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Abstract 

 
As autonomous machines become more pervasive, 

situations will arise when human decision-makers will 
receive advice from both machines and other humans.  
When these instructions conflict, a new social situation is 
defined for which we have little precedent. The authors 
propose a model for investigating these situations. The 
model synthesizes research from several different fields, 
including machine autonomy, affect, initial trust, 
individual differences, and training. The model is 
explained, and a set of propositions is described. The 
model is used to analyze the case of an air collision in 
which machines and humans provided conflicting advice. 
The model is also applied to situations in which 
unmanned aerial vehicles and piloted aircraft seek to 
avoid collisions with each other. Ways of testing the 
model through human subject experiments are discussed. 

 
1. Introduction 

 
As machines are designed to look and act more like 

people, it may be that what we currently understand about 
our interactions with machines is no longer valid. It would 
be helpful to understand this early, so that we can better 
design our machines and our training of the users of these 
machines.  

We are proposing a model for research surrounding the 
effects of machine autonomy on human behavior. We 
wish to understand how teams that include both 
autonomous machines and humans interact. We initially 
focus on a specific problem – how humans respond when 
confronted with conflicting advice from a machine and 
another human. In creating this model, we draw from five 
fields of research. The first is in autonomy. The second is 
in the human perception of machines, particularly of 
machines which elicit affect. The third is in the area of 
trust, specifically initial trust. The fourth is research in 
individual differences, especially personality.  The fifth is 
situation-specific training. In this paper we synthesize the 
findings of researchers in these five fields and propose a 
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preliminary model. We then apply the model in two 
examples from the domain of collision avoidance.  

It is clear that the willingness to take advice is related 
to trust. Trusting a machine, which may mean ceding 
control to a machine, is related to whether the machine 
has made errors in the past, as well as to our own self-
confidence [1]. If we are overly confident, we will tend to 
ignore even the good advice of a machine. This issue of 
delegating to the machine or taking over ourselves has 
been studied in detail. We bias toward automated aids 
initially, but in response to errors we tend to distrust and 
disuse the aids [2]. In team situations, we know that 
sometimes humans over-promote the machine to the 
status of a human [3-5].  

What appears to be less studied are situations in which 
the advice of a machine and the advice of a human 
conflict. We illustrate this in figure 1.  

 

Decision
on the

machine's
advice

versus the
human's
adviceInitial trust in

the human

Initial trust in
the machine

 
Figure 1. 

 
We think this kind of situation will occur increasingly 

often as machines increase in autonomy, and enter into 
teams as active participants.  

 
2.  Autonomy 
 

Deciding whether to accept the advice of a machine is 
influenced by our perception of the machine. While we 
think it is clear that humans react to machines differently 
than to humans, we think it is also clear that humans react 
differently to different types of machines. We wish to 
understand what characteristics of machines cause 
different perceptions of the machine. One factor that may 
affect perceptions is the autonomy of the machine.  It may 
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be that relative autonomy - the ability of the machine to 
make decisions on its own - changes our perception of the 
machine. In a rapidly expanding literature, there are many 
different ways of modeling autonomy [6, 7]. Much of the 
work in autonomy has roots in the literature of man-
machine systems [8-11], including work on the allocation 
of function  [12].  

Autonomy can be described along a scale, as in table 1 
from Parasuraman, Sheridan and Wickens [13].  

 
Table 1. Levels of autonomy [13]. 

 
The computer... 
10 decides everything 
9 informs the human only if it wants to 
8 informs the human only if asked 
7 executes automatically, then informs the human 
6 allows the human to veto the machine decision 
5 asks for approval 
4 suggests one alternative 
3 narrows a selection to a few alternatives 
2 offers a complete set of alternatives 
1 offers no assistance 

  
Hexmoor [14] proposes a specific autonomy metric for 

collision avoidance. An automated agent will look at 
trajectories and distances, generating a collision priority 
between 1 and 4. If collision is imminent, the agent takes 
over. If collision is a fair distance away, the agent 
presents a user-interface window to the human pilot on a 
timer – the human has the length of the timer to respond 
before the agent takes over. Hexmoor’s equation is 

 
Autonomy = CollisionPriority/4.0 + 

((CollisionPriority – 4.0) * t)/T,  
where t is the timer, and T is the time to collision.  

 
This metric links autonomy to urgency – in an urgent 

situation, the agent will take over. If this is implemented, 
the human will gradually loose the ability to decide as 
circumstances become more urgent.  Inagaki shows that 
this is optimal in certain situations [15]. 

