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Algebraic geometry over groups and other algebraic systems.

G.Baumslag, O.Kharlampovich, A.Myasnikov, B.Plotkin,

V.Remeslennikov.

Introduction to algebraic geometry over groups:

G.Baumslag, A.Myasnikov and V.Remeslennikov, Algebraic

geometry over groups. I. Algebraic sets and ideal theory, J.

Algebra, 219, N 1 (1999), 16-79.

A.Myasnikov and V.Remeslennikov, Algebraic geometry over

groups. II. Logical foundations, J. Algebra, 234, N 1 (2000),

225-276.
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Our talk based on following papers:

C.K.Gupta, N.S.Romanovskiy, The property of being equationally

Noetherian for some soluble groups, Algebra and Logic, 46(1),

2007, pp. 28-36.

N.S.Romanovskiy, Divisible rigid groups, Algebra and Logic, 47(6),

2008, pp. 426-434.

N.S.Romanovskiy, Equational Noetherianess of rigid solvable

groups, Algebra and Logic, 48(2), 2009, pp. 147-160.

N.S.Romanovskiy, Irreducible algebraic sets over divisible

decomposed rigid groups, Algebra and Logic, 48(6), 2009, pp.

449-464.

A.Myasnikov, N.Romanovskiy, Krull dimension of solvable groups,

J.Algebra, 324 (10), 2010, pp. 2814-2831.

N.S.Romanovskiy, Coproducts of rigid groups, Algebra and Logic,

49 (6), 2010, pp. 539-550.

A.Myasnikov, N.S.Romanovskiy, On universal theories of rigid

solvable groups, submitted for publication.

N.S.Romanovskiy, On representations of rigid solvable groups by

defining relations, submitted for publication.
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G B A, A is abelian. G acts by conjugation: a→ ag = g−1ag .
G/A acts, A is a right Z[G/A]-module.

u = α1g1 + . . .+ αngn ∈ Z[G/A], au = (ag1)α1 · . . . · (agn)αn .

Definition

m-rigid group G: there is a normal series

G = G1 > G2 > . . . > Gm > Gm+1 = 1,

Gi/Gi+1 are abelian and considering as right Z[G/Gi ]-modules have
no torsion.

Why rigid? - this series is unique. Given group G is solvable of

length exactly m.
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1) Free solvable group is rigid, rigid series consists of commutator

subgroups.

2) W = Am o (Am−1 o (... o A1)...), where Ai are free abelian groups.

Subgroups of rigid groups are rigid too: G > H, Hi = H ∩ Gi .
Corresponding series for H may be shorter.
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G -group, G -subgroups, G -homomorphism, ...

F = G ∗ 〈x1, . . . , xn〉, x = (x1, . . . , xn).
Equation v(x) = 1, v(x) ∈ F .
F is a group of all equations.

{vi (x) = 1 (i ∈ I )}, set of solutions S ⊆ Gn is called algebraic

set.

Annihilator of S : I (S) = {v(x) ∈ F | v(S) = 1}.
Coordinate group of S : Γ(S) = F/I (S).
Γ(S) > G .

A category of algebraic sets is dual to a category of coordinate

groups.
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Group of all equations D = 〈G , x1, . . . , xn〉 :
x → (a1, . . . , an) ∈ Gn possible to continue to G -epimorphism

D → G .

D = F/H. H is maximal = I (Gn) is a set of all G -identities,

F/H = Γ(Gn).
In particular, if G ∈M, then Γ(Gn) ∈M.

Arbitrary group of equations covers Γ(Gn).
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The intersection of algebraic sets
⋂
Si is algebraic, but the

union S1 ∪ S2 is not in general case and very often when G is

solvable.

Zariski topology on Gn: take the algebraic sets as a sub-basis

for the closed sets.

The topology is Noetherian, if every properly descending chain

of closed subsets is �nite. In this case S = S1 ∪ . . . ∪ Sk ,
Si * Sj , Si are irreducible components.

We say that given group is equationally Noetherian (EN) if for

any n arbitrary system of equations on x1, . . . , xn over this

group is equivalent to some �nite subsystem.

Proposition 1 G is EN ⇔ for any n Zariski topology on G n is

Noetherian. In this case irreducible sets are algebraic.

