# Definable subsets in a free group

### Olga Kharlampovich, Alexei Miasnikov

November 11

イロン イロン イヨン イヨン 三日

1/25

We give a description of definable subsets in a free non-abelian group F that follows from our work on the Tarski problems. As a corollary we show that proper non-abelian subgroups of F are not definable (Malcev's problem) and prove Bestvina and Feighn's result that definable subsets in a free group are either negligible or co-negligible.





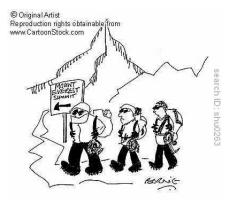
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let F be a free group with finite basis. We consider formulas in the language  $L_A$  that contains generators of F as constants. Notice that in the language  $L_A$  every finite system of equations is equivalent to one equation (this is Malcev's result) and every finite disjunction of equations is equivalent to one equation (this is attributed to Gurevich).

# **Quantifire Elimination**

#### Theorem

(Sela,Kh,Miasn) Every formula in the theory of F is equivalent to the boolean combination of AE-formulas.



Furthermore, a more precise result holds.

### Theorem

Every definable subset of F is defined by some boolean combination of formulas

$$\exists X \forall Y(U(P,X) = 1 \land V(P,X,Y) \neq 1), \tag{1}$$

where X, Y, P are tuples of variables.

# Definition

A *piece* of a word  $u \in F$  is a non-trivial subword that appears in two different ways.

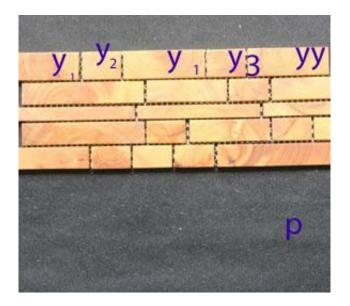
#### Definition

A proper subset P of F admits parametrization if it is a set of all words p that satisfy a given system of equations (with coefficients) without cancellations in the form

$$p \stackrel{\circ}{=} w_t(y_1, \ldots, y_n), t = 1, \ldots, k, \tag{2}$$

where for all i = 1, ..., n,  $y_i \neq 1$ , each  $y_i$  appears at least twice in the system and each variable  $y_i$  in  $w_1$  is a piece of p.

The empty set and one-element subsets of F admit parametrization.



< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ◇ Q (~ 8/25

## Definition

(BF) A subset P of F is *negligible* if there exists  $\epsilon > 0$  such that all but finitely many  $p \in P$  have a piece such that

 $\frac{\textit{length(piece)}}{\textit{length}(p)} \geq \epsilon.$ 

A complement of a negligible subset is co-negligible.

Bestvina and Feighn stated that in the language without constants every definable set in F is either negligible or co-negligible. They also proved that 1) Subsets of negligible sets are negligible.

2) Finite sets are negligible.

3) A set S containing a coset of a non-abelian subgroup G of F cannot be negligible

4) A proper non-abelian subgroup of F is neither negligible nor co-negligible.

5) The set of primitive elements of F is neither negligible nor co-negligible if rank(F) > 2.

10/25

#### Proof.

3) If x, y ∈ G and [x, y] ≠ 1, then the infinite set {fxyxy<sup>2</sup>x...xy<sup>i</sup>x, i ∈ N} is not negligible.
Statement 4) follows from 3).
5) Let a, b, c be three elements in the basis of F and denote F<sub>2</sub> = F(a, b) The set of primitive elements contains cF<sub>2</sub>, and the complement contains < [a, b], c<sup>-1</sup>[a, b]c > .

#### Lemma

A set P that admits parametrization is negligible.

### Proof.

Let *m* be the length of word  $w_1$  (as a word in variables  $y_i$ 's and constants). The set *P* is negligible with  $\epsilon = 1/m$ .

It follows from [K.,M.: Imp] that every E formula in the language  $L_A$  is equivalent to  $\exists X(U(X, Y) = 1 \land V(X, Y) \neq 1)$ , where X, Y are families of variables. In our case Y consists of one variable p, and the formula takes form  $\exists X(U(X, p) = 1 \land V(X, p) \neq 1)$ .

Theorem

Suppose an E-set P is not the whole group F and is defined by the formula

$$\psi(p) = \exists Y U(Y, p) = 1,$$

then it is a finite union of sets admitting parametrization.

Corollary

Suppose an E-set P is defined by the formula

$$\psi_1(p) = \exists Y(U(Y,p) = 1 \land V(Y,p) \neq 1).$$

If the positive formula  $\psi(p) = \exists Y(U(Y, p) = 1 \text{ does not define})$ the whole group F, then P is negligible, otherwise it is empty (therefore, negligible) or co-negligible.

3 / 25

#### Proof.

If  $\psi(p)$  does not define the whole group F, then  $\psi_1(p)$  defines a subset of the negligible set and is negligible.

Suppose now that  $\psi(p)$  defines the whole group. Then  $\psi_1(p)$  is equivalent to  $\psi_2(p) = \exists YV(Y, p) \neq 1$ . Suppose it defines a non-empty set.

