
Term I  Course #  Course Name  Lecture  Lab  Study  Credit 

CH 115  General Chemistry I Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites:CH 117General Chemistry Laboratory I (031)(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  3  0  6  3  CH 117  General Chemistry Laboratory I Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites:CH 115, General Chemistry I (306)(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 107General Chemistry IA (000)(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
Close  0  3  1  1  E 101  Engineering Experiences IThis course consists of a set of engineering experiences such as lectures, small group sessions, online modules and visits. Students are required to complete a specified number of experiences during the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis. Course is pass/fail. Close  1  0  0  1  E 121  Engineering Design IThis course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Corequisites:E 115, Introduction to Programming (123)(LectureLabStudy Hours) An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a highlevel programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a highlevel programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close 
E 120Engineering Graphics (021)(LectureLabStudy Hours) Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computeraided design and manufacturing (CAD/CAM) using numericallycontrolled (NC) machines. Close 
Close  0  3  2  2  E 120  Engineering GraphicsEngineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computeraided design and manufacturing (CAD/CAM) using numericallycontrolled (NC) machines. Close  0  2  1  1  E 115  Introduction to Programming An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a highlevel programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a highlevel programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close  1  2  3  2  MA 121  Differential CalculusLimits, the derivatives of functions of one variable, differentiation rules, applications of the derivative.Prerequisites:MA 120Introduction to Calculus (400)
(LectureLabStudy Hours)
The first part of the course reviews algebra and precalculus skills. The second part of the course introduces students to topics from differential calculus, including limits, rates of change and differentiation rules. Close 
Close  4  0  8  2  MA 122  Integral CalculusDefinite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Prerequisites:MA 121Differential Calculus (408)
(LectureLabStudy Hours) Limits, the derivatives of functions of one variable, differentiation rules, applications of the derivative. Close 
Close  4  0  8  2  CAL 103 OR CAL 105  Writing And Communications ColloquiumThis course empowers students with the written and oral communications skills essential for both universitylevel academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close OR CAL Colloquium: Knowledge, Nature, CultureThis course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close  3  0  6  3   Total  16  10  35  17 
 Term II  Course #  Course Name  Lecture  Lab  Study  Credit 

CH 116  General Chemistry II (1)Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Prerequisites:CH 115, General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 107General Chemistry IA (000)
(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
Close  3  0  6  3  CH 118  General Chemistry Laboratory II (1)Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acidbase titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites:CH 116General Chemistry II (306)(LectureLabStudy Hours) Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close 
Prerequisites:CH 117General Chemistry Laboratory I (031)
(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  0  3  1  1  E 122  Engineering Design IIThis course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Prerequisites:E 121Engineering Design I (032)
(LectureLabStudy Hours) This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close 
Close  0  3  3  2  MA 123  Series, Vectors, Functions, and SurfacesTaylor polynomials and series, functions of two and three variables, linear functions, implicit functions, vectors in two and three dimensions. Prerequisites:MA 122 or Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
MA 115Calculus I (000)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
Close  4  0  8  2  MA 124  Calculus of Two VariablesPartial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Prerequisites:MA 123Series, Vectors, Functions, and Surfaces (408)
(LectureLabStudy Hours) Taylor polynomials and series, functions of two and three variables, linear functions, implicit functions, vectors in two and three dimensions. Close 
Close  4  0  8  2  PEP 111  MechanicsVectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, centerofmass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites:MA 115Calculus I (408)(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
Close  3  0  6  3  CAL 105 OR CAL 103  CAL Colloquium: Knowledge, Nature, CultureThis course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close OR Writing And Communications ColloquiumThis course empowers students with the written and oral communications skills essential for both universitylevel academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close  3  0  6  3  MGT 103  Introduction to Innovation and Entrepreneurial Thinking The overall objective of this course is to create an entrepreneurial mindset in freshman undergraduate students and to provide them enough basic material in a highly interactive format so they have enough basic material to become an entrepreneur. The course will create passion and excitement for becoming an entrepreneur. This will be done through inspiring seminars from local entrepreneurs. Live interactive video lectures from world recognized entrepreneurs will also be included. Enough basic material in the areas of teaming and leadership, strategy and management, market and market research, finance, production, oral presentations and funding so that the students understand what entrepreneurship is all about. The course will be taught in a highly interactive format. Only one formal lecture – the first introductory – is part of the course. The remaining formal material is taught using carefully choreographed and integrated selfteaching modules. Inclass time is focused on active discussions, team activities and running a computer simulation which emulates a startup company. Close  1  2  0  2   Total  18  8  38  18 