Hard to study algebraic geometry over given group without last

property. So, to be equationally Noetherian group is necessary

condition for good algebraic geometry.
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1) Abelian groups.

2) Linear groups, in particular, free groups.

3) Finitely generated ANc -groups.
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Example 1.

A = 〈a1, a2, . . . , b1, b2, . . . |N2, [b1, a1] = 1,
[b2, a1] = [b2, a2] = 1, . . . , [bn, a1] = . . . = [bn, an] = 1, . . .〉
A system of equations {[x , ai ] = 1} isn't equivalent to a �nite

subsystem.

Example 2.

H = 〈c , d〉 is a free centre-by-metabelian group, [H,H]
contains a free nilpotent group of class 2 with a countable

basis {a1, a2, . . . , b1, b2, . . .}.
G = 〈c, d | . . .〉 > A.

G.Baumslag, A.Myasnikov and V.Roman'kov, Two theorems

about equationally Noetherian groups, J. of Algebra, 194

(1997), 654-664.
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Theorem 1 (R, 2009)

Rigid groups are equationally Noetherian.

For free solvable groups and f.g. rigid groups it was proved by GR

in 2007.

Main purpose of algebraic geometry over group: to describe

algebraic sets. For EN groups we have two problems.

1. To describe irreducible sets.

2. To de�ne when the union S1 ∪ . . . ∪ Sk of irreducible algebraic

sets is algebraic.
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Let H1,H2 be G -groups.

H2 separates H1: 1 6= a ∈ H1, ϕ : H1 → H2, aϕ 6= 1.
H2 discriminates H1:

1) {a1, . . . , an}, 1 6= ai ∈ H1, ϕ : H1 → H2, aiϕ 6= 1,
or 2){a1, . . . , an}, ai 6= aj ∈ H1, ϕ : H1 → H2, aiϕ 6= ajϕ.

Proposition 2 Let H = 〈G , y1, . . . , yn〉.
1) H is a coordinate group of an algebraic set S ⊆ Gn on y1, . . . , yn
⇔ H is G-separated by G .
2) If G ∈ EN then H is a coordinate group of an irreducible

algebraic set S ⊆ Gn on y1, . . . , yn ⇔ H is G-discriminated by G .
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Let H be G -group. Denote by UG (H) the universal theory

(∀-theory) of H with constants from G .
∀x1, . . . , xnΦ(x), Φ(x) :

∨
,
∧

v(x) = 1, v(x) 6= 1.

Proposition 3 Let H1,H2 be G-groups which are EN by equations

with constants from G . Then UG (H1) = UG (H2)⇔ H1 is locally

discriminated by H2 and H2 is locally discriminated by H1.

Proposition 4 Let H = 〈G , y1, . . . , yn〉 be EN by equations with

constants from G . Then H is a coordinate group of an irreducible

algebraic set S ⊆ Gn on y1, . . . , yn ⇔ UG (H) = UG (G ).
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In the papers

V.N.Remeslennikov, N.S.Romanovskiy, Irreducible algebraic sets in

metabelian groups, Algebra and Logic, 44(5), 2005, pp. 336-347,

N.S.Romanovskiy, Algebraic sets in metabelian groups, Algebra and

Logic, 46(4), 2005, pp. 503-513

we described algebraic sets in the dimension 1 over free metabelian

group.

This description doesn't give any optimism that possible to get

good information about all algebraic sets over arbitrary (�nitely

generated) rigid group.

To find such class of m-rigid groups, that any m-rigid group can be

embedded into some group of this class and the algebraic geometry

over groups of the class will be "good".
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Definition

m-rigid group G: there is a normal series

G = G1 > G2 > . . . > Gm > Gm+1 = 1,

Gi/Gi+1 are abelian and considering as right Z[G/Gi ]-modules have
no torsion.

We can describe rigid series.

δ1 = x1, δ2 = [x1, x2], δ3 = [[x1, x2], [x3, x4]], . . .
de�ne corresponding commutator subgroups.

Take am = δm(. . .) 6= 1, am−1 = δm−1(. . .) /∈ Gm, am−2 =
δm−1(. . .) /∈ Gm−1, . . .
Gm is a centralizer of am, Gm−1 is a centralizer of am−1 modulo

Gm, Gm−2 is a centralizer of am−2 modulo Gm−1, . . . .
[am, x ] = a−1m x−1amx = ax−1m = 1⇔ x ∈ Gm.
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Some facts about rings.