Consider  $\neg \psi_2(p) = \forall YV(Y, p) = 1$ . This is equivalent to a system of equations in p, that does not define the whole group, therefore it defines a finite union of sets admitting parametrization and this set is negligible. In this case P is co-negligible.

#### Theorem

For every definable subset P of F, P or its complement  $\neg P$  is a subset of a finite union of sets admitting parametrization.

### Corollary

(B,F) Every definable subset of F in the language with constants (and, therefore, in the language without constants) is either negligible or co-negligible.

This implies the solution to Malcev's problem.

#### Corollary

Proper non-abelian subgroups of F are not definable.

#### Corollary

The set of primitive elements of F is not definable if rank(F) > 2.

# Cut Equations



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Cut Equations



#### Definition

A cut equation  $\Pi = (\mathcal{E}, M, X, f_M, f_X)$  consists of a set of intervals  $\mathcal{E}$ , a set of variables M, a set of parameters X, and two labeling functions

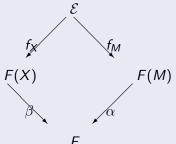
$$f_X: \mathcal{E} \to F[X], \quad f_M: \mathcal{E} \to F[M].$$

For an interval  $\sigma \in \mathcal{E}$  the image  $f_M(\sigma) = f_M(\sigma)(M)$  is a reduced word in variables  $M^{\pm 1}$  and constants from F, we call it a *partition* of  $f_X(\sigma)$ .

# Cut Equations

### Definition

A solution of a cut equation  $\Pi = (\mathcal{E}, f_M, f_X)$  with respect to an *F*-homomorphism  $\beta : F[X] \to F$  is an *F*-homomorphism  $\alpha : F[M] \to F$  such that: 1) for every  $\mu \in M \alpha(\mu)$  is a reduced non-empty word; 2) for every reduced word  $f_M(\sigma)(M)$  ( $\sigma \in \mathcal{E}$ ) the replacement  $m \to \alpha(m)$  ( $m \in M$ ) results in a word  $f_M(\sigma)(\alpha(M))$ which is a reduced word as written and such that  $f_M(\sigma)(\alpha(M))$  is graphically equal to the reduced form of  $\beta(f_X(\sigma))$ ; in particular, the following diagram is commutative.



# Cut Equations

#### Theorem

Let S(X, Y, A) = 1 be a system of equations over F = F(A). Then one can effectively construct a finite set of cut equations

$$\mathcal{C}E(S) = \{ \Pi_i \mid \Pi_i = (\mathcal{E}_i, f_{X_i}, f_{M_i}), i = 1 \dots, k \}$$

and a finite set of tuples of words  $\{Q_i(M_i) \mid i = 1, ..., k\}$  such that:

1. for any solution (U, V) of S(X, Y, A) = 1 in F(A), there exists a number *i* and a tuple of words  $P_{i,V}$  such that the cut equation  $\Pi_i \in CE(S)$  has a solution  $\alpha : M_i \to F$  with respect to the *F*-homomorphism  $\beta_U : F[X] \to F$  which is induced by the map  $X \to U$ . Moreover,  $U = Q_i(\alpha(M_i))$ , the word  $Q_i(\alpha(M_i))$  is reduced as written, and  $V = P_{i,V}(\alpha(M_i))$ ; 2. for any  $\Pi_i \in CE(S)$  there exists a tuple of words  $P_{i,V}$  such that for any solution (group solution)  $(\beta, \alpha)$  of  $\Pi_i$  the pair (U, V), where  $U = Q_i(\alpha(M_i))$  and  $V = P_{i,V}(\alpha(M_i))$ , is a solution of S(X, Y) = 1 in *F*.

20 / 25

# Proof of the Theorem

In our case formula (1) has form

$$\exists X \forall Y(U(p,X) = 1 \land V(p,X,Y) \neq 1), \tag{3}$$

where X, Y, P are tuples of variables. If the E-set defined by  $\exists X(U(p, X) = 1 \text{ is not the whole group,}$ then the set P defined by the formula (3) is a subset of finite union of sets admitting parametrization. Suppose now that the set defined by  $\exists X(U(p, X) = 1 \text{ is the whole})$ group, then formula (3) is equivalent to

$$\exists X \forall YV(X, Y, p) \neq 1.$$

Suppose it does not define the empty set. Then the negation is

$$\phi_1(p) = \forall X \exists Y V(X, Y, p) = 1$$

and defines  $\neg P$ .

#### Lemma

Formula

$$\theta(P) = \forall X \exists YV(X, Y, P) = 1$$

in F in the language  $L_A$  is equivalent a positive E-formula  $\exists ZU(P, Z) = 1$ .

Since  $\neg P \neq F$ , by this lemma, it must be a finite union of sets admitting parametrization.

## Definition

Recall that in complexity theory  $T \subseteq F(X)$  is called generic if

$$\rho_n(T) = rac{|T \cap B_n(X)|}{|B_n|} \to 1, \text{ if } n \to \infty,$$

where  $B_n(X)$  is the ball of radius *n* in the Cayley graph of F(X). A set is negligible is its complement is generic.

### Theorem

Negligible sets are negligible .



# Thanks!



< □ > < □ > < 壹 > < ≧ > < ≧ > < ≧ > ≧ < ∽ Q (~ 25 / 25