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Abstract

One of the main results of this paper is that elementary theories of
coordinate groups Γ(Yi) of irreducible components Yi of an algebraic
set Y over a group G are interpretable in the coordinate group Γ(Y )
of Y for a wide class of groups G. This implies, in particular, that one
can study model theory of Γ(Y ) via the irreducible coordinate groups
Γ(Yi). This result is based on the technique of orthogonal systems of
subdirect products of domains, which we develop here. It has some
other interesting applications, for example, if H is a finitely generated
group from the quasi-variety generated by a free non-abelian group F ,
then H is universally equivalent either to a unique direct product F l

of l copies of F or to the group F l × Z, where Z is an infinite cyclic.

Key words: Algebraic geometry, groups, model theory, quasi-varieties,
irreducible components, definability

1 Introduction

1.1 Some notions from model theory

It has been shown in [MR2] that basic notions of algebraic geometry over
groups have interesting connections with logic and universal algebra. We
recall here a few necessary definitions and refer to [MR2] for details.

The standard language of group theory, which we denote by L, consists
of a symbol for multiplication ·, a symbol for inversion −1, and a symbol for
the identity 1.

Let X = {x1, . . . , xn} be a finite set of variables, X−1 = {x−1 | x ∈ X},
and X±1 = X ∪ X−1. A group word in variables X is a word S(X) in the
alphabet X±1. Observe, that every term in the language L is logically equiv-
alent (modulo the axioms of group theory) to a group word in X. An atomic
formula in the language L is a formula of the type S(X) = 1. Sometimes we
refer to atomic formulas in L as (coefficient-free) equations, and vice versa.
A Boolean combination of atomic formulas in the language L is a disjunction
of conjunctions of atomic formulas or their negations. It follows from general
results on disjunctive normal forms that every formula Φ(X) in L is logically
equivalent to a formula of the type

Q1z1Q2z2 . . . QnzmΨ(X,Z),
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where Qi ∈ {∀,∃}, Z = {z1, . . . , zm}, and Ψ(X,Z) is a Boolean combination
of atomic formulas in variables X ∪ Z. If in the formula Φ(X) the set of
free variables X is empty then Φ is called a sentence in L. In the sequel we
assume that all formulas are in L (if not said otherwise) and omit mentioning
L.

If Φ(X) is a formula and G is a group, then for an n-tuple of elements
g = (g1, . . . , gn) from G we write G |= Φ(g) if Φ(X) holds in G on elements
(g1, . . . , gn). By Φ(G) we denote the truth set of Φ:

Φ(G) = {g ∈ Gn | G |= Φ(g)}.
If G is a group then the set Th(G) of all sentences which are valid in G

is called the elementary theory of G. Two groups G and H are elementarily
equivalent if Th(G) = Th(H). The theory Th(G) is decidable if there is an
algorithm which for every sentence φ determines whether or not φ is true in
G.

A class of groups K is axiomatic if there exists a set of sentences Σ such
that K consists precisely of all groups satisfying all formulas from Σ. In this
event we say that Σ is a set of axioms for K. For a class of groups K denote
by Th(K) the elementary theory of K, i.e., the set of all sentences of which
are true in every group from K. If K = {H} then we write Th(H) instead
of Th({H}) and use this approach in all similar circumstances.

The notion of interpretation provides one of the most powerful tools in
modern model theory (see, for example, [H], [Po], [Pi]). It can be defined for
arbitrary algebraic structures, but we restrict ourselves to groups only.

A group code C is a set of formulas

C = {U(X, P ), E(X,Y, P ), Mult(X, Y, Z, P ), Inv(X,Y, P )} (1)

where X, Y, Z, P are tuples of variables with |X| = |Y | = |Z|. If P = ∅ then
C is called an absolute code or 0-code.

Let C be a group code, H be a group, and B be an |P |-tuple of elements
in H. We say that C (with parameters B) interprets a group C(H,B) in H
if the following conditions hold:

1) the truth set U(H, B) in H of the formula U(X, B) (with parameters
B) is non-empty;

2) the truth set of the formula E(X, Y, B) (with parameters B) defines an
equivalence relation ∼B on U(H, B);
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3) the formulas Mult(X,Y, Z,B) and Inv(X, Y, B) define, correspond-
ingly, a binary operation (Z = Z(X,Y )) and a unary operation (Y =
Y (X)) on the set U(H,B) compatible with the equivalence relation
∼B;

4) the set of equivalence classes U(H, B)/ ∼B forms a group with respect
to the operations defined by Mult(X, Y, Z, B) and Inv(X, Y,B). We
denote this group by C(H,B).

We say that a group G is interpretable (or definable) in a group H if there
exists a group code C and a set of parameters B ⊂ H such that G ' C(H, B).
If C is 0-code then G is absolutely or 0-interpretable in H. The following two
types of interpretations are crucial. Let G be a definable subgroup of a group
H, i.e., there exists a formula U(x, P ) and a set of parameters B ⊂ H such
that

G = {g ∈ H | H |= U(g, B)}
. Then G is interpretable in H by the code

CG = {U(x, P ), x = y, xy = z, y = x−1}
with parameters B. If in addition G is a normal subgroup of H then the
code

CH/G = {x = x,∃v(x = yv ∧ U(v, P )), z = xy, y = x−1}
interprets the factor-group H/G in H with parameters B.