Right Ore domain R : no zero divisors and for any a, b ∈ R there is

a nontrivial solution of equation ax = by .
{ab−1 | a, b ∈ R, b 6= 0} is the right Ore skew �eld of fractions.

If R is also a left Ore domain then the right Ore skew �eld of

fractions = the left Ore skew �eld of fractions.

Proposition 5 If G is a solvable torsion free group then the group

ring ZG is an Ore domain, so possible to consider the Ore skew

field of fractions which we denote by Q(G ).

It follows from P.H.Kropholler, P.A.Linnell and J.A.Moody,

Applications of a new K -theoretic theorem to soluble group rings,

Proc. Amer. Math. Soc., 104 (1988), 675-684.
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Definition

Rigid group G is called divisible if any factor Ti = Gi/Gi+1 is a

divisible module over the ring Z[G/Gi ] or, in other words, Ti is a

vector space over skew field of fractions Q(G/Gi ).

Let α1, . . . , αm be nonzero cardinalities. Construct group

M(α1, . . . , αm) by induction. M(α1) is a direct sum of α1 copies of

Q. A = M(α1, . . . , αm−1). Let T be a vector space with a basis of

cardinality αm over the skew �eld Q(A). Then set

M(α1, . . . , αm) =

(
A 0

T 1

)
.

We call such group decomposed divisible rigid group.
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Theorem 2 (R, 2009)

Arbitrary m-rigid group can be embedded into some decomposed

divisible m-rigid group.

Finitely generated rigid groups are exactly �nitely generated

subgroups of iterated wreath products of free abelian groups

W = An o (An−1 o (... o A1)...).

G > H, Hi = H ∩ Gi , Hi/Hi+1 6 Gi/Gi+1, Z[H/Hi ] 6 Z[G/Gi ].
We say that H is embedded into G with preserving linear

independence, if any system elements of Hi/Hi+1 linear

independent over the ring Z[H/Hi ] has to be linear independent

over the ring Z[G/Gi ].
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Theorem 3 (R, 2008)

Let G be a m-rigid subgroup of divisible rigid group D. Then there

is a minimal divisible subgroup containing G, let it be G = divisible

closure of G in D. This subgroup G is m-rigid and G i/G i+1 is

generated by the set Gi/Gi+1 as a vector space over Q(G/G i ).

Natural question: Let G1 and G2 be two divisible closures of G , are
they G -isomorphic?

NO, in general case, but YES with adding condition:

Theorem 4 (R, 2008)

For given m-rigid group G there is such divisible closure Ĝ that G

is embedded into Ĝ with preserving linear independence. We call Ĝ

divisible completion of G. Any two divisible completions of G are

G-isomorphic.
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Ti = Gi/Gi+1 is a torsion free module over the ring Z[G/Gi ].
ri (G ) = rank Ti , r(G ) = (r1(G ), . . . , rm(G )).
Z[G/Gi ] is an Ore ring and embeds into the skew �eld of fractions

Q(G/Gi ).
Ti embeds into the right vector space

Vi = Ti ⊗Z[G/Gi ] Q(G/Gi ), ri (G ) = dimVi .
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Theorem 5 (MR, 2010)

Let G be m-rigid group, S ⊆ Gn be an irreducible algebraic set,

Γ = Γ(S).
1) Then Γ is m-rigid.

2) Let Γi and Gi denote corresponding terms of rigid series of

groups Γ and G. Then G is embedded into Γ with preserving linear

independence. So, we can define codimension Γi/Γi+1 over Gi/Gi+1

which denote by di (S).
3) Inequality di (S) ≤ n holds.

The tuple d(S) = (d1(S), . . . , dp(S)) is called a dimension of

irreducible algebraic set S . For �nitely generated G all ranks ri (G )
and ri (Γ) are �nite and so d(S) = r(Γ)− r(G ).
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Theorem 6 (MR, 2010)

Let G be a rigid group, S and P irreducible algebraic subsets of

Gn. If S ⊃ P, then d(S) > d(P) in lexicographic order.

Remind that topological dimension of given topological space by

de�nition is equal to supremum of lengths of chains

S1 > S2 > . . . > Sm irreducible subsets.

Corollary

If G be a m-rigid group then the topological dimension of the space

Gn is finite and doesn’t exceed the number (n + 1)m.

