation; evaporation and precipitation over the oceans; dissolved gases in sea water; distribution of variables; and general oceanic circulation.

- OE 535 Ocean Measurements and Analysis
Basic ocean measurements and instrumentation, sampling requirements, data processing, analysis, and presentation. Prerequisite: Completion of an undergraduate probability and statistics course.

- OE 589 Coastal Engineering
An introductory course covering the fundamental principles of coastal engineering. The initial stages of the course are intended to provide an understanding of the physics of the coastal environment. Topics will include basic wave theory (wave generation, refraction, diffraction, and shoaling), wave prediction techniques, tides and coastal circulatio, and sediment transport. The latter stages of the course will be devoted to the application of these basic principles, such as stabilization and harbor development. The course will culminate in a substantial design project, which will incorporate all aspects of the course material, ranging from the estimation of design wave conditions to the actual design of a shore protection structure. Prerequisite: MA 227 or the equivalent, Fluid Mechanics.

**Requirements for a Minor in Environmental Engineering**

- CE 342 Fluid Mechanics
Fluid properties: fluid statics, stability of floating bodies, conservation of mass, Euler and Bernoulli equations, impulse-momentum principle, laminar and turbulent flow, dimensional analysis and model testing, analysis of flow in pipes, open channel flow, hydrodynamic lift and drag. Practical civil engineering applications are stressed.

- CHE 210 Process Analysis
An introduction to the most important processes employed by the chemical industries, such as plastics, pharmaceutical, chemical, petrochemical, and biochemical. The major emphasis is on formulating and solving material and energy balances for simple and complex systems. Equilibrium concepts for chemical process systems will be developed and applied. Computer courseware will be utilized extensively.

- EN 375 Environmental Systems
An introduction to environmental engineering, including: environmental legislation; water usage and conservation; water chemistry including pH and alkalinity relationships; solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; and design and analysis of mechanical, physicochemical, and biochemical water and wastewater treatment processes.

And any three of the following courses:

- EN 541 Fate and Transport of Environmental Contaminants
Description of fundamental processes in natural and engineered systems, including intermedia transport of contaminants between environmental compartments (air, water, soil, and biota) and chemical and biochemical transformations within these compartments.

- EN 570 Environmental Chemistry
Principles of environmental reactions with emphasis on aquatic chemistry; reaction and phase equilibria; acid-base and carbonate systems; oxidation-reduction; colloids; organic contaminants classes, sources, and fates; groundwater chemistry; and atmospheric chemistry.

- EN 571 Physicochemical Processes for Environmental Control
A study of the chemical and physical operation involved in treatment of potable water, industrial process water, and wastewater effluent; topics include chemical precipitation, coagulation, flocculation, sedimentation, filtration, disinfection, ion exchange, oxidation, adsorption, flotation, and membrane processes. A physical-chemical treatment plant design project is an integral part of the course. The approach of unit operations and unit processes is stressed.

- EN 573 Biological Processes for Environmental Control
Biological basis of wastewater treatment; river systems and wastewater treatment works analogy; population dynamics; food sources; aerobic and anaerobic systems; reaction kinetics and parameters affecting waste removal; fundamentals of mass transfer and gas transfer; trickling filter, and activated sludge process; aerated lagoons; stabilization ponds; nitrification; denitrification; sludge concentration; aerobic sludge digestion; anaerobic sludge digestio and sludge conditioning; sludge drying, vacuum filtration; and incineration and ocean disposal. A biological treatment plant design project is an integral part of the course.