 Term III  Course #  Course Name  Lecture  Lab  Study  Credit 

MA 221  Differential EquationsOrdinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Prerequisites:MA 116 or Calculus II (408)
(LectureLabStudy Hours) Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3space, mathematical descriptions of lines and planes, and singlevariable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close 
MA 124Calculus of Two Variables (408)
(LectureLabStudy Hours) Partial derivatives, the tangent plane and linear approximation, the gradient and directional derivatives, the chain rule, implicit differentiation, extreme values, application to optimization, double integrals in rectangular coordinates. Close 
Close  4  0  8  4  PEP 112  Electricity and MagnetismCoulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Prerequisites:MA 115 or Calculus I (408)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
PEP 111, Mechanics (306)
(LectureLabStudy Hours) Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, centerofmass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close 
MA 122Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
Close  3  0  6  3  E 126  Mechanics of SolidsFundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Prerequisites:PEP 111, Mechanics (306)
(LectureLabStudy Hours) This is an independent study version of PEP 111. Close 
MA 115, Calculus I (408)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
MA 122Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
Close  4  0  8  4  E 245  Circuits and SystemsIdeal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the sdomain; Laplace transforms; transfer functions. Corequisites:MA 221, Differential Equations (408)(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
PEP 112Electricity and Magnetism (306)(LectureLabStudy Hours) Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and RC transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close 
Close  2  3  7  3  E 231  Engineering Design IIIThis course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Corequisites:E 126Mechanics of Solids (408)(LectureLabStudy Hours) Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close 
Prerequisites:E 122Engineering Design II (033)
(LectureLabStudy Hours) This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close 
Close  0  3  2  2  Hum  Humanities
 3  0  6  3   Total  16  6  37  19 
 Term IV  Course #  Course Name  Lecture  Lab  Study  Credit 

MA 227  Multivariable Calculus (2)Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites:MA 221Differential Equations (408)(LectureLabStudy Hours) Ordinary differential equations of first and second order, homogeneous and nonhomogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundaryvalue problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close 
Close  3  0  6  3  E 232  Engineering Design IVThis course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Prerequisites:E 231, Engineering Design III (032)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close 
E 245Circuits and Systems (237)
(LectureLabStudy Hours) Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the sdomain; Laplace transforms; transfer functions. Close 
Close  2  3  7  3  BME 306  Introduction to Biomedical EngineeringOverview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing. Close  3  0  6  3  CH 281  Biology and BiotechnologyBiological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology. Prerequisites:CH 107, General Chemistry IA (000)
(LectureLabStudy Hours) Elements, compounds, ions, stoichiometry, chemical reactions, solutions, gas laws, partial pressures, effusion, thermochemistry, atomic structure, periodicity, bonding, organic molecules, (nomenclatures), organic chemistry (hybridization, delocalization), polymers. Required course for Engineering students. Close 
CH 115 General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
CH 117General Chemistry Laboratory I (031)
(LectureLabStudy Hours) Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close 
Close  3  0  6  3  Hum  Humanities
 3  0  6  3  E 234  ThermodynamicsConcepts of heat and work; First and Second Laws for closed and open systems including steady processes and cycles; thermodynamic properties of substances and interrelationships; phase change and phase equilibrium; chemical reactions and chemical equilibrium; representative applications. Introduction to energy conversion systems, including direct energy conversion in fuelcells, photovoltaic systems, etc. Prerequisites:CH 115, General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
MA 115, Calculus I (408)
(LectureLabStudy Hours) An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close 
PEP 111, Mechanics (306)
(LectureLabStudy Hours) This is an independent study version of PEP 111. Close 
MA 122Integral Calculus (408)
(LectureLabStudy Hours)
Definite integrals of functions of one variable, antiderivatives, the Fundamental Theorem, integration techniques, improper integrals, applications. Close 
Close  3  0  6  3   Total  17  3  37  18 
 Term V  Course #  Course Name  Lecture  Lab  Study  Credit 

BME 342  Transport in Biological Systems (2)A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Bloodtissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Corequisites:BME 306Introduction to Biomedical Engineering (306)(LectureLabStudy Hours) Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing. Close 