Every group code (1) determines a translation TC which is a map from
the set of all formulas FL in the language L into itself. We define TC by
induction as follows:

1) TC(x = y) = E(X,Y, P );

2) TC(xy = z) = Mult(X,Y, Z, P ) and TC(x−1 = y) = Inv(X,Y, P );

3) if φ, ψ ∈ FL and ◦ ∈ {∧,∨,→} then

TC(φ ◦ ψ) = TC(φ) ◦ Tc(ψ) and TC(¬φ) = ¬TC(φ);

4) if φ ∈ FL then

TC(∃xφ(x)) = ∃X(U(X, P ) ∧ TC(φ)),

TC(∀xφ(x)) = ∀X(U(X,P ) → TC(φ)).
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Observe, that the formula TC(φ) can be constructed effectively from φ.
Now we are ready to formulate the fundamental (but easy to prove) prop-

erty of interpretations.
Let a group code C interprets (with parameters B) a group G in a group

H, and let λ : G → C(H,B) be the corresponding isomorphism. Then for
every formula φ(X) and every |X|-tuple A of elements from G the following
equivalence holds:

G |= φ(A) ⇐⇒ H |= TC(φ)(Aλ, B).

In particular, a sentence φ holds in G if and only if TC(φ)(B) holds in H.
If C is an 0-code then C(H) inherits some model theoretic properties of

H. For example, if the theory Th(H) is decidable, or λ-stable, or has finite
Morley rank, then so is the theory Th(C(H)) (it follows directly from the
fundamental property of translations). Moreover, if H ≡ K then C(H) ≡
C(K).

Sometimes, we cannot 0-interpret a group G in a group H. In this case,
however, one can try to 0-interpret the elementary theory Th(G) in H. To
explain, we need the following definition. Let G and H be groups. We say
that the elementary theory Th(G) of G is interpretable in the group H if
there exists a group code C of the type (1) and a formula Ψ(P ) such that
Th(G) = Th(C(H,B)) for any set of parameters B ⊂ H that satisfies the
formula Ψ(P ) in H. It is not hard to see that the group G still satisfies the
same model-theoretic properties as H (in the sense mentioned above). We
refer to [M1] and [M2] for details.

One of the main results of this paper is that elementary theories of coor-
dinate groups of irreducible components of an algebraic set Y over a group
G are interpretable in the coordinate group of Y for a wide class of groups
G. We will say more about it in the sequel.

1.2 Direct products of domains and orthogonal sys-
tems

In Section 2 we develop an approach to direct products of domains via orthog-
onal systems (of idempotents) similar to the classical one in the ring theory.
To this end, following [BMR1] we introduce a special binary operation, the
so-called ¦-product, on a group.
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Let G be a group. For x, y ∈ G put

x ¦ y = [gpG(x), gpG(y)].

We call a non-trivial element x ∈ G a zero-divisor in G if there exists a
non-trivial element y ∈ G such that x ¦ y = 1. In this event we also say that
y is orthogonal to x, and write x ⊥ y. A group G is termed a domain if it
has no zero-divisors. The class of domains is fairly extensive, for example,
it contains all non-abelian CSA groups and, in particular, all torsion-free
hyperbolic groups. We refer to [BMR1] for more details on zero-divisors and
domains.

For a subset S ⊂ G put

S⊥ = {g ∈ G | ∀s ∈ S(g ¦ s = 1)}.

It is easy to see that S⊥ is a normal subgroup of G, it is called the orthogonal
complement of S. In Section 2 we discuss various properties of S⊥.

A system E = {e1, . . . , em} ⊂ G is termed orthogonal if ei 6= 1 and
ei ¦ ej = 1 for all 1 ≤ i 6= j ≤ n. In Proposition 1 we prove the following
basic result.

Let G = G1× . . .×Gn be a finite direct product of domains G1, . . . , Gn. Then
G has a unique (up to a permutation of factors) finite direct decomposition
into indecomposable groups. Moreover, it can be written as

G = (e⊥1 )⊥ × . . .× (e⊥n )⊥

where {e1, . . . , en} is an arbitrary orthogonal system of n elements in G.

The unique factors G1, . . . , Gn of the group G above are called compo-
nents of G. It turns out that the elementary theory of G is completely
determined by elementary theories of its components, which allows one to
reduce model-theoretic problems about G to the corresponding problems for
the components of G. This result is based on the following theorem.

Theorem A Let G be a finite direct product of domains. Then for each
component Gi of G its elementary theory Th(Gi) is interpretable in the group
G.

Corollary A Let G be a finite direct product of domains G1, . . . , Gn. Then
the following hold:
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1) If G ≡ H then H is also a finite direct product of domains and if

G = G1 × . . .×Gk, H = H1 × . . .×Hm

are their component decompositions, then k = m and Gi ≡ Hi (after
suitable ordering of factors);

2) Th(G) is decidable if and only if Th(Gi) is decidable for every i =
1, . . . , k;

3) Th(G) is λ-stable (has finite Morley rank) if and only if Th(Gi) is
λ-stable (has finite Morley rank) for every i = 1, . . . , k.

1.3 Subdirect products of domains

In Section 3 we generalize results on direct products of domains to subdirect
products of domains.

Let G = G1 × . . . × Gk be a direct product of groups Gi. A subgroup
H of G is called a subdirect product of groups Gi if πi(H) = Gi for every
i = 1, . . . , n, where πi : G → Gi is the canonical projection. An embedding

λ : H ↪→ G1 × . . .×Gk (2)

is called a subdirect decomposition of H if λ(H) is a subdirect product of
the groups Gi. Sometimes, we identify H with λ(H) via λ. The subdirect
decomposition (2) is termed minimal if H ∩ Gi 6= {1} for every i = 1, . . . , n
(here Gi is viewed as a subgroup of G under the canonical embedding). It
is easy to see that given a subdirect decomposition of H one can obtain a
minimal one (by deleting non-essential factors).

