Visual Programming: Limits of Graphic Representation

Jeffrey V. Nickerson

New York University
jnickerson@acm.org

Abstract

The effectiveness of graphic representations of
computer programs is analyzed. Existing software metrics
are modified for use in analyzing diagrams, and two new
metrics are proposed: graphic token count and diagram
class complexity. A graphic design measure, data density,
is transformed into a computer science measure, token
density. Using these metrics, graphic representations can
be compared to each other and to textual representations.
Conclusions are drawn about the relative strengths of
graphic and textual representation.

1. Metrics for comparing representations

Visual programming languages are often compared
with textual languages, but there is little discussion of
quantitative ways of comparing graphic to textual
representation. We approach the problem by finding
comparable metrics for both text and graphic
representation.

In [1], the author explores the most used textual
metrics and their graphic equivalents, choosing Levitin's
Token Count (2] (referred to here as textual token count)
as an indicator of textual complexity. This metric is a
count of the tokens in a program as parsed by a compiler.

We propose that the equivalent graphic complexity
metric is:

Graphic token count = number of nodes +
number of edges +
textual token count +
number of enclosures +
number of adjoinments

The terms in this sum come from the observation that
the following constructions when combined make up the
great majority of computer science diagrams:

i. adjoinment:

where A and B are cells that physically adjoin - that share
a side.

0-8186-6660-9/94 $04.00 © 1994 IEEE

178

ii. linkage:
where A and B are nodes that are explicitly linked by an
edge. All graphs and trees are forms of linkage diagrams.

iii. containment:

A[E]
where one node is enclosed within another. Containment
is most often used to indicate set relationships, as with
Venn Diagrams.

The graphic token count of the above three diagrams
are all 5. The corresponding textual representations
adjoin(a, b), link(a, b), contain(a, b) are all of textual
token count 5.

The graphic token count can be directly compared with
the textual token count. However, Halstead [3] has
observed that the characteristics of a programming
language is related to the length of a program
representation. This observation also applies to visual
languages, leading to a metric for a graphic notation:

Diagram class complexity = number of node types +
number of edge types +
number of label types.

Node types are often distinguished by shape, edge types
by line weight or arrowhead variations, and label types by
font. In [1], the author shows how an object-oriented
representation has a lower graphic token count but a
greater diagram class complexity than an entity-
relationship representation of the same domain.

Finally, modifying a Glinert metric [4] to be additive
rather than multiplicative, we define a confusion metric:

Confusion count = number of crossings +
number of elbows

It is clear that as the graphic token count of a linkage-
based representation goes up, the confusion count tends to
£0 up, due to the nature of planarity. In order to avoid a
confusion count in graph representations, a hierarchical
convention such as Pratt's H-Graphs [5] must be used.
This can be visualized as graphs within nodes:

We can add another dimension to our metrics by
considering the area of page or screen over which the
representation is made. Tufte [6] creates a data density
metric, oriented toward the display of statistical data:

number of entries in data matrix

data density =
v area of data graphic

We propose that a similar metric be created for
topological diagrams:

number of graphic tokens

token density = -
area of data graphic

In general, diagrams that make use of metric space,
such as statistical graphs or maps, have much greater
information densities than topological diagrams. Usually,
textual representations of programs are more dense than
graphic representations, sometimes by an order of
magnitude. Hybrid languages, in which diagrams provide
structure for text, as in Buhr [7], can have densities
similar to that of pure textual languages.

2. Trees and Graphs

Consider the minimal diagrammatic representation of a

7\,
ASAN

The graphic token count is 13, or 2n - 1, where n is the
number of nodes in the tree. The alternate textual
representations of this tree,

infix with parentheses: (d * e) + (f * g)
postfix: d,e*f,g*+

prefix: +*d,e*f,g

infix: d*e+f*g

have textual token between 7 (the number of nodes) and 9.
The minimum textual token count is practically half that
of the graphic representation.

Consider a graph:

179

a

b<_1.§d

The graphic complexity a graph is e + » : in this
example, 10. One of the most common ways to represent
this textually is with an edge list:

<a, b>, <b, ¢>, <a, c>, <a, d>, <b, d>, <c, &>

Each edge contains two nodes, a separator, and a
bracket expression. Therefore the token count of an edge
list representation is 4e, or 24 for this example. This is
substantially greater than the graphic representation.
Consideration of other textual representations of graphs in
[1] shows that the textual count is 1 - 4 times greater than
the graphic count.

3. Conclusions

Application of these metrics to current visual
programming languages does not paint an optimistic
future for the use of fully general, fully diagrammatic
visual programming languages due to their low density.
Instead, it suggests that those areas where metric space are
part of the problem domain will lend themselves to the
visual. Also, those problems lending themselves to graph
rather than tree representations will be best handed
visually. Due to planarity problems, it suggests that use
of embedding constructions such as H-Graphs will be
important. Finally, hybrid languages in which graphic
representations of program structure are combined with
textual expressions can match textual densities.
References
[1] Nickerson, Jeffrey V., Visual Programming , Ph.D.
Dissertation, Dept. of Computer Science, New York
University, 1994.

[2] Levitin, A. V., How to Measure Software Size, and How
Not To, 10th International Computer Software and
Applications Conference, Chicago, 1986, 214-239.
[3] Halstead, Maurice H., Elements of Sofiware Science,
New York: Elsevier, 1977.

{4] Glinert Ephraim P., Nontextual Programming
Environments, in Chang, Shi-Kuo, ed. Principles of
Visual Programming Systems, Englewood Cliffs, NJ:
Prentice Hall, 1990, 144-230.

[5] Pratt, Terrence W., Formal Specification of Software
Using H-Graph Semantics, in Ehrig, H., M. Nagl, and G.
Rozenberg (eds.),Lecture Notes in Computer Science
#153: Berlin: Springer-Verlag, 1973, 314-332.

[6] Tufte, Edward R., The Visual Display of Quantitative
Information, Chesire, Conn: Graphics Press, 1983.
[7] Buhr, R. 1. A, Practical Visual Techniques in System
Design, Englewood Cliffs, NJ: Prentice-Hall, 1990.