Prerequisites:MA 227, Multivariable Calculus (306)
(LectureLabStudy Hours) Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Close 
MA 227Multivariable Calculus (306)
(LectureLabStudy Hours) Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Close 
Close  3  3  6  4  E 344  Materials ProcessingAn introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Prerequisites:CH 115General Chemistry I (306)
(LectureLabStudy Hours) Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close 
Close  3  0  6  3  E 321  Engineering Design VThis course includes both experimentation and openended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Corequisites:E 344Materials Processing (306)(LectureLabStudy Hours) An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close 
Close  0  3  2  2  CH 243  Organic Chemistry IPrinciples of descriptive organic chemistry; structural theory; reactions of aliphatic compounds; and stereochemistry. Prerequisites:CH 116, General Chemistry II (306)
(LectureLabStudy Hours) Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close 
CH 118General Chemistry Laboratory II (031)
(LectureLabStudy Hours) Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acidbase titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Close 
Close  3  0  6  3  CH 245  Organic Chemistry Laboratory ILaboratory includes introduction to organic reaction and separation techniques, reactions of functional groups, and synthesis. Corequisites:CH 243Organic Chemistry I (306)(LectureLabStudy Hours) Principles of descriptive organic chemistry; structural theory; reactions of aliphatic compounds; and stereochemistry. Close 
Close  0  4  0  1  CH 381  Cell BiologyThe structure and function of the cell and its subcellular organelles is studied. Biological macromolecules, enzymes, biomembranes, biological transport, bioenergetics, DNA replication, protein synthesis and secretion, motility, and cancer are covered. Cell biology experiments and interactive computer simulation exercises are conducted in the laboratory. Prerequisites:CH 281Biology and Biotechnology (306)
(LectureLabStudy Hours) Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology. Close 
Close  3  3  7  4  E 243  Probability and Statistics for EngineersDescriptive statistics, pictorial and tabular methods, measures of location and of variability, sample space and events, probability and independence, Bayes' formula, discrete random variables, densities and moments, normal, gamma, exponential and Weibull distributions, distribution of the sum and average of random samples, the central limit theorem, confidence intervals for the mean and the variance, hypothesis testing and pvalues, applications for prediction in a regression model. A statistical computer package is used throughout the course for teaching and for project assignments. Prerequisites:MA 116Calculus II (408)
(LectureLabStudy Hours) Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3space, mathematical descriptions of lines and planes, and singlevariable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close 
Close  3  0  6  3   Total  15  13  33  20 
 Term VI  Course #  Course Name  Lecture  Lab  Study  Credit 

E 355  Engineering Economics Basics of cost accounting and cost estimation, costestimating techniques for engineering projects, quantitative techniques for forecasting costs, cost of quality. Basic engineering economics, including capital investment in tangible and intangible assets. Engineering project management techniques, including budget development, sensitivity analysis, risk and uncertainty analysis and total quality management concepts. Prerequisites:E 121, Engineering Design I (032)
(LectureLabStudy Hours) This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close 
E 122, Engineering Design II (033)
(LectureLabStudy Hours) This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close 
E 231, Engineering Design III (032)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close 
E 232Engineering Design IV (237)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close 
Close  3  3  6  4  BME 322  Engineering Design VI (3)Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Prerequisites:E 232, Engineering Design IV (237)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close 
E 232Engineering Design IV (237)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close 
Close  1  3  2  2  BME 505  BiomaterialsIntended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Corequisites:BME 306, Introduction to Biomedical Engineering (306)(LectureLabStudy Hours) Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing. Close 
BME 506Biomechanics (306)(LectureLabStudy Hours) This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close 
Prerequisites:E 344Materials Processing (306)
(LectureLabStudy Hours) An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close 
Close  2  3  6  3  BME 460  Biomedical Digital Signal Processing LaboratoryBiomedical Digital Signal Processing is an introductory course into the fascinating world of Digital Signal Processing as it applies to the clinic. Since modern medical systems employ DSP concepts to analyze biomedical signals, such as the ECG, there is a need for Biomedical Engineers to gain a more indepth understanding of the subject. This class is designed to break the complex subject down into three fundamental areas, hardware systems, mathematical concepts, and software algorithms. Essential Signal Processing concepts are introduced and then reinforced with multiple biomedical examples and MatLab simulations, all serving to clarify the subject. Topics include: The Hardware building blocks, Signals and Systems, Euler’s Equation, Nyquist’s Sampling Theorem as Applied to Biomedical Applications, Convolution, Filters, Adaptive Filters, the Power Spectrum, and Discrete Fourier Transformations. Prerequisites:E 232, Engineering Design IV (237)