In Proposition 3 we prove that a minimal subdirect decomposition of a
group H into products of domains Gi is unique. We refer to the domains Gi

as to components of H.

Theorem B Let H be a minimal subdirect product of domains. Then the
elementary theory of each component of H is interpretable in the group H.

This result allows one to study model theory of H via the components of H.
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1.4 Algebraic geometry over groups

Section 4 contains some applications of the developed techniques to algebraic
geometry over groups. To explain this we recall some basic definitions from
[BMR1].

Let X = {x1, . . . , xn} be a finite set. For a group G denote by G[X] the
free product G∗F (X) of G and a free group F (X) with basis X. An element
f ∈ G[X] may be viewed as a word in the variables X±1 with coefficients in
G. Given p = (g1, . . . , gn) ∈ Gn, we can substitute g±1

i for x±1
i in f to obtain

an element f(p) ∈ G. If f(p) = 1, we think of p as a solution of the equation
f = 1. More generally, a subset S of G[X] gives rise to a system of equations
S(X) = 1 over G. The set

VG(S) = {p ∈ Gn | f(p) = 1 for all f ∈ S}
is termed the algebraic set over G defined by S. Put

Rad(S) = {f ∈ G[X] | f(p) = 1 for all p ∈ Y }.
Clearly, Rad(S) is a normal subgroup of G[X], it is called the radical of S.
The factor group Γ(Y ) = G[X]/Rad(S) is termed the coordinate group of the
algebraic set Y = VG(S).

One can define a so-called Zariski topology on Gn by taking algebraic sets
as a sub-basis for closed sets. A group G is said to be equationally Noetherian
if, for every n > 0 and any subset S of G[x1, . . . xn], there exists a finite sub-
set S0 of S such that VG(S) = VG(S0). Observe, that every linear group
is equationally Noetherian, in particular, every free group is equationally
Noetherian (see [Br], [Gu], [BMR1]). It turns out that a group G is equa-
tionally Noetherian if and only if the Zariski topology on Gn is Noetherian
for every positive n. We recall that a topological space is Noetherian if it
satisfies the descending chain condition on closed subsets. Noetherian topo-
logical spaces have a very nice property: every closed set is a finite union
of irreducible ones (a non-empty subset Y is irreducible if it is not a union
Y = Y1 ∪ Y2 of proper subsets, each of which is relatively closed in Y ). The
following two results path the way for applications of the orthogonal systems
into algebraic geometry over groups.

Theorem 1 [BMR1]. Every algebraic set Y over an equationally Noetherian
group G is a finite union of irreducible algebraic sets, each of which is uniquely
determined by Y . (They are called the irreducible components of V ).
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Theorem 2 [BMR1]. Let G be an equationally Noetherian group and Y be
an algebraic set over G. If Y1, . . . , Yk are the irreducible components of Y then
the coordinate group Γ(Y ) is a minimal subdirect product of the coordinate
groups Γ(Y1), . . . , Γ(Yk).

It might happen, in general, that the coordinate groups Γ(Yi) are not
domains. So, to be able to apply our technique we need to put some restric-
tions on the group G = Γ(Y ). Recall ([MR1]) that a group G is called CSA
if all maximal abelian subgroups of G are malnormal ( a subgroup M ≤ G
is malnormal if for every non-trivial m ∈ M and x ∈ G −M the conjugate
x−1mx is not in M). We refer to [MR1] and [BMR1] for a detailed discussion
of CSA groups. Here we just observe that the class of CSA groups is quite
wide (it contains, for example, all torsion-free hyperbolic groups) and that
every non-abelian CSA group is a domain. Now, combining Theorems 2 and
B we obtain the following remarkable result

Theorem C Let G be an equationally Noetherian, non-abelian CSA-group,
Y be an algebraic set over G, and Γ(Y ) be the coordinate group of Y . Then
for each component Yi the elementary theory Th(Γ(Yi)) is interpretable in
the group Γ(Y ).

As we have seen above, this implies various model-theoretic results relating
coordinate groups and their irreducible components.

1.5 Universal classes and axioms

In Section 5 we give another application of orthogonal systems to universal
algebra. We begin with a few necessary definitions and refer to [MR2] for
details.

A universal sentence in the language L is a formula of the type ∀XΦ(X,Y ),
where X and Y are tuples of variables, and Φ(X,Y ) is a Boolean combination
of atomic formulas in L.

A class of groups K is called universal if it can be axiomatized by a set of
universal sentences. For a class of groups K denote by Th∀(K) the universal
theory of K, i.e., the set of all universal sentences of L which are true in every
group from K. Two groups H and K are universally equivalent (in writing
H ≡∀ K) if Th∀(H) = Th∀(K). The universal closure of K is the axiomatic
class ucl(K) with the set of axioms Th∀(K).
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Some universal classes are of particular interest. For example, a variety
is a universal class axiomatized by a set of identities, i.e., universal formulas
of the type

∀X(
m∧

i=1

ri(X) = 1), (3)

where ri(X) is a group word in X. A class of groups K is called a quasivariety
if it can be axiomatized by a set of quasi identities, which are universal
formulas of the type

∀X(
m∧

i=1

ri(X) = 1 → s(X) = 1), (4)

where ri(X) and s(X) are group words in X.
For a class of groups K denote by Q(K) the set of all quasi identities

in the language L which hold in all groups from K. Clearly, Q(K) is a set
of axioms of the minimal quasivariety qvar(K) containing K. Observe, that
every variety is a quasivariety.