For free group F we know that the topological dimension of F n is

�nite.
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Theorem 7 (R, 2009)

Let M = M(α1, . . . , αm). Then finitely generated M-group G is a

coordinate group of some irreducible algebraic set over M if and

only if G is m-rigid and M is embedded into G with preserving

linear independence.

We deduce the theorem 8 from following statement.

Theorem 8 (R, 2009)

Let a group G contain M = M(α1, . . . , αm) as a subgroup. Then G

is M-universally equivalent to M if and only if G is m-rigid and M

is embedded into G with preserving linear independence.
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Malcev proved that free solvable group of class ≥ 2 has undecidable

elementary theory. The universal theory of free metabelian group

was studied by Chapuis, Remeslennikov and Stohr, in particular, it

is decidable. Free solvable groups of given class ≥ 3 and di�erent

ranks are universally equivalent too and Chapuis proved that their

universal theory is undecidable if the universal theory of rational

numbers is undecidable (10-th Hilbert problem for rational

numbers). Nevertheless, Chapuis proved that the the universal

theory of an iterated wreath product of of free abelian groups is

decidable.
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We construct a recursive system of ∀-axioms which de�ne m-rigid

groups in the class of all m-soluble groups.

Let F denote a free solvable group of class m, G denote an arbitrary

m-rigid group, W denote the iterated wreath product of of m cyclic

groups. For corresponding universal theories we prove conclusions

A(F ) ⊇ A(G ) ⊇ A(W ).

We construct ∃-axiom de�ning m-rigid groups which are universally

equivalent to W .
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The universal theories of W and the group M = M(α1, . . . , αm)
coincide.

We prove that the universal theory of W with constants from W is

undecidable.

In the theorem 8 we �nd a description of M-groups which are

M-universally equivalent to M. Using it we prove

Theorem 9 (MR). The universal theory of the group
M = M(α1, . . . , αm) with constants from M is decidable.

Theorem 10 (R). The universal theory of free solvable groups of
length ≥ 4 is undecidable.

Chapuis interpreted in the universal theory of free solvable group

10-th Hilbert problem over Q, but we interpret this problem over Z.
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Isomorphic subgroups of given rigid group are not the same.

ε = (ε1, . . . , εm), εi = 0, 1.

Definition

m-graduated rigid group G with graduation ε: there is a normal

series

G = G1 > G2 > . . . > Gm > Gm+1 = 1,

Gi = Gi+1 ⇔ εi = 0, Gi/Gi+1 are abelian and considering as right

Z[G/Gi ]-modules have no torsion.

The series is de�ned uniquely by G and ε.
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Abelian torsion free group may have di�erent m-graduations:

(1, 0, . . . , 0, 0), . . . , (0, 0, . . . , 0, 1).
m-rigid group has only one m-graduation: (1, 1, . . . , 1, 1).

If H 6 G , Hi = H ∩ Gi , ε
′ is a corresponging graduation for H,

then ε′i ≤ εi .

A homomorphism of m-graduated rigid groups:

ϕ : G → H, Giϕ 6 Hi .
For isomorphism Giϕ = Hi .
We have a category of m-graduated rigid groups. Next theorem

actually states that there is a coproduct in this category.
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Theorem 11 (R, 2010). Let G and H be two m-graduated rigid

groups. Then there is m-graduated rigid group G ◦ H, which is

called m-rigid product of G and H, with following properties.

1) Groups G and H are subgroups of G ◦ H and generate it.

2) Any homomorphisms

γ1 : G → L, γ2 : H → L

of m-graduated rigid groups continue to homomorphism

γ : G ◦ H → L.

As coproduct the operation ◦ is de�ned uniqualy, commutative and

associative.
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Let F1, . . . ,Fn be in�nite cyclic groups with m-graduation

(1, 0, . . . , 0)). Then their m-rigid product F1 ◦ . . . ◦ Fn is a free

m-solvable group of the rank n.
Let A and B be rigid groups with m-graduations (0, . . . , 0, 1), and
(1, . . . , 1, 0). Then the product A ◦ B is isomorphic to A o B.

Theorem 12 (R, 2010). Let G be m-rigid group and F be free

m-solvable group (for rank 1 with m-graduation (1, 0, . . . , 0)).
Then m-rigid product G ◦ F is G-discriminated by G .