There is a problem – as the decision becomes more 
important, the human has less say.  But in some examples, 
such as in flying a plane, if the automated systems fail, 
humans need to take over [13]. Any system that lets the 
skills of the human atrophy through over-automation is 
dangerous.  

 Machines with more autonomy may appear more 
human. Drawing from this observation, we make the 
following research proposition: 

 
P1: A higher level of autonomy in a machine will 
increase a human's initial trust in that machine. 
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It is not obvious that this is true. It essentially says that 
the less control we have, the greater our trust.  We know 
that, in humans, the amount of autonomy we grant other 
humans is related to our degree of trust. Ceding control to 
machines is also related to trust [16]. The reverse 
proposition, that autonomy influences trust, does not 
appear to have been studied. It might be argued that a 
higher level of autonomy in a human will act the same 
way on trust as higher level of autonomy in a machine, 
but we are assuming that the effect of human and machine 
autonomy will differ: 

 
P2: A higher level of autonomy in a machine will 
affect a human's initial trust to a different degree than 
a higher level of autonomy in a human will affect 
another human's initial trust  

 
3. Affect 

 
There is considerable evidence that affect has an 

important relationship with trust [17]. A recent review by 
Lee and See argues for the role of affect in trust related to 
automation [18]. There is evidence that people sometimes 
treat machines as people [19-21]. In particular, they treat 
autonomous machines as people. A conversational agent 
trained to elicit and express affect, although obviously not 
human, gains more trust through this training, even 
though participants do not believe the machine itself is 
experiencing emotion [22]. There is a quickly 
accumulating body of evidence that, even though we 
don’t appear to be fooled by machines, we respond more 
positively to those that exhibit human traits [23-28]. Other 
evidence suggests that synthetic voices that display 
consistency and are more similar to the respondent will be 
perceived more favorably and be trusted more [29]. It is 
possible affect may cause us to overly trust the machine.  

In some situations, it appears it is better not to let a 
machine pretend it is a person. Kiesler, Sproull and 
Waters [30] showed that, in a prisoner’s dilemma, people 
generally played fairly with a computer – but that a text 
interface worked better than a semi-human one. A text 
interface may make it easier to overlook the 
human/computer difference. Such a result has interesting 
implications – in situations in which a machine is being 
compared to a human, it may be that the medium through 
which the message is delivered will be significant.  From 
the work discussed above, we make the following 
propositions: 

 
P3: The more positive affect a machine can generate 
in a human, the more it will be trusted. 
 
P4: The medium and valence of communication will 
influence both affect and initial trust. 
 $17.00 (C) 2004 IEEE 2
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4. Initial Trust  
 

In the domain we are interested in, collision avoidance, 
it is often the case that pilots and air traffic controllers are 
introduced to each other for the first time right before they 
need to make a crucial decision. For this reason, we start 
by summarizing a model of initial trust developed by  
McKnight, Cummings and Chervany [31].  This model is 
based on trust of humans, not machines. We are seeking 
to parameterize this initial trust model according to the 
type of entity to be trusted. 

This model itself blends several streams of research. 
We look at each stream in turn, and then discuss how the 
model can serve as a base for the model which is the 
subject of this paper.  

TrustDisposition
to Trust

Cognitive
Processes

Institution-
based trust

 
 
Figure 2. Simplified from McKnight et al. [31]. 

 
 
McKnight, Cummings, and Chervany propose that 

initial trust forms through one’s disposition to trust, one’s 
institution-based trust, and cognitive processes.  
Disposition to trust, the authors point out, encompasses a 
broad range of personality-based research, such as the 
work of Rotter [32]. Within disposition to trust, the 
authors differentiate between a general faith in humanity 
and a trusting stance. A trusting stance is much more 
calculated – one trusts even if one is not optimistic. We 
wonder if there is a corresponding general faith in 
machines – in other words, if those who trust humanity 
also trust machines. This leads us to the following 
research propositions: 

 
P5: The disposition to trust machines can be 
measured. 
 
P6: The disposition to trust machines is distinct from 
the disposition to trust humans; some individuals will 
be predisposed to trust one type of entity over another. 
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Within cognitive processes, McKnight, Cummings, and 
Chervany differentiate between categorization processes 
and illusions of control processes.  