A class K is called a prevariety if it is closed under taking subgroups and
cartesian products. It is not hard to see that the minimal prevariety pvar(K)
containing K consists of subgroups of cartesian products of groups from K.
It follows that for any class K

pvar(K) ⊆ qvar(K) ⊆ var(K).

The following result links algebraic geometry over groups to universal
algebra.

Theorem 3 [MR2] Let H be an equationally Noetherian group. Then the
following hold:

1) a finitely generated group K is the coordinate group of an algebraic set
over H if and only if it belongs to qvar(H);

2) a finitely generated group K, containing H as a subgroup, is the co-
ordinate group of an irreducible algebraic set over H if and only if
ucl(K) = ucl(H), i.e. K ≡∀ H. In this event, K is also equationally
Noetherian.
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The main result of Section 5 gives a description of the universal closure
ucl(H) of any finitely generated group H from qvar(F ), where F is a free
non-abelian group. It turns out that each such class ucl(H) contains a unique
representative. Namely, for a non-negative integer l define

Gl,0 = F × . . .× F︸ ︷︷ ︸
l

, Gl,1 = F × . . .× F︸ ︷︷ ︸
l

×Z.

Then the following result holds.

Theorem D Let F be a free non-abelian group and H be a finitely gener-
ated group from qvar(F ). Then ucl(H) = ucl(Gl,i) for a suitable l and i.
Moreover, ucl(Gl,i) = ucl(Gk,j) if and only if l = k and i = j.

2 Orthogonal systems and direct products

Let G be a group. In Section 1.2 for any elements x, y ∈ G we introduced
the ¦-product x ¦ y and said that x is orthogonal to y (x ⊥ y) if x ¦ y = 1. In
this section we use these notions to study direct decompositions of groups.

Recall that the orthogonal complement (or the ¦-annihilator) of a subset
S ⊆ G is defined by:

S⊥ = {y ∈ G | for all x ∈ S x ⊥ y}. (5)

Sometimes, following ring theory, we denote S⊥ by Ann(S). Notice that
for any S ⊂ G

S⊥ = gpG(S)⊥.

Lemma 1 For any S ⊂ G the orthogonal complement S⊥ is a normal sub-
group of G.

Proof. Clearly
S⊥ = ∩{C(sg) | g ∈ G, s ∈ S},

hence it is normal, as required.
Note that G is a domain if and only if for any non-trivial x ∈ G, x⊥ = {1}.
Observe also, that for any x

x ⊥ x ⇐⇒ x ¦ x = 1 ⇐⇒ gpG(x) is abelian.
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More generally, an element x ∈ G is ¦-nilpotent of degree k if k is the minimal
positive integer such that

(. . . (x ¦ x) ¦ . . .) ¦ x︸ ︷︷ ︸
k

= 1,

i.e., if gpG(x) is a normal nilpotent subgroup of G of class k (see [BMR1] for
details). In this event y ⊥ y for any central non-trivial y in gpG(x). This
argument suggests the following definition.

Definition 1 A group G is called ¦-semiprime (or semiprime), if the fol-
lowing equivalent conditions hold:

1) x ¦ x 6= 1 for any non-trivial x ∈ G;

2) there are no nilpotent elements in G;

3) there are no normal nilpotent subgroups in G.

It is easy to see that every domain is semiprime, as well as a direct product
of domains. But a subgroup of a semiprime group need not to be semiprime.

The following result justifies the name of S⊥ by showing that S⊥ is a
unique maximal normal direct complement of gp(S) in G.

Lemma 2 Let G be a semiprime group. Then for any S ⊂ G the following
conditions hold:

1) gp(S, S⊥) = gp(S)× S⊥;

2) gpG(S, S⊥) = gpG(S)× S⊥;

3) if gp(S, A) = gp(S)×A for some normal subgroup A ≤ G then A ≤ S⊥.

Proof. Let S ⊆ G. By Lemma 1 the complement S⊥ is a normal subgroup of
G. From the definition of the ¦-product follows that [gpG(S), S⊥] = 1. Since
G is semiprime there are no non-trivial elements x ∈ G with x¦x = 1, hence
gpG(S) ∩ S⊥ = 1. This shows 1) and 2). To see 3) it suffices to notice that
if [S, A] = 1 for a subset A ⊆ G then A ⊆ S⊥.

Recall that a system E = {e1, . . . , em} ⊂ G is orthogonal if ei 6= 1 and
ei ¦ ej = 1 for all 1 ≤ i 6= j ≤ n.
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An orthogonal system E ⊂ G is called maximal if E⊥ = 1, it is called
reduced if every element of E is reduced, i.e., it is not a product of two non-
trivial orthogonal elements. By the Zorn’s lemma every (reduced) orthogonal
system of a group G is contained in a maximal (reduced) orthogonal system.

Now, following classical ring theory, we develop an approach to direct
decompositions of semiprime groups via orthogonal systems.

Let
G = G1 × . . .×Gn (6)

be a direct product of groups. By πi : G → Gi we denote the canonical
projection (g1, . . . , gn) → gi. Sometimes we identify the group Gi with its
image in G under the canonical embedding gi → (1, . . . , gi, . . . , 1). A direct
decomposition G = G1 × . . . × Gn is called reduced if each Gi is a non-
trivial directly indecomposable group. We say that G has a unique (up to
a permutation of factors) direct decomposition (6) if for any other reduced
direct decomposition G = H1 × . . . × Hm one has m = n and there is a
permutation σ ∈ Sym(n) such that Gi = Hσ(i) for every i = 1, . . . , n.

