
Term I  Course #  Course Name  Lecture  Lab  Study  Credit 

CH 115  General Chemistry I Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites:CH 117General Chemistry Laboratory I (031)(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  3  0  6  3  CH 117  General Chemistry Laboratory I Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites:CH 115, General Chemistry I (306)(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 107General Chemistry IA (000)(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
Close  0  3  1  1  CS 105  Introduction to Scientific Computing (1)This is a first course in computer programming for students with no prior experience. Students will learn the core process of programming: given a problem statement, how does one design an algorithm to solve that particular problem and then implement the algorithm in a computer program? The course will also introduce elementary programming concepts like basic control concepts (such as conditional statements and loops) and a few essential data types (e.g., integers and doubles). Exposure to programming will be through a selfcontained userfriendly programming environment, widely used by the scientific and engineering communities, such as Matlab. The course will cover problems from all fields of science, engineering, and business. Close  2  2  6  3  MA 121  Differential CalculusLimits, the derivatives of functions of one variable, differentiation rules, applications of the derivative.Prerequisites:MA 120Introduction to Calculus (400)
(LectureLabStudy Hours)
The first part of the course reviews algebra and precalculus skills. The second part of the course introduces students to topics from differential calculus, including limits, rates of change and differentiation rules. Close 
Close  4  0  8  2  MA 122  Integral CalculusDefinite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Prerequisites:MA 121Differential Calculus (408)
(LectureLabStudy Hours) Limits, the derivatives of functions of one variable, differentiation rules, applications of the derivative. Close 
Close  4  0  8  2  PEP 111  MechanicsVectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, centerofmass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites:MA 115Calculus I (408)(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
Close  3  0  6  3  CAL 103 OR CAL 105  Writing And Communications ColloquiumThis course empowers students with the written and oral communications skills essential for both universitylevel academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close OR CAL Colloquium: Knowledge, Nature, CultureThis course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close  3  0  6  3   Total  19  5  41  17 
 Term II  Course #  Course Name  Lecture  Lab  Study  Credit 

CH 116  General Chemistry II Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Prerequisites:CH 115, General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 107General Chemistry IA (000)
(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
Close  3  0  6  3  CH 118  General Chemistry Laboratory II Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acidbase titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites:CH 116General Chemistry II (306)(LectureLabStudy Hours) Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close 
Prerequisites:CH 117General Chemistry Laboratory I (031)
(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  0  3  1  1  CH 281  Biology and BiotechnologyBiological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology. Prerequisites:CH 107, General Chemistry IA (000)
(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
CH 115 General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 117General Chemistry Laboratory I (031)
(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  3  0  6  3  MA 123  Series, Vectors, Functions, and SurfacesTaylor polynomials and series, functions of two and three variables, linear functions, implicit functions, vectors in two and three dimensions. Prerequisites:MA 122 or Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
MA 115Calculus I (000)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
Close  4  0  8  2  MA 124  Calculus of Two VariablesPartial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Prerequisites:MA 123Series, Vectors, Functions, and Surfaces (408)
(LectureLabStudy Hours) Taylor polynomials and series, functions of two and three variables, linear functions, implicit functions, vectors in two and three dimensions. Close 
Close  4  0  8  2  PEP 112  Electricity and MagnetismCoulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Prerequisites:MA 115 or Calculus I (408)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
PEP 111, Mechanics (306)
(LectureLabStudy Hours) Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, centerofmass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close 
MA 122Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
Close  3  0  6  3  CAL 105 OR CAL 103  CAL Colloquium: Knowledge, Nature, CultureThis course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close OR Writing And Communications ColloquiumThis course empowers students with the written and oral communications skills essential for both universitylevel academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close  3  0  6  3   Total  20  3  41  17 
 Term III  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  MA 221  Differential EquationsOrdinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Prerequisites:MA 116 or Calculus II (408)
(LectureLabStudy Hours) Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3space, mathematical descriptions of lines and planes, and singlevariable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close 
MA 124Calculus of Two Variables (408)
(LectureLabStudy Hours) Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close 
Close  4  0  8  4  PEP 209  Modern OpticsConcepts of geometrical optics for reflecting and refracting surfaces, thin and thick lens formulations, optical instruments in modern practice, interference, polarization and diffraction effects, resolving power of lenses and instruments, Xray diffraction, introduction to lasers and coherent optics, principles of holography, concepts of optical fibers, optical signal processing. Spring semester. Prerequisites:PEP 112Electricity and Magnetism (306)
(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