(LectureLabStudy Hours) This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close 
E 245Circuits and Systems (237)
(LectureLabStudy Hours) Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the sdomain; Laplace transforms; transfer functions. Close 
Close  1  3  4  2  BME 506  BiomechanicsThis course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Corequisites:BME 505Biomaterials (236)(LectureLabStudy Hours) Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close 
Prerequisites:BME 342Transport in Biological Systems (336)
(LectureLabStudy Hours) A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Bloodtissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Close 
Close  3  0  6  3  G.E.  General Elective  3  0  6  3   Total  13  12  30  17 
 Term VII  Course #  Course Name  Lecture  Lab  Study  Credit 

BME 482  Engineering PhysiologyIntroduction to mammalian physiology from an engineering point of view. The quantitative aspects of normal cellular and organ functions and the regulatory processes required maintaining organ viability and homeostasis. Laboratory exercises using exercise physiology as an integration of function at the cellular, organ and systems level will be conducted at the same time. Measurements of heart activity (EKG), cardiac output (partial CO2 rebreathing), blood pressure, oxygen consumption, carbon dioxide production, muscle strength (EMG), fluid shifts and respiratory function in response to exercise stress will be measured and analyzed from an engineering point of view. Prerequisites:BME 342, Transport in Biological Systems (336)
(LectureLabStudy Hours) A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Bloodtissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Close 
CH 381Cell Biology (337)
(LectureLabStudy Hours) The structure and function of the cell and its subcellular organelles is studied. Biological macromolecules, enzymes, biomembranes, biological transport, bioenergetics, DNA replication, protein synthesis and secretion, motility, and cancer are covered. Cell biology experiments and interactive computer simulation exercises are conducted in the laboratory. Close 
Close  3  3  6  4  BME 504  Medical Instrumentation and ImagingImaging plays an important role in both clinical and research environments. This course presents both the basic physics together with the practical technology associated with such methods as Xray computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI) and spectroscopy, ultrasonics (echocardiography, Doppler flow), nuclear medicine (Gallium, PET and SPECT scans) as well as optical methods such as bioluminescence, optical tomography, fluorescent confocal microscopy, twophoton microscopy and atomic force microscopy. Prerequisites:BME 306, and Introduction to Biomedical Engineering (306)
(LectureLabStudy Hours) Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing. Close 
BME 322Engineering Design VI (132)
(LectureLabStudy Hours) Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Close 
Close  3  0  6  3  BME 423  Senior Design I (3)Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Corequisites:BME 482Engineering Physiology (336)(LectureLabStudy Hours) Introduction to mammalian physiology from an engineering point of view. The quantitative aspects of normal cellular and organ functions and the regulatory processes required maintaining organ viability and homeostasis. Laboratory exercises using exercise physiology as an integration of function at the cellular, organ and systems level will be conducted at the same time. Measurements of heart activity (EKG), cardiac output (partial CO2 rebreathing), blood pressure, oxygen consumption, carbon dioxide production, muscle strength (EMG), fluid shifts and respiratory function in response to exercise stress will be measured and analyzed from an engineering point of view. Close 
Prerequisites:BME 322, and Engineering Design VI (132)
(LectureLabStudy Hours) Introduction to the principles of wireless transmission and the design of biomedical devices and instrumentation with wireless capabilities.(e.g. pacemakers, defibrilators. EKG). Electrical safety (isolation, shielding), and equipment validation standards for FDA compliance are introduced. Use of LabView to provide virtual bioinstrumentation. The course culminates in group projects to design a biomedical device that runs on wireless technology. Close 
BME 342, and Transport in Biological Systems (336)
(LectureLabStudy Hours) A study of momentum, mass and heat transport in living systems. Rheology of blood. Basic hemodynamics. Use of the equations of continuity and motion to set up complex flow problems. Flow within distensible tubes. Shear stress and endothelial cell function. Mass transfer and metabolism in organs and tissues. Microscopic and macroscopic mass balances. Diffusion. Bloodtissue transport of solutes in the microcirculation. Compartmental models for pharmacokinetic analyses. Analysis of blood oxygenators, hemodialysis, tissue growth in porous support materials. Artificial organs. Energy balances and the use of heat to treat tumor growth (radio frequency ablation, cryogenic ablation). Laboratory exercises accompany major topics discussed in class and are conducted at the same time. Close 
BME 505, and Biomaterials (236)
(LectureLabStudy Hours) Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close 
BME 506Biomechanics (306)
(LectureLabStudy Hours) This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close 
Close  0  8  3  3  T.G.  Technogenesis Core (4)  3  0  6  3  Hum  Humanities