For an element g ∈ G by supp(g) we denote the support of g, i.e., the set
{i | πi(g) 6= 1}.

Proposition 1 Let G = G1 × . . .×Gn be a finite direct product of domains
G1, . . . , Gn. Then the following hold:

1) Elements g, h ∈ G are orthogonal if and only if supp(g)∩ supp(h) = ∅;
2) A system E ⊂ G is maximal reduced orthogonal if and only if it is

orthogonal and |E| = n. Moreover, in this event E = {e1, . . . , en}
where 1 6= ei ∈ Gi;

3) For any gi ∈ Gi

g⊥i = gp(Gj | j 6= i), (g⊥i )⊥ = Gi;

4) G has a unique (up to a permutation of factors) reduced direct decom-
position, moreover, it can be written as

G = (e⊥1 )⊥ × . . .× (e⊥n )⊥,

where {e1, . . . , en} is an arbitrary orthogonal system of n elements in
G.
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Proof. 1) is obvious. It follows from 1) that any system E = {e1, . . . , en} with
1 6= ei ∈ Gi is orthogonal (ei ¦ ei 6= 1 since Gi is a domain). Now if g ∈ E⊥

then for every i supp(g) ∪ supp(ei) = ∅, hence supp(g) = ∅, i.e., g = 1. This
shows that E is maximal. To see that each ei is reduced (not a product of
two non-trivial orthogonal elements) it suffices to notice that if x ⊥ y then
supp(xy) = supp(x)∪supp(y). Observe also, that the argument above shows
that if E is an orthogonal system of n elements then {supp(e) | e ∈ E} is
a system of n disjoint subsets of {1, . . . , n}, hence |supp(e)| = 1 for every
e ∈ E, as required.

Conversely, if E is a maximal reduced orthogonal system in G, then
{supp(e) | e ∈ E} is a system of disjoint subsets of {1, . . . , n}. Since E is
reduced then |supp(e)| = 1 for any e ∈ E. Indeed, let e ∈ E and supp(e) =
I ∪ J for some non-empty and disjoint I, J . Then e = e(I)ė(J) for some
non-trivial e(I), e(J) with supp(e(I)) = I, supp(e(J)) = J - contradicting to
the condition that e is reduced. This shows that |supp(e)| = 1 and in view
of maximality of E the condition 2) holds.

To see 3) fix an element 1 6= gi ∈ Gi and notice that Gj ⊂ g⊥i for every
j 6= i. Since g⊥i is a subgroup of G it follows that gp(Gj | j 6= i) ⊂ g⊥i . Now,
if gp(Gj | j 6= i) 6= g⊥i then there exists a nontrivial element f ∈ Gi ∩ g⊥i . It
follows that f ¦gi = 1 - contradiction with the condition that Gi is a domain.
This proves the first equality in 3), a similar argument proves the second one.

4) follows from 2) and 3). Indeed, let E be a maximal reduced orthogonal
system in G (it exists by Zorn’s lemma). It follows from 2) that any reduced
direct decomposition of G has precisely |E| factors. Moreover, each e from
E belongs to one and only one factor from a given reduced decomposition of
G and by 3) that factor is equal to (e⊥)⊥.

This proves the proposition.

Notation Let Dk be the class of groups which are direct products of k
non-trivial domains, and

Dω = ∪kDk

By Proposition 1 for a group G ∈ Dω the reduced direct decomposition
G = G1 × . . .×Gk is unique (up to an ordering of factors). We will refer to
these factors Gi as to components of G. By comp(G) we denote the number
of components of G.

Now we are ready to discuss model theoretic properties of direct products
of domains.
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Lemma 3 For every positive integer k there exists a universal formula Ortk(x1, . . . , xk)
such that for a group G and a k-tuple E ∈ Gk the formula Ortk(E) holds in
G if and only if E is an orthogonal system in G.

Proof. Set

Ort2(x1, x2) = ∀y ([x1
y, x2] = 1 ∧ x1 6= 1 ∧ x2 6= 1).

For any group G if the formula Ort2(x1, x2) holds on g, h ∈ G then g and h
are nontrivial and g ⊥ h. Now for k ≥ 3 put

Ortk(x1, . . . , xk) =
∧

1≤i<j≤k

Ort2(xi, xj).

Obviously, Ortk holds on elements g1, . . . , gk ∈ G if and only if {g1, . . . , gk}
is an orthogonal system in G. This proves the lemma.

The following result shows that for each group G ∈ Dk the set of elements
g with |supp(g)| = 1 is definable in G, as well as each component of G.

Lemma 4 Let k be a positive integer. Then there exists a formula Compk(x, p)
and a formula Pk(p) such that for each group G ∈ Dk the following conditions
hold:

1) for any g ∈ G
G |= Pk(g) ⇐⇒ |supp(g)| = 1;

2) for any g ∈ G with |supp(g)| = 1 the truth set Comp(G, g) of the
formula Comp(x, g) coincides with the component Gg of G containing
g.

Proof. Let
Pk(p) = ∃x2 . . . ∃xkOrtk(p, . . . , xk).

Then, in view of Lemma 3, Pk(g) holds on g ∈ G if and only if g is a part of
an orthogonal system of k elements. Hence, by Proposition 1 |supp(g)| = 1,
as required.