Close  3  0  6  3  PEP 221  Physics Lab I for ScientistsAn introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computerinterfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves. Corequisites:PEP 112Electricity and Magnetism (306)(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
Prerequisites:PEP 111Mechanics (306)
(LectureLabStudy Hours) Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, centerofmass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close 
Close  0  3  1  1  PEP 297  SKIL ISKIL (Science Knowledge Integration Ladder) is a sixsemester sequence of projectcentered courses. This course introduces students to the concept of working on projects that foster independent learning, innovative problem solving, collaboration and teamwork, and knowledge of integration under the guidance of a faculty advisor. SKIL I familiarizes the student with the ideas and realization of projectbased learning using simple concepts and basic scientific knowledge. Specific emphasis is put on the development of “Guesstimates” skills, application and recognition of scaling laws as well as fundamental measurement techniques. Prerequisites:PEP 112Electricity and Magnetism (306)
(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
Close  1  3  4  2  E 245  Circuits and Systems (2)Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the sdomain; Laplace transforms; transfer functions. Corequisites:PEP 112, Electricity and Magnetism (306)(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
MA 221Differential Equations (408)(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Close  2  3  7  3   Total  13  9  32  16 
 Term IV  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  MA 227  Multivariable CalculusReview of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites:MA 221Differential Equations (408)(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Prerequisites:MA 124 or Calculus of Two Variables (408)
(LectureLabStudy Hours) Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close 
MA 116Calculus II (000)
(LectureLabStudy Hours) Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3space, mathematical descriptions of lines and planes, and singlevariable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close 
Close  3  0  0  3  PEP 222  Physics Lab II for ScientistsAn introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computerinterfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves. Prerequisites:PEP 221Physics Laboratory III for Scientists (030)
(LectureLabStudy Hours) An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computerinterfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves. Close 
Close  0  3  1  1  PEP 242  Modern PhysicsSimple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; waveparticle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the np junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission. Spring Semester. Prerequisites:PEP 112, and Electricity and Magnetism (306)
(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
MA 221Differential Equations (408)
(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Close  3  0  6  3  PEP 298  SKIL IIParticle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, normal modes. Lagrange's equations, applications to simple systems. Introduction to moment of inertia tensor and to Hamilton's equations Prerequisites:PEP 297SKIL I (134)
(LectureLabStudy Hours) SKIL (Science Knowledge Integration Ladder) is a sixsemester sequence of projectcentered courses. This course introduces students to the concept of working on projects that foster independent learning, innovative problem solving, collaboration and teamwork, and knowledge of integration under the guidance of a faculty advisor. SKIL I familiarizes the student with the ideas and realization of projectbased learning using simple concepts and basic scientific knowledge. Specific emphasis is put on the development of “Guesstimates” skills, application and recognition of scaling laws as well as fundamental measurement techniques. Close 
Close  1  3  4  2  PEP 330  Intro to Thermal & Statistical PhysicsAn introduction to statistical mechanics including classical thermodynamics and their statistical foundation. Essential concepts in both classical and quantum statistical mechanics are developed along with their relations to thermodynamics. Topics covered include: laws of thermodynamics, entropy, thermal processes including Carnot engine and refrigerators, basic concepts of probability theory, statistical description of systems of particles, microscopic description of macroscopic quantities such as temperature and entropy, ideal and real gases, MaxwellBoltzmann distribution, kinetics of classical gases, BoseEinstein and FermiDirac distributions, blackbody radiation, thermal properties of solids, and phase transitions. Close  3  0  0  3  MA 222  Probability and StatisticsIntroduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moments, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and pvalues, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model. Prerequisites:MA 116 or Calculus II (408)
(LectureLabStudy Hours) Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3space, mathematical descriptions of lines and planes, and singlevariable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close 
MA 124Calculus of Two Variables (408)
(LectureLabStudy Hours) Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close 
Close  3  0  6  3   Total  16  6  23  18 
 Term V  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  PEP 332  Math Methods for PhysicsVector and tensor fields and transformation properties under rotation of axes, vector identities, gradient, divergence, curl, tensor contraction, geometric interpretation of symmetric and antisymmetric tensors, divergenceGauss' theorem for tensor fields and Stokes' theorem, Helmholtz' theorem, and scalar and vector potentials. Applications to inertia tensor, particle mechanics, transport, electromagnetism (Maxwell's equations), and viscous fluid dynamics (the NavierStokes equation, Euler equation, and the Bernoulli equation). Introduction to the Dirac deltafunction and Green’s function technique for solving linear inhomogeneous equations. Orthogonal curvilinear coordinates (general, also spherical, and cylindrical). Ndimensional complex space and unitarity, matrix notation, inverse of matrix, Pauli spin matrices, relativity, and Lorentz transformation. Tensors and pseudotensors in ndimensions. Similarity transformations and diagonalization of Hermitian and unitary matrices, eigenvectors, and eigenvalues of Hermitian and unitary matrices, and Schmidt orthogonalization. Applications to coupled oscillators, rigid body dynamics, etc. Linear independence and completeness. Functions of a complex variable, analyticity, Cauchy’s theorem, Residue theorem, Taylor and Laurent expansions, classification of singularities, analytic continuation, Liouville’s theorem, multiplevalued functions, contour integration, Jordan’s lemma, applications, and asymptotics. Fall Semester. Close  3  0  6  3  PEP 538  Introduction to Mechanics (2)Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, and scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, and normal modes. Lagrange’s equations and applications to simple systems. Introduction to moment of inertia tensor and to Hamilton’s equations. Prerequisites:MA 221Differential Equations (408)
