Research Areas

Quantum field theory of many-body systems; nonequilibrium and thermal Green's function methods in solid state and semiconductor physics and response properties; open quantum systems; nonequilibrium fluctuations; surface interactions; quantum plasma; high magnetic field phenomena; low dimensional systems; dynamic, nonlocal dielectric properties, and collective modes in quantum wells, wires, dots, and superlattices; nanostructure electrodynamics and optical properties; nonlinear quantum transport theory; magnetotransport, miniband transport, hot electrons, and hot phonons in submicron devices; mesoscopic systems; spintronics; relaxation and decoherence in semiconductor nanostructures; nanoelectrical mechanical systems (NEMS); and device analysis for quantum computations.

Faculty

Prof. N. J. M. Horing