To show 2) put

Compk(x, p) = ∀y(y ¦ p = 1 → x ¦ y = 1),

where y ¦ p = 1 is viewed as the formula ∀z[y, z−1pz] = 1, and similarly
for x ¦ y. Clearly, the truth set Compk(G, g) of the formula Compk(x, g)
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coincides with (g⊥)⊥, which is equal, by Proposition 1, to the component of
G containing g. This proves 2) and the lemma.

Now we are ready for the proof of the theorem A from the introduction.

Theorem A Let G be a finite direct product of domains. Then the elemen-
tary theory of each component of G is interpretable in the group G.

Proof. Let G ∈ Dk and G = G1 × . . .×Gk be its component decomposition.
By Lemma 4 there exist formulas Pk(p) and Compk(x, p) such that for any
g ∈ G for which Pk(g) holds in G the formula Compk(x, g) with the parameter
g defines a component of G, containing g. In particular, every component
of G occurs as the truth set of Compk(x, g) for some g. By Lemma 1 for an
arbitrary g ∈ G the formula Comp(x, g) defines a subgroup (perhaps, trivial)
of G. This shows that the formula Compk(x, p) gives rise to a group code
(see Section 1.1)

C = {Compk(x, p), E(x, y, p),Mult(x, y, z, p), Inv(x, y, p)}
in which E(x, y, p) is the standard equality in G and the formulas Mult,
Inv are the multiplication and the inversion in G. To show that for every
component Gi its elementary theory Th(Gi) is interpretable in G it suffices
to construct a formula Pki(p) such that for every g ∈ G if Pki(g) holds in G
then the code C with the parameter g interprets in G a component Gj with
the same elementary theory as the given Gi, i.e, Th(C(G, g)) = Th(Gi). To
this end, fix a component Gi of G and consider the set of indices

Ji = {j | 1 ≤ j ≤ k, Th(Gj) 6= Th(Gi)}.
Then for every j ∈ Ji there exists a sentence φij such that φij ∈ Th(Gi), but
φij 6∈ Th(Gj). Put

ψi =
∧
j∈Ji

φij.

Clearly, ψi holds in a component Gm if and only if Th(Gm) = Th(Gi). By the
fundamental property of interpretations (Section 1.1) for every g satisfying
Pk(g) the translation TC(ψi)(g) holds in G if and only if ψi holds in C(G, g).
This implies that the formula

Pki(p) = Pk(p) ∧ TC(ψi)(p)

holds on an element g ∈ G if and only if the code C with the parameter
g interprets in G a component with the same elementary theory as of Gi.



A. Kvaschuk, A. Myasnikov and V. Remeslennikov • Algebraic geometry over groups III 17

Therefore, the elementary theory of each component of G is interpretable in
G. This proves the theorem.

Corollary 1 Let G ∈ Dk and

G = G1 × . . .×Gk

be its component decomposition. Then the following hold:

1) Th(G) is decidable if and only if Th(Gi) is decidable for every i =
1, . . . , k;

2) Th(G) is λ-stable if and only if Th(Gi) is λ-stable for every i = 1, . . . , k.

Proof. Let Th(G) be decidable. By Theorem A the elementary theory Th(Gi)
is interpretable in G for each component Gi by the group code C and the
formula Pki (see the argument in the proof of the theorem). Then from the
fundamental property of interpretations we see that for any sentence φ

Gi |= φ =⇒ G |= TC(φ).

Since the translation TC is an effective map the elementary theory Th(Gi) is
also decidable. Conversely, if every component Gi has a decidable elementary
theory then the elementary theory of their finite direct product G = G1 ×
. . . × Gk is also decidable. This is due to S.Feferman and R. Vaught [FV].
This proves 1). The proof of the statement 2) is similar and we omit it.

Our next result shows that the number of components of a group from
Dω is also a logical invariant of the group.

Proposition 2 For every positive integer k the class Dk is finitely axioma-
tizable.

Proof. We use notations from Theorem A. For k = 1 put

A1 = ∀x∀y∃z(x 6= 1 ∧ y 6= 1 → [x, yz] 6= 1.)

Clearly, A1 axiomatizes the class of all domains D1.
Let k ≥ 2. Denote by Ak a first-order sentence in group theory language

which says that there are elements e1, . . . , ek ∈ G such that the following
conditions hold:
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a) The system E = {e1, . . . , ek} is an orthogonal system in G (one needs
the formula Ortk(x1, . . . , xk) from Lemma 3 to write down this condition);

b) for every ei ∈ E the set (e⊥i )⊥ is a normal subgroup of G (can be easily
done using the formula Compk(x, p) from Lemma 4). Denote this subgroup
by Gi;

c) G = G1 × . . . × Gk. To write down this condition by a formula it
suffices to notice that since the subgroups Gi are normal in G the following
equalities hold for each i = 1, . . . , k:

gp(Gj | j 6= i) = G1 . . . Gi−1Gi+1 . . . Gk.

Indeed, now one can easily write down that

Gi ∩ gp(Gj | j 6= i) = 1, and G = G1 . . . Gk.

d) Gi is a domain for every i = 1, . . . , k. This is equivalent to the condition
that A1 holds in each Gi. Observe, that the translation TC(A1)(g) holds in
G if and only if A1 holds in the interpretation C(G, g). Hence, it suffices to
write down the conjunction of the formulas TC(A1)(ei) for every ei ∈ E.

Clearly, a group G belongs to Dk if and only if G satisfies the axiom Ak.
Now we can describe arbitrary groups which are elementary equivalent to

a given group from Dk.