(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Close  3  0  0  3  PEP 397  SKIL III Continuation and extension of SKIL II to more complex projects. Projects may include research participation in well defined research projects. Prerequisites:PEP 298SKIL II (134)
(LectureLabStudy Hours) Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, normal modes. Lagrange's equations, applications to simple systems. Introduction to moment of inertia tensor and to Hamilton's equations Close 
Close  1  6  0  3  G.E.  General Elective  3  0  6  3   Total  13  6  18  15 
 Term VI  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  PEP 542  ElectromagnetismElectrostatics; CoulombGauss law; PoissonLaplace equations; boundary value problems; image techniques;dielectric media; magnetostatics; multipole expansion; electromagnetic energy; electromagnetic induction; Maxwell’s equations; electromagnetic waves, radiation, waves in bounded regions, wave equations and retarded solutions; simple dipole antenna radiation theory; transformation law of electromagnetic fields. Spring semester. Typical text: Reitz, Milford and Christy, Foundation of Electromagnetic Theory. Prerequisites:MA 221Differential Equations (408)
(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Close  3  0  6  3  PEP 398  SKIL IVThis course is designed to make students comfortable with the handling and use of various optical components, instruments, techniques,and applications. Included will be the characterization of lens, wavefront division and multiple beam interferometry, partial coherence, spectrophotometry,coherent propogation, and properties of optical fibers. Spring term. Prerequisites:PEP 397, SKIL III (160)
(LectureLabStudy Hours) Continuation and extension of SKIL II to more complex projects. Projects may include research participation in well defined research projects.
Close 
PEP 509Intermediate Waves and Optics (306)
(LectureLabStudy Hours) The general study of field phenomena; scalar and vector fields and waves; dispersion phase and group velocity; interference, diffraction and polarization; coherence and correlation; geometric and physical optics. Typical text: Hecht and Zajac, Optics. Spring semester. Close 
Close  1  6  5  3  G.E.  General Elective  3  0  6  3  BT 243 OR BT 244  MacroeconomicsThe forces which govern the overall performance of the national economy are covered. Areas discussed include the essence of the economic problem, supply and demand analysis, national income theory, the monetary system, alternative approaches to economic policy, current macroeconomic problems, and international economics. Close OR MicroeconomicsThe focus of this course is on the behavior of and interactions between individual participants in the economic system. In addition to providing a theoretical basis for the analysis of these economic questions, the course also develops applications of these theories to a number of current problems. Topics include: the nature of economic decisions, the theory of market processes, models of imperfect competition, public policy towards competition, the allocation of factors of production, discrimination, poverty and earnings, and energy. Close  3  0  6  3   Total  13  6  29  15 
 Term VII  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  PEP 553  Quantum Mechanics and Engineering Applications This course is meant to serve as an introduction to formal quantum mechanics as well as to apply the basic formalism to several generic and important applications. Prerequisites:MA 221, Differential Equations (408)
(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
PEP 242Modern Physics (306)
(LectureLabStudy Hours)
Simple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; waveparticle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the np junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission. Spring Semester. Close 
Close  3  0  6  3  PEP 497  SKIL V (3)Continuation of SKIL IV. Prerequisites:PEP 398SKIL IV (165)
(LectureLabStudy Hours) This course is designed to make students comfortable with the handling and use of various optical components, instruments, techniques,and applications. Included will be the characterization of lens, wavefront division and multiple beam interferometry, partial coherence, spectrophotometry,coherent propogation, and properties of optical fibers.
Spring term.
Close 
Close  1  6  5  3  G.E.  General Elective  3  0  6  3  T.E.  Technical Elective  3  0  3  3   Total  13  6  26  15 
 Term VIII  Course #  Course Name  Lecture  Lab  Study  Credit 

 Humanities  3  0  6  3  PEP 554  Quantum Mechanics II (2)Basic concepts of quantum mechanics, states, operators; time development of Schrödinger and Heisenberg pictures; representation theory; symmetries; perturbation theory; systems of identical particles, LS and jj coupling; fine and hyperfine structure; scattering theory; molecular structure. Spring semester. Typical texts: Gottfried, Quantum Mechanics, Schiff, Quantum Mechanics. Prerequisites:PEP 538, Introduction to Mechanics (300)
(LectureLabStudy Hours) Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, and scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, and normal modes. Lagrange’s equations and applications to simple systems. Introduction to moment of inertia tensor and to Hamilton’s equations. Close 
PEP 553Quantum Mechanics and Engineering Applications (306)
(LectureLabStudy Hours) This course is meant to serve as an introduction to formal quantum mechanics as well as to apply the basic formalism to several generic and important applications. Close 
Close  3  0  6  3  PEP 498  SKIL VI (3)Continuation of SKIL V. Prerequisites:PEP 497SKIL V (165)
(LectureLabStudy Hours) Continuation of SKIL IV. Close 
Close  1  6  5  3  T.E.  Technical Elective  3  0  3  3  T.E.  Technical Elective  3  0  6  3   Total  13  6  26  15 
 