Corollary. Let {x1, . . . , xn} be a basis of the group F in the

theorem. Then G ◦ F is a coordinate group of the affine space Gn

on x1, . . . , xn and this space is irreducible.
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A normal subgroup H of a rigid group G is called an ideal if G/H is

rigid.

Theorem 13 (R)

For m-rigid n-generated groups the lengths of strongly ascending

(descending) chains of ideals are bounded by some function of m

and n.
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Σm = all ≤ m-rigid groups. Arbitrary n-generated group of Σm is a

factor group of a free solvable group Fm,n of length m with a basis

{x1, . . . , xn} by some ideal. How can we represent groups in Σm by

de�ning relations? R = R(x1, . . . , xn) � some set of group words

on x1, . . . , xn. In a classic case the group 〈x1, . . . , xn | R〉 is a factor

group of a free group by the least normal subgroup containing R. In
our case not always there is a least ideal of Fm,n containing R.
Example: m = 2, n = 3, R = {[x1, x2]x3−1}. If G ∈ Σ2 is generated

by x1, x2, x3, and [x1, x2]x3−1 = 1 then or [x1, x2] = 1, or x3 ∈ G2.
First group is de�ned in the variety A2 by generators x1, x2, x3 and

relation [x1, x2] = 1, here x3 /∈ G2. Second group is de�ned by

relations [x3,F
′
2,3] = 1, here [x1, x2] 6= 1, x3 ∈ G2. And there isn't a

group of Σ2 with relation [x1, x2]x3−1 = 1 which covers both groups.
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Σm(R) = all groups of Σm generated by x1, . . . , xn with relations

R. Maximal group = there is no proper covering in Σm(R).
Theorem 13 ⇒ for any group of Σm(R) there is a maximal

covering. Any maximal groups of Σm(R) possible to understand as

a group de�ning in Σm by generators x1, . . . , xn and relations R.

Theorem 14 (R)

For arbitrary R the set Σm(R) contains only finite number of
maximal groups.

R is called complete set of de�ning relations if Σm(R) contains only
single maximal group, so this group is de�ned by relations R

uniquely.

Theorem 15 (R)

Arbitrary finitely generated group of Σm is finitely completely

presented, it means that there is a finite complete set of defining

relations.
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Consider the word problem for rigid groups de�ning by generators

and relations. We construct some canonical representations for rigid

groups on generators x1, . . . , xn. If such representation is given than

the word problem is solvable.

Theorem 16 (R)

For arbitrary finite set of relations R = R(x1, . . . , xn) there is an
effectively procedure of constructing of some finite set Ωm(R) of
canonical representations on generators x1, . . . , xn of groups of

Σm(R) such that Ωm(R) contains all maximal groups of Σm(R).

Note, that we can't e�ectively de�ne: which groups of Ωm(R) are

exactly maximal. But in any case we can de�ne: is given word

v(x1, . . . , xn) an implication of relations R in Σm or not?
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Theorem 1 (R, 2009)

Rigid groups are equationally Noetherian.

The group M(α1, . . . , αm) is constructed by induction. M(α1) is a

direct sum of α1 copies of Q. A = M(α1, . . . , αm−1). Let T be a

vector space with a basis of cardinality αm over the skew �eld

Q(A). Then set

M = M(α1, . . . , αm) =

(
A 0

T 1

)
.

M is a semidirect product A1A2 . . .Am of abelian groups

Ai , Am =

(
1 0

T 1

)
. Mi = AiAi+1 . . .Am are members of rigid

series.
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Let 1 6= ai ∈ Ai . Note that Ai is exactly the centralizer of ai in M,
so Ai = {x ∈ M | [ai , x ] = 1}.

Consider following set of variables

X = {xij | i = 1, . . . , n; j = 1, . . . ,m} and its subset

X ′ = {xij | i = 1, . . . , n; j = 1, . . . ,m − 1}. We suppose that

values of the variable xij belong to Aj . Call xij special variables.
Possible to consider them as usual variables with adding conditions

[xij , aj ] = 1. Last equations de�ne an algebraic set which we denote

by Ω. We de�ne also special algebraic equations and special

algebraic sets (subsets of Ω). Also Ω possible to identify with Mn.

