Enforcing Information Flow Requirements in Web Applications
Michael Paulauski
advised by David Naumann and Andrey Chudnov

- Distributed applications involve sharing of sensitive data
- Policies pertain to flows of information, which goes by many channels (data in network, data in memory, timing, visual cues to users, ...)
- Encryption protects data in transit, but it is processed in memory on computers running many different programs, some malicious
- Goal: strong guarantees about behavior of those programs: absence of bugs or trojan code that leaks or corrupts sensitive information — yet allowing useful cooperation, e.g., within web mashup
- Challenges: it is difficult to specify what flows of info are allowed, precisely enough to support
- Rigorous validation for high assurance (e.g., for financial and military applications). Difficult to predict behavior of programs
- Our research team is developing tools for automated software validation that can also detect implicit flows of information via control flows of code

- PhD Student Andrey Chudnov is developing an in-browser information flow monitor for JavaScript. Case studies on realistic web applications are necessary to evaluate effectiveness and permissiveness
- One possible case study is 'Anatomy ProAm' - research prototype of a Facebook game crowdsourcing interpretation of CT scans. However, it's very complex. We need a simpler application for an initial case study
- This project’s goal: to develop a simple mashup web application with interesting security policies

Application Workflow
- The user enters the specific UPS tracking number(s) of the desired package
- My code then takes this tracking number, establishes an HTTPS (SSL) connection with UPS’s servers, and requests XML data for the designated package’s route
- Once my website receives the XML data, it parses and extracts the relevant route data
- My website then passes this route data to Google Maps, which first translates street addresses to GPS coordinates and then plots those coordinates onto a Google Map object built into the website
- Finally, my website links these points on the map together with a solid line indicating the package’s route and prints out a detailed text-based list of the completed route

Challenges
- Developing complete mashup from scratch
- Complicated program components/development setup
- Need to use a proxy server to work around the Same Origin Policy

Examples of legitimate and illegal information flows in the medical information setting

Representative publications
Bannister, Naumann and Rosenberg

Tracking Information Flow in Dynamic Tree Structures, 14th European Symposium on Research in Computer Security, 2009
Russo, Sabelfeld and Chudnov

Chudnov and Naumann

Funding
National Science Foundation (REU), Stevens Scholars Summer Research Program

![Diagram showing information flows and policies in the package tracking mashup](image-url)