Categorization processes encompass stereotyping. The 
authors cite research which explores the impact of gender 
on trust [33]. We are interested in whether machines, and 
within that, types of machines, are also subject to 
stereotyping. We think it is likely that this is the case; 
brands of cars are often stereotyped on their reliability. 
This leads to the following proposition: 

 
P7: Stereotyping cognitive processes will influence 
initial trust in a machine the same way it influences 
initial trust in a human, although the categories for 
stereotyping will be different.  
 

Machines do not normally have gender or ethnicity as 
attributes. But model type, brand, and age are the kinds of 
attributes that might be subject to stereotyping. (When 
gender is added to a computer, people do stereotype the 
computer according to gender [34]). 

The categorization processes of the initial trust model 
also include unit grouping, which is the tendency to trust 
others like oneself. The authors cite research on the 
tendency of humans to trust those in the same group [35]. 
On first glance, we think this process would seem to favor 
trust in people over machines. Yet it may be that certain 
machines may be perceived as members of a unit.  

 
P8: Machines that are perceived as part of a unit 
group will be more highly trusted. 
 
P9. Machines with a capability for autonomous 
behavior and affect generation will be more likely to 
be categorized as part of a unit group. 

 
It may be that machines will always be considered 

outside the unit group, in which case the establishment of 
mixed teams of agents and humans will be impossible. 
Our proposition is more optimistic. 

The categorization process includes reputation 
categorization. We think this is related to the problem of 
stereotyping. Reputation about humans is generally linked 
to information about a particular person. Machines are 
manufactured, and therefore we expect few individual 
differences from within a particular class of model. 
However, product models do acquire reputations, often 
based on anecdotal information.  

In addition to categorization, McKnight, Cummings, 
and Chervany also discuss research on illusion of control 
processes [36]. People will often test other people 
conversationally – if they can provoke a desired response, 
then they often will trust the person. We are interested if 
this maps to machines. Machines in general are perceived 
 $17.00 (C) 2004 IEEE 3
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as being under our control, so there is no sense in testing 
them. Autonomous machines are different, however.  We 
believe that testing with autonomous machines (for 
example asking the machine for feedback on progress) 
will lead to greater trust in the machine.  Therefore we 
offer the following proposition. 

 
P10: Autonomous machines which respond to control 
tests will be more trusted than autonomous machines 
that do not respond to such tests. 
 

The third area of trust explored by McKnight, 
Cummings, and Chervany is that of institution-based 
trust. People will form trusting beliefs if the situation 
appears normal and if they believe that the organization 
provides structural safeguards, such as punishment of 
transgressions [37]. It makes no sense to punish a 
machine. But institution-based trust in a machine may 
increase if a human is associated with the machine. For 
example, if a pilot knows that the programmer of the 
latest revision of his control system will be punished if 
that programmer is negligent, then trust may increase.  

 
P11: Machines that have identifiable humans 
accountable for their performance will be trusted 
more than machines which have no identifiable person 
accountable. 
 

5. Individual Differences 
 
Individual differences are a key driver of performance 

across many domains. We are particularly interested in 
the role of personality of individuals acting as part of a 
team in which some of the members are humans and some 
of the members are machines. The Five Factor Model of 
personality posits the following personality traits as a 
general explanatory framework for interpersonal behavior 
[38].  

Openness has been associated with being imaginative, 
cultured, curious, original, broad minded, intelligent, and 
artistically sensitive. Stability is the extent to which an 
individual is calm, enthusiastic, poised, and secure. 
Agreeableness is the extent to which team members are 
good-natured, gentle, cooperative, forgiving and hopeful. 
Conscientiousness is the extent to which an individual is 
careful, thorough, responsible, organized, and planful, as 
well as hardworking, achievement oriented, and 
persevering. Extraversion is associated with being 
sociable, talkative, assertive, and active.  
0-7695-2056-1/04
We are especially interested in Openness, 
Agreeableness and Conscientiousness as individual 
differences that may play a role in the behavior of 
subjects interacting with a machine-human team. 
Conscientiousness, for example, has been associated with 
the tendency to be cautious and avoid mistakes. It may be 
that highly conscientious individuals will be more likely 
to follow instructions under conditions of uncertainty and 
risk than individuals who are low on the same trait [39, 
40]. Openness has been studied in the context of new 
product development teams [41, 42] and decision making 
teams. In the latter study, the investigators found that 
openness moderated the effectiveness of computer 
assisted decision making. More open individuals made 
better decisions under conditions of computer mediated 
communication. Agreeableness is a construct that has 
been directly related to trusting others [43] but has not 
been studied with respect to trust in machines.  
Agreeableness has also been found to be associated with 
effective team performance [44-48] but has not been 
generalized to teams in which one or more members are 
machines.  

