Data-mining-as-a-service (DMaS) Model

- **Service provider (server)** - provides storage and computational power as the service.
- **Data owner (client)** - outsources dataset and data mining computations to the server.

Problem:
How can the client of weak computational power to verify that \(R = F(D) \) efficiently?

Our Problem Setting

- **Outsourced data mining computation**: K-means clustering
- **Lloyd’s method**
- **DMaS paradigm**: infrastructure-as-a-service (IaaS)
 - The client outsources both data and the code of Lloyd’s method to the IaaS service provider (server).
 - The code is executed at the server side.
 - The server provides storage and hardware for the computation.
- **Type of dishonest server**: the sloppy server that intends to terminate the clustering early to save computational cost

Our Solutions in a Nutshell

- **Deterministic approach**
 - Returns 100% certainty of clustering correctness.
 - Key idea: use the Voronoi diagram to pick the neighboring centroids for verification.
- **Probabilistic approach**
 - Returns a probabilistic correctness guarantee.
 - Key idea: insert synthetic clusters for verification.
- **Comparison of our two solutions**

<table>
<thead>
<tr>
<th>Approach</th>
<th>Complexity of Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>(O(nk_d + k \log k + k^{(d+2)/2})) if (k > (d+1)(d+2)/2) and (n > k^{(d+2)/2} - 1)</td>
</tr>
<tr>
<td></td>
<td>(O(nk)) otherwise</td>
</tr>
<tr>
<td>Probabilistic</td>
<td>(O(m))</td>
</tr>
</tbody>
</table>

- \(n \): |D|
- \(m \): # of artificial tuples;
- \(k \): number of clusters in D;
- \(d \): # of attributes of D;
- \(k_d \): the average number of centroid neighbors in Voronoi diagram

Deterministic Approach

- **Goal**: verify each tuple has been assigned to the nearest centroid
- **Brute-force approach**: for each tuple, compute its distance to all cluster centroids.
- **Our approach**: for each tuple, compute its distance to all of its Voronoi centroid neighbors.

Probabilistic Approach

- **Goal**: achieve \((\alpha, \beta)\) - correctness - verify the cluster result of accuracy \(\beta \) with belief probability no less than \(\alpha \).
- **Our approach**: insert a set of artificial tuples \(AT \) that is well-separated from \(D \) so that \(AT \) will not influence the original clusters.

Experiments

<table>
<thead>
<tr>
<th>Detection Probability</th>
<th>Mining Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verification Time

Our verification approaches only takes at most 1.2% time of k-means clustering.

Next Steps

- Extend to the server with more cheating power
- Extend to Software-as-a-service (SaaS) paradigm
 - The client only outsources the dataset
 - The server runs its own code
- Extend to other Centroid-based Clustering Algorithms (e.g., k-medoids clustering method)