 3  0  6  3  BME 556  Advanced BiomechanicsThis course will provide students with a practical approach to current computational and experimental methods used in the field of biomechanics. The goal of the course will be to bridge the gap between the theoretical computations and the practical application of experimental techniques. Topics covered will include cartilage and muscle mechanics as well as the response of bone tissue to loading. The analysis of implants will also be covered. The course will conclude with analysis of human motion. Experiments will be associated with various topics to demonstrate practical applications of the theoretical concepts introduced. Students will be required to use statistical analysis software. Prerequisites: BME 506 Biomechanics, BME 505 Biomaterials, knowledge of, or courses in Differential Equations, Multivariable Calculus and Statistics. Prerequisites:BME 505, and Biomaterials (236)
(LectureLabStudy Hours) Intended as an introduction to materials science for biomedical engineers, this course first reviews the materials properties relevant to the their application to the human body. It goes on to discuss proteins, cells, tissues, and their reactions and interactions with foreign materials, as well as the degradation of these materials in the human body. The course then treats various implants, burn dressings, drug delivery systems, biosensors, artificial organs, and elements of tissue engineering. Laboratory exercises accompany the major topics discussed in class and are conducted at the same time. Close 
BME 506Biomechanics (306)
(LectureLabStudy Hours) This course reviews basic engineering principles governing materials and structures such as mechanics, rigid body dynamics, fluid mechanics and solid mechanics and applies these to the study of biological systems such as ligaments, tendons, bone, muscles, joints, etc. The influence of material properties on the structure and function of organisms provides an appreciation for the mechanical complexity of biological systems. Methods for both rigid body and deformational mechanics are developed in the context of bone, muscle, and connective tissue. Multiple applications of Newton's Laws of mechanical are made to human motion. Close 
Close  3  0  6  3   Total  15  11  33  19 
 Term VIII  Course #  Course Name  Lecture  Lab  Study  Credit 

BME 445  Biosystems Simulation and ControlTime and frequency domain analysis of linear control systems. Proportional, derivative and integral control actions. Stability. Applications of control theory to physiological control systems: biosensors, information processors and bioactuators. Mathematical modeling and analysis of heart and blood pressure regulation, body temperature regulation, regulation of intracellular ionic concentrations, eye movement and pupil dilation controls. Use of Matlab and Simulink to model blood pressure regulation, auto regulation of blood flow, force development by muscle contraction, and integrated response of cardiac output, blood pressure and respiration to exercise. Prerequisites:BME 482Engineering Physiology (336)
(LectureLabStudy Hours) Introduction to mammalian physiology from an engineering point of view. The quantitative aspects of normal cellular and organ functions and the regulatory processes required maintaining organ viability and homeostasis. Laboratory exercises using exercise physiology as an integration of function at the cellular, organ and systems level will be conducted at the same time. Measurements of heart activity (EKG), cardiac output (partial CO2 rebreathing), blood pressure, oxygen consumption, carbon dioxide production, muscle strength (EMG), fluid shifts and respiratory function in response to exercise stress will be measured and analyzed from an engineering point of view. Close 
Close  3  3  4  4  BME 453  BioethicsThis course focuses on professional ethical conduct in the biomedical field. It will enable students to understand the ethical challenges they may encounter as biomedical engineers, allow them to practice biomedical engineering in an ethical manner and conduct themselves ethically as contributing members of society. Case discussions and presentations by practitioners in the field illustrate ethical norms and dilemmas. Corequisites:BME 306Introduction to Biomedical Engineering (306)(LectureLabStudy Hours) Overview of the biomedical engineering field with applications relevant to the healthcare industry such as medical instrumentation and devices. Introduction to the nervous system, propagation of the action potential, muscle contraction and introduction to the cardiovascular system. Discussion of ethical issues in biomedicine. Prerequisite: Sophomore Standing. Close 
Close  3  0  3  3  G.E.  General Elective II (5)  3  0  6  3  BME 424  Senior Design II (3)Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Prerequisites:BME 423Senior Design I (083)
(LectureLabStudy Hours) Senior design courses. Senior design provides, over the course of two semesters, a collaborative design experience with a significant biomedical problem related to human health. The project will often originate with an industrial sponsor or a medical practitioner at a nearby medical facility and will contain a clear implementation objective (i.e. for a medical device). It is a capstone experience that draws extensively on the student’s engineering and scientific background and requires independent judgments and actions. The project generally involves a determination of the medical need, a detailed economic analysis of the market potential, physiological considerations, biocompatibility issues, ease of patient use, an engineering analysis of the design, manufacturing considerations and experimentation and/or prototype construction of the device. The faculty advisor, industrial sponsor or biomedical practitioner works closely with the group to insure that the project meets its goals in a timely way. Leadership and entrepreneurship are nourished throughout all phases of the project. The project goals are met in a stepwise fashion, with each milestone forming a part of a final report with a common structure. Oral and written progress reports are presented to a panel of faculty at specified intervals and at the end of each semester. Close 
Close  0  8  3  3  Hum  Humanities
 3  0  6  3   Total  12  11  22  16 
 