 
P12: People will exhibit reliable individual 
differences in their trust of machines 
 
P13: High degrees of openness and agreeableness 
will predict a high predisposition to trust machines. 
 

 
6.  Training and Stress 

 
The influence of individual differences, autonomy and 

cognitive processes on trust and subsequent decision 
making can be affected by two other factors, training and 
stress.  In many cases we train in order to counteract the 
effects of stress [49, 50]. There is also evidence that 
providing people with appropriate preparatory 
information prior to a stressful event can reduce negative 
performance due to stress [51].  A large literature exists 
on how stress changes decision making, and in particular 
the decision making of pilots [52-57]. As a generalization, 
decision making is worse under conditions of time 
pressure. Some studies show that the choice to use 
automation is influenced by our own self-confidence in a 
situation – the less self-confidence, the more likely we are 
to choose automation. The more stress there is, the worse 
decision making becomes, and the more likely that 
individual differences and cognitive processes such as
 $17.00 (C) 2004 IEEE 4
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Figure 3. The proposed model. 
 
stereotyping will surface, which may lead to an 
inappropriate level of trust. 

 
P14: Under stress, both cognitive processes and 
individual differences will exert a stronger effect on 
initial trust than when stress is low or absent.  
 
P15: The direct effects of stress on initial trust in 
machines will differ for trained and untrained 
individuals.  

 
 
7. The Proposed Model 

 
Synthesizing the theories we have discussed, we can 

posit a model of initial trust that is parameterized by the 
source of advice, machine or human. Along the bottom of 
figure 3 are the stable constructs related to personality. 

Along the top are constructs which influence cognitive 
processes. These may enforce or negate each other – for 
example, we expect high valence advice, delivered 
through shouting, to accentuate the effects of stress, while 
training will dampen the effects of stress.  

An overall situation in which a human and a computer 
provide conflicting advice can be represented as shown in 
figure 4. 
0-7695-2056-1/04 
Initial Trust  ModelMachine Source

Initial Trust  ModelHuman Source

Advice A

Advice B

Decision on
A vs. B.

Figure 4. Use of the model 
 
The initial trust model of figure 4 has as an input the 

source of advice, machine or human. The model outputs a 
value in each case. These values are used in making a 
decision between advice A, produced by a machine, and 
advice B, produced by a human.  

In order to further explain the issues that model can be 
applied in studying, we present two scenarios, one 
concrete and historical, the other anticipatory.  
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8. An Accident Analysis 
 

This scenario is based on the plane crash over 
Switzerland, July 1, 2002. Our information is drawn from 
news coverage [58, 59], and an accident description report 
from the Aviation Safety Network [60]. 

 
Two planes approach each other at right angles at the 
same altitude. Both planes ran a Traffic Alert and 
Collision Avoidance System, (TCAS) which operated 
properly. One plane is flown by a European pilot, the 
other by a Russian pilot. Both pilots are instructed by 
ground control to do the opposite of what the TCAS 
system tells them to do. The European pilot obeys the 
TCAS system. The Russian pilot obeys the ground 
controller. They crash.  
 
We illustrate the scenario in figure 5. We label the 

TCAS transponders as A1, A2, the pilots as P1, P2, and 
the air traffic controller as C. 

 

A1

P1

A2

P2

C

Climb

Climb

Descend

Descend

 

Figure 5. Contradictory instructions. 
 

It is not clear from news reports if the controller ever 
issued the instruction to the European pilot, P1, to climb. 
If he didn’t, then the European pilot’s decision was easy – 
without a specific alternative, he would have obeyed 
TCAS.  

We know more about the interaction between the 
Russian pilot and ground control. The pilot was faced 
with a quandary – TCAS told him to climb, the ground 
controller told him to descend.  

Once the pilot found himself in the situation in which 
those two recommendations were in conflict, he now was 
faced with four possible outcomes, depending on both his 
decision and the decision of the other pilot, as shown in 
figure 6. In two situations, either TCAS or the ground 
controller is obeyed by both pilots. In two other 
situations, each pilot obeyed a different master.  
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Figure 6. The possible situations 

 
The Russian pilot would probably assume ground 

ontrol had talked to the other pilot, and the other pilot 
as also going to do the opposite of what TCAS said. But 

he Russian pilot couldn’t be sure – it was possible that 
round control had not talked to the pilot, that the other 
ilot might disregard ground control instructions, or even 
hat ground control had confused the two planes.  
News reports focused on the idea that Europeans are 
ore strenuously trained to always favor TCAS 

nstruction, while the Russian policy gives more room to 
isten to ground control advice. In figure 7 we show the 
redispositions that may have influenced the decision 
aking.  