Corollary 2 Let G,H be groups and G ∈ Dk. Then G ≡ H if and only if
H ∈ Dk and Gi ≡ Hi, where Gi, Hi are components of G and H in a suitable
enumeration.

Proof. The result follows from Theorem A, Proposition 2 and the fundamen-
tal property of interpretations.

Notice that Corollary A from the introduction summarizes the results
from Corollaries 1 and 2.

Remark 1 One can generalize some of the results above to the case when
G = H × C, where H ∈ Dk and C is an abelian group.

Indeed, in this case C is the center of G, hence it is definable in G, as well
as the quotient group G/C ' H. We leave details to the reader.
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3 Subdirect products

In this section we generalize results from Section 2 to subdirect products
of domains. Throughout this section we continue to use notations from the
previous sections.

Let G = G1 × . . . × Gk be a direct product of groups Gi. Recall, that a
subgroup H of G is called a subdirect product of groups Gi if πi(H) = Gi for
every i = 1, . . . , n.

An embedding
φ : H ↪→ G1 × . . .×Gk (7)

is called a subdirect decomposition of H if φ(H) is a subdirect product of
the groups Gi. Sometimes, we identify H with φ(H) along φ, and Gi with
its canonical image in G = G1 × . . . × Gk. The subdirect decomposition (7)
termed minimal if H ∩ Gi 6= {1} for every i = 1, . . . , n (here Gi and H are
viewed as subgroups of G).

The following simple lemma shows that given a subdirect decomposition
of H one can obtain a minimal one by deleting non-essential factors.

Lemma 5 Let φ : H ↪→ G1 × . . . × Gk be a subdirect decomposition of a
group H. Then there is a subset J ⊂ {1, . . . , k} and an embedding φ∗ : H ↪→∏

j∈J Gj such that φ∗ is a minimal subdirect decomposition of H.

Proof. Let I be a maximal subset of {1, . . . , k} such that

H ∩
∏
i∈I

Gi = {1}.

Then the following composition of homomorphisms

H
φ

↪→
k∏

i=1

Gi →
k∏

i=1

Gi/
∏
i∈I

Gi '
∏

j 6∈I

Gj

gives rise to the required embedding φ∗.
Let H be a subgroup of G. For elements x, y ∈ H we have two different

types of ¦-products, with respect to the groups H and G:

x ¦H y = [gpH(x), gpH(y)], x ¦G y = [gpG(x), gpG(y)].

We use subscripts to notify in which group the corresponding object takes
place and use this approach in all other similar circumstances (for example,
x ⊥H y, or x ⊥G y).
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Lemma 6 Let H ≤ G1×. . .×Gk be a subdirect product of groups G1, . . . , Gk.
Then for elements x, y ∈ H the following equivalence holds:

x ¦H y = 1 ⇐⇒ x ¦G y = 1.

Proof. Put I = {1, . . . , k}. Since H is a subdirect product of groups
G1, . . . , Gk for any h ∈ H and i ∈ I one has

πi(gpH(h)) = gpGi
(πi(h)).

It follows that for any x, y ∈ H

x ¦H y = 1 ⇐⇒ [gpH(x), gpH(y)] = 1 ⇐⇒ ∀i ∈ I πi ([gpH(x), gpH(y)]) = 1

⇐⇒ ∀i ∈ I [πi(gpH(x)), πi(gpH(y))] = 1 ⇐⇒ ∀i ∈ I [gpGi
(πi(x)), gpGi

(πi(y))] = 1

⇐⇒ ∀i ∈ I πi(x) ¦Gi
πi(y) = 1 ⇐⇒ x ¦G y = 1.

This proves the lemma.

Proposition 3 Let G = G1 × . . . × Gk be a direct product of non-trivial
domains and H ↪→ G1 × . . .×Gk be a minimal subdirect decomposition of a
group H. Then the following hold:

1) for x, y ∈ H x ⊥H y ⇐⇒ supp(x) ∩ supp(y) = ∅;
2) let E ⊂ H be an orthogonal system in H. Then |E| ≤ k and |E| = k if

and only if E = {e1, . . . , ek} where 1 6= ei ∈ H ∩Gi;

3) for any hi ∈ H ∩Gi

h⊥H
i = H ∩ ker πi, H/h⊥H

i ' Gi, (h⊥H
i )⊥H = H ∩Gi;

4) H has a unique (up to a permutation of factors) minimal subdirect
decomposition into a product of domains. Moreover, it can be written
as

H ↪→ H/h⊥H
1 × . . .×H/h⊥H

k ,

where {h1, . . . , hk} is an arbitrary orthogonal system of k elements in
H.
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Proof. It follows from Proposition 1 and Lemma 6.

Notation Denote by SDk the class of groups which are minimal subdirect
products of k domains, and put SDω = ∪kSDk.

By Proposition 3 a group H ∈ SDω has a unique (up to a permutation of
factors) minimal subdirect decomposition H ↪→ G1× . . .×Gk into a product
of domains. We will refer to these factors Gi as to components of H.

Lemma 7 A group G ∈ SDω has exactly k components if and only if G
satisfies the sentence ∃XkOrtk(Xk) ∧ ¬(∃Xk+1Ortk+1(Xk+1)).

Proof. Follows from Lemma 3 and Proposition 3.

Theorem B Let H be a minimal subdirect product of domains. Then the
elementary theory of each component of H is interpretable in the group H.

Proof. Note that for any hi ∈ H ∩Gi the normal subgroup

h⊥H
i {x ∈ H | ∀v([x, hv

i ] = 1)}

is definable in H. Hence the factor-group H/h⊥H
i is interpretable in H (see

Section 1.1). The rest of the proof is similar to that one in Theorem A.
From the properties of interpretations we deduce similar to the case of

direct decompositions (see Corollary 1) the following results.