Let x1 = x11x12 . . . x1m, . . . , xn = xn1xn2 . . . xnm. We see that any

elements of M can be values of xi . So usual equations on x1, . . . , xn
can be realized as special equations on X .
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Theorem 1’ (R, 2009)

1) The group M is EN by special equations on X .
2) Let S be a special irreducible algebraic subset of Mn and

ϕ : Γ(S)→ M be arbitrary specialization. Then kerϕ is separated

by nilpotent torsion free groups.

For our purpose we need only statement 1), but the proof by

induction will use statement 2).

By induction suppose that for A = M(α1, . . . , αm−1) corresponding

statements hold.
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Now we construct a group of special equations M[X ]. Let the
group A1[x11, . . . , xn1] be equal a direct product of A1 and a free

abelian group with a basis {x11, . . . , xn1}. Suppose by induction the

group B = A[X ′] is costructed and let it be generated by its

subgroup A and the set X ′ and there be a decomposion of B as

semidirect product B1B2 . . .Bm−1, where the abelian group Bj

contains Aj and xij ∈ Bj . Suppose that any mapping

xij → aij ∈ Aj (i = 1, . . . , n; j = 1, . . . ,m − 1) possible to continue

to an A-epimorphism B → A.
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Consider a direct sum of the module T ⊗ZA ZB and the right free

ZB-module with the basis {x1m, . . . , xnm}. Set

M[X ] =

(
B 0

T ⊗ZA ZB + x1m · ZB + . . .+ xnm · ZB 1

)
,

here we indentify the element xij for j < m with the matrix(
xij 0

0 1

)
, and the element xim with the matrix

(
1 0

xim 1

)
. The

group M[X ] is generated by its subgroup M and the set X and

M[X ] = B · Bm, where the subgroup Bm is isomorphic to the

additive group of the module

T ⊗ZA ZB + x1m · ZB + . . .+ xnm · ZB.

We prove that any mapping xij → aij ∈ Aj possible to continue to

an M-epimorphism M[X ]→ M. It means that M[X ] is a group of

special equations on X over M.
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An equation of the type u(X ′) = 0, where u(X ′) ∈ ZB, is called a

group ring equation, for this equation we �nd solutions with

restriction xij ∈ Aj . It is important here: arbitrary group ring

equation is equivalent to some disjunction of �nite number of �nite

systems of group equations.

For example the equation V1 + V2 + V3 − V4 − 2V5 = 0, where
Vi ∈ A[X ′], is equivalent to
((V1 = V4) ∧ (V2 = V3 = V5)) ∨ ((V2 = V4) ∧ (V1 = V3 = V5))∨
∨((V3 = V4) ∧ (V1 = V2 = V5)).
So, a group ring equation de�nes a closed subset in An. Easy to

note that any closed subset of An can be de�ned by some group

ring equation.
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Possible to realize arbitrary group ring equation u(X ′) = 0 as a

group equation v(X ) = 1, v(X ) ∈ M[X ] : take some nontrivial

element

(
1 0

t 1

)
∈ M and set v(X ) =

(
1 0

t · u(X ′) 1

)
.

We prove also that if L is an irreducible subset of Mn then the

closure of its projection on An is irreducible too.

Now come immediately to the proof of the theorem 1'.

Consider an arbitrary system of special equations on X over M :

{wj(X ) = 1, j ∈ J. (1)

Let

wj(X ) =

(
fj(X

′) 0

vj(X ) 1

)
.
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The system (1) is equivalent to the union of two systems:

{fj(X ′) = 1, j ∈ J. (2)

{vj(X ) = 0, j ∈ J. (3)

By induction the system (2) is equivalent to some its �nite

subsystem. If (2) has no solutions then some �nite subsystem of (1)

has no solutions. So, suppose that the system (2) de�nes nonempty

closed subset in An.

Suppose we have a counterexample to the statement 1) of our

theorem. Then there is nonempty closed subset S of An such that

the system (3) with condition X ′ ∈ S isn't equivalent to �nite

subsystem. We can suppose that S is minimal with this property,

then it is irreducible.
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So, for any closed proper nonempty subset P ⊂ S the system (3)

with condition X ′ ∈ P is equivalent to some its �nite subsystem,

but with condition X ′ ∈ S it isn't equivalent to �nite subsystem.