Trust humans firstTrust machines first

Trust self

A1

P1

A2

P2

C

Climb

Climb

Descend

Descend

 
Figure 7. Representing simple heuristics 

 
The implications of the news reporting are that if 

raining for pilots was consistent world-wide, the accident 
ouldn’t have happened. We are not so sure. It could be 

hat in the above situation, a certain percentage of pilots 
ill always decide in favor of the human, not the 
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machine. In other words, from our model, cultural 
differences or individual differences may create a 
disposition to trust humans over machines.  

In other work on automation, accidents are sometimes 
traced to differences in models – a pilot may think the 
machine will behave in a different way than it does [61-
63]. In this situation, the problem is probably not with the 
pilots’ model of TCAS. Rather, it has to do with each 
pilot’s model of what the other one will do.  

 
9. UAV Collision Avoidance 

 
The accident above was seen as an anomaly – but we 

think that such confusions have the potential to become 
more frequent as flight automation increases. We look 
now at a situation in which a human pilot is on a collision 
course with an unmanned aerial vehicle.  

Such a situation is probably going to alarm both the 
human pilot and the air traffic controller. For the 
automated vehicle doesn’t have the same survival 
motivations as the pilot does. Communication with the 
vehicle is not going to be the same as communication 
with another pilot. We show in figure 8 a set of possible 
communication links between a set of humans and agents 
involved in avoiding a potential collision. 

 

A1

UAV

A2

P2

CP1

1

2
3

4

UAV

 
 

Figure 8. UAV communication 
 

The pilot may resist talking to a UAV, along link 1, 
although this is the most direct interface. This resistance 
may be sensible, for the UAV will not be capable of 
human-level speech recognition, and the pilot may not 
have the time or inclination to interact using a different 
kind of interface.  

The aircraft controller may also resist communicating to 
the UAVs along link 2 – it is unlikely the UAVs will be 
able to respond to arbitrary verbal commands, so some 
specialized interface – and training – would be needed by 
the air traffic controller. The pilot may prefer to talk along 
link 3 to the remote pilot of the UAVs. And the controller 
may also prefer to talk to the remote pilot along link 4. 
0-7695-2056-1/04 
But the remote pilot will be controlling multiple UAVs, 
and will want the pilot in the manned plane to just let 
TCAS, labeled as A1 and A2, negotiate any changes in 
flight path.  

It needs to be mentioned that the remote pilot probably 
will not have the same level of flight training as a pilot – 
and that, in some contexts, the pilots may not want to talk 
to the remote pilot. From the described model of initial 
trust, those outside the unit group are trusted less than 
those inside. Pilots may view talking to remote pilots as 
preferable to talking to machines – that even though they 
may be perceived as outside the Unit Group, humans are 
perceived as closer to that group than machines.  

Generalizing this discussion, people prefer to talk with 
people rather than run specialized interfaces, due to 
aspects of initial trust of machines versus humans. Yet 
from an overall perspective, the less people need to talk to 
the remote pilot in this system, the better, as any 
overloading of the remote pilot increases the possibility of 
error. From our model, we hypothesize that the 
communication medium may have an effect. It may be 
that text-based communication, which will hide the 
differences between machine and human, may be the 
preferable way of lessening the tendency to trust the 
remote pilot over the machine.  

The crux of the problem is the wide gap between a 
human being and an autonomous machine. Lawrence and 
Lorsch [64] showed that in conditions of great difference, 
integration happens through diplomatic go-betweens who 
have characteristics that are halfway between the un-
integrated groups. In applying this theory, we might 
observe that what is needed is something halfway in 
between the pilot and the UAVs. The remote pilot 
currently serves such a function. This suggests that the 
natural tendency will be to deluge the remote pilot with 
requests. And that the design of doctrine, training, 
software and overall architecture would need to actively 
seek ways of avoiding such a deluge. The research we 
propose will take a step in the direction of understanding 
how as a society we should consider handing these 
problems before they become prevalent. 

 
10. Experiment development 

 
We plan to do a series of experiments in which a 

subject or, in some cases, more than one subject, will be 
placed in the role of either a pilot or an air traffic 
controller. We are interested in two dependent variables.   

First, we expect our independent variables to influence 
the level of trust that subjects have toward machines and 
we expect trust to be strongly related to the decision 
(machine recommended vs. human recommended) made 
by subjects.  
$17.00 (C) 2004 IEEE 7
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The measurement of trust is in itself a research area. 
Muir proposed a two-dimensional approach [65]; Lee and 
Moray argue the dimensions are not independent [66]. 
Marsh presents a formal measure involving risk [67]. 
McAllister defined trust as, "the extent to which a person 
is confident in, and willing to act on the basis of, the 
words, actions, and decisions of another" [68]. McAllister 
suggested that interpersonal trust can be categorized into 
two different dimensions: cognitive and affective. 
Cognitive forms of trust reflect issues such as the 
reliability, integrity, honesty, and fairness of a referent. 
McAllister showed that cognitive trust in peers was 
associated with the reliable performance of the peer and 
the extent of interaction with the peer. Status based on 
formal credentials, organizational role, etc. had a weak 
relationship with trust. Affective forms of trust reflect a 
special relationship with the referent that may cause the 
referent to demonstrate concern about one’s welfare. The 
level of interaction with a peer had a major influence on 
the level of affective trust. It may be that machines which 
show affect are trusted along this dimension also. 

  Our research will include both experimentally 
manipulated variables and individual differences.  We 
plan to measure each subject's personality using a 
measure of the five-factor model of personality [39] and, 
in addition, assess each subject's predisposition to trust a 
machine versus a human. We plan to experimentally 
manipulate a number of other independent variables. For 
example, we plan to vary the extent to which the machine 
has human characteristics and then look at the multiple 
regression of decision-making on the two types of trust, 
affective and cognitive.  Our hypothesis is that as 
machines take on more human characteristics the 
regression weight for affective trust will increase and the 
regression equation will become more similar to a 
regression equation for a human information source. 

Following the ideas of Parasuraman, Sheridan and 
Wickens [13] the degree of autonomy of the machine 
agent could be manipulated by allowing the subject 
varying degrees of control.   The level of autonomy of a 
machine can be manipulated and the effects on trust and 
decisions can be observed.  Of interest is the form of the 
relationship between autonomy and trust.  For example, is 
trust a linear function of autonomy?  Or is trust related to 
autonomy in some more complex way? 

We plan to manipulate various characteristics of the 
machine (e.g., speech) to determine whether these 
characteristics elicit more positive or negative affect.  We 
will test the proposition that affect is related to trust in the 
machine and subsequent decisions.  

The extent to which initial trust in machines determines 
the decision made by subjects under various conditions 
will be explored in our experiments. 
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The relationships between personality and initial trust 
in machines will be determined.  Other individual 
differences (e.g., experience with computers) will also be 
correlated with initial trust. 

The role of training on initial trust and subsequent 
decisions will be explored in combination with other 
variables.  For example, to what extent does training 
mitigate the influence of individual differences on trust in 
machines?  To what extent does training mitigate the 
effects of stress on trust and decision making? 

 
 

11. Conclusion 
 
We have described an approach to investigating the 

effects of machine autonomy on human behavior. Our 
interest is in people’s reactions to autonomous machines, 
rather than the nature of the machines themselves. We 
think that as a society we understand very little about how 
things might change as machines become more 
autonomous. As individuals, we may be reluctant to 
delegate, or we may over-delegate. We may cede 
decisions to the machine when we should intervene, and 
we may intervene unsafely when the machine should be 
left alone.  

The issues we raise are large, and the related literature 
spans many different disciplines. We have synthesized 
this literature. More importantly, we have focused on a 
domain, collision avoidance, which lends itself to human 
experiments. We have shown how the broad questions we 
have raised can be specifically tested. 

We have raised important and testable research 
questions. We have surveyed and synthesized a wide 
range of approaches to these questions. And we have 
outlined a clear, systematic way of beginning to answer 
these questions. These answers will be useful to a broad 
range of researchers. 

The problem of how we delegate and intervene with a 
machine affects society as a whole. Our culture is built on 
our ability to trust and coordinate with each other. The 
introduction of autonomous machines means we have to 
look harder at trust, delegation, and intervention. Without 
thoughtful research, we will find ourselves reacting to 
changes brought about by technology. We will be better 
off if we anticipate – then we will be prepared to design 
our machines, as well as the training and policies which 
surround the ways we interact. 
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