Let C denote the coordinate group Γ(S). This group is generated

by A and the images of the elements xij ∈ X ′ which we will denote

by the same symbols. As this group is discriminated by A then it is

soluble torsion free. Consider the skew �eld of fractions Q(C ) and

its subring R generated by Q(A) and X ′. We remember that T is a

right vector space over Q(A). Embed it into the free R-module TR

with the same basis. Consider a direct sum of TR and a free right

ZC -module with the basis {x1m, . . . , xnm}. Then take a group

D =

(
C 0

TR + x1m · ZC + . . .+ xnm · ZC 1

)

and identify xij for j < m with

(
xij 0

0 1

)
, and xim with

(
1 0

xim 1

)
.
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We prove that the group D is a group of special equations on X

over M with condition X ′ ∈ S .

Therefore possible to suppose that the left parts of equations (3)

belong to the module TR + x1m · ZC + . . .+ xnm · ZC .

Embed this module to the right vector spase

T · Q(C ) + x1m · Q(C ) + . . .+ xnm · Q(C ) and denote by V a

subspase generated by vj (j ∈ J).

We prove that V ∩ T · Q(C ) = 0, therefore the projection V onto

the spase x1m · Q(C ) + . . .+ xnm · Q(C ) is injective. Then

dimV ≤ n. Let {v1, . . . , vr} be a basis of V . By elementary

transformations over the ring ZC we make this system generalized

diagonal with the same element u in diagonal.
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Possible suppose that

v1 = x1mu+v ′1, . . . , vr = xrmu+v ′r , v
′
i ∈ TR+xr+1,m·ZC+. . .+xnm·ZC .

Consider the ring equation u(X ′) = 0 with condition X ′ ∈ S . It
de�nes proper (may be empty) closed subset of S , let it be P. If P
isn't empty there is a �nite subsystem Σ1 of the system (3) which

is equivalent to (3) with condition X ′ ∈ P. For empty P suppose

Σ1 is empty.

Denote by Σ2 the system v1(X ) = 0, . . . , vr (X ) = 0.

We will prove that with condition X ′ ∈ S \ P the system (3) is

equivalent to Σ2.
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Let

a = (aij ∈ Aij | i = 1, . . . , n; j = 1, . . . ,m)

be a solution of the system Σ2 and

a′ = (aij | i = 1, . . . , n; j = 1, . . . ,m − 1) ∈ S \ P.

Consider arbitrary equation vj(X ) = 0 of (3). We have to prove

that X = a is its solution.

Let

vj = x1mu1+. . .+xrmur+w , ui ∈ ZC , w ∈ TR+xr+1,m·ZC+. . .+xnm·ZC .

As vj ∈ V and {v1, . . . , vr} is a basis of V , then

vj(X ) = v1(X ) · u(X ′)−1 · u1(X ′) + . . .+ vr (X ) · u(X ′)−1 · u1(X ′).

By hypothesis u(a′) 6= 0.
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Consider a specialization X ′ → a′, it gives an epimorphism of rings

ZC → ZA. We prove (and it is very principal and hard step using

the statement 2) for A) that this epimorphism possible to lift to an

epimorphism Q0(C )→ Q(A), where Q0(C ) is some subring of

Q(C ) which contains ZC and the element u(X ′)−1. Let βi denote
an image of u(X ′)−1 · ui (X ′). Last epimorphism of rings de�nes an

epimorphism of modules

ϕ : T · Q0(C ) + xr+1,m · Q0(C ) + . . .+ xnm · Q0(C )→

→ T + xr+1,m · Q(A) + . . .+ xnm · Q(A).

We have

vj(a
′, x1m, . . . , xnm) = v1(a′, x1m, . . . , xnm)β1+. . .+vr (a

′, x1m, . . . , xnm)βr .
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Then apply to both parts an epimorphism of vector Q(A)-spases

T + x1m · Q(A) + . . .+ xnm · Q(A)→ T

which is de�ned by the mapping

x1m → a1m, . . . , xnm → anm

we have

vj(a) = v1(a)β1 + . . .+ vr (a)βr = 0 · β1 + . . .+ 0 · βr = 0.

Now we can state that with condition X ′ ∈ S the system (3) is

equivalent to the �nite subsystem Σ1 ∪ Σ2. This is a contradiction

with hypothesis. But we didn't tell about the proof of the

statement 2) of the theorem1'.
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