Corollary 3 Let H ∈ SDk and

H ↪→ G1 × . . .×Gk

be its minimal component decomposition. Then the following hold:

1) if Th(H) is decidable then Th(Gi) is decidable for every i = 1, . . . , k;

2) if Th(H) is λ-stable then Th(Gi) is λ-stable for every i = 1, . . . , k.

Theorem 4

1) For every positive integer k class SDk is finitely axiomatizable.

2) Let H, K be groups and H ∈ SDk. If K ≡ H then K ∈ SDk and Hi ≡ Ki,
where Hi, Ki are components of H and K in a suitable enumeration.
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Proof. 1) There exists a first order sentence Bk in the group theory language
which holds in a group H if and only if there are elements h1, . . . , hk ∈ H
such that the following conditions hold:

a) The system E = {h1, . . . , hk} is a maximal orthogonal system in H
(one can use the formula Ortk to write down this condition);

b) for every hi ∈ E the set h⊥i is a normal subgroup of H (obvious
formula);

c) H/hi
⊥ is a domain for every hi ∈ E (by Theorem B the group H/hi

⊥ is
interpretable in H. Since domains are axiomatic one can use the fundamental
property of the interpretations to write down this condition).

d) h⊥1 ∩ . . . ∩ h⊥k = 1 (obvious formula).
Clearly if H |= Bk, then

H ↪→ H/h⊥1 × . . .×H/h⊥l ,

hence H ∈ SDk.
2) The result follows from statement 1), Theorem B, the fundamental

property of interpretations, and the fact that the corresponding components
of H and K are interpretable in H and K by the same codes.

4 Irreducible components of algebraic sets

In this section we apply the technique of orthogonal systems to coordi-
nate groups of algebraic sets over equationally Noetherian non-abelian CSA
groups.

Theorem 5 Let G be an equationally Noetherian non-abelian CSA-group,
and Y be an algebraic set over G. Then the following conditions hold:

1) the number of irreducible components of Y is equal to k if and only if
Γ(Y ) satisfies the formula ∃XOrtk(X) and does not satisfy the formula
∃XOrtk+1(X) ;

2) the coordinate group Γ(Yi) of each irreducible component Yi of Y is
interpretable in the group Γ(Y ) ;

3) the elementary theory Th(Γ(Yi)) of each irreducible component Yi of Y
is interpretable in the group Γ(Y ).



A. Kvaschuk, A. Myasnikov and V. Remeslennikov • Algebraic geometry over groups III 23

Proof. Let Y = Y1∪. . .∪Yk be a decomposition of Y as a union of irreducible
components. By Theorem 2 (see Section 1.4) the coordinate group Γ(Y ) is a
minimal subdirect product of the coordinate groups Γ(Y1), . . . , Γ(Yk). Every
group Γ(Yi) is universally equivalent to G ([BMR1]), therefore it is a non-
abelian CSA-group, hence a domain. Now 1), 2), and 3) follow from Theorem
B, Lemma 7 and Proposition 3. This proves the theorem.

Observe, that Theorem C from the introduction is just a part of Theorem
5.

Corollary 4 Let G be an equationally Noetherian non-abelian CSA group
and Y be an algebraic set over G. Then the following conditions hold:

1) if Th(Γ(Y )) is decidable then Th(Γ(Yi)) is decidable for every irre-
ducible component Yi of Y ;

2) if Th(Γ(Y )) is λ-stable then Th(Γ(Yi)) is λ-stable for every irreducible
component Yi of Y .

5 Universal subclasses of qvar(F )

Recall that a group is commutative transitive if it satisfies the following ax-
iom:

CT = ∀x, y, z(x 6= 1 ∧ [y, x] = 1 ∧ [z, x] = 1 → [y, z] = 1).

Let Xn = {x11, x12, . . . , xn1, xn2}. Consider the following open formulas:

Φn(Xn) =
n∧

i=1

([xi1, xi2] 6= 1)
n∧

i6=j=1

(
2∧

k,l=1

[xik, xjl] = 1),

Ψn(Xn, z) = Φn(Xn)
n∧

i=1

(
2∧

l=1

[z, xil] = 1).

Lemma 8 Let G = G1×. . .×Gk be a direct product of non-trivial commutative-
transitive groups. Then the following holds:

1) G satisfies the existential formula ∃XnΦn(Xn) if and only if at least n
of the groups G1, . . . , Gk are non-abelian;
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2 G satisfies the existential formula ∃Xn∃zΨn(Xn, z) if and only if at
least n of the groups G1, . . . , Gk are non-abelian, and at least one of
them is abelian.

Proof. We start with the following
Claim 1. Let G |= Φ2(u1, u2, v1, v2) for some elements u1, u2, v1, v2 ∈ G.

Then supp([u1, u2]) ∩ (supp(v1) ∪ supp(v2)) = ∅.
Indeed, since [u1, u2] 6= 1 then supp([u1, u2]) 6= ∅. Let i ∈ supp([u1, u2]).

If i ∈ supp(v1) then the following holds in the group Gi:

[πi(u1), πi(u2)] 6= 1, [πi(u1), πi(v1)] = 1, [πi(u2), πi(v1)] = 1, πi(v1) 6= 1.

This contradicts to the condition that Gi is commutative-transitive. Hence
i 6∈ supp(v1). Similarly, i 6∈ supp(v2). The claim follows.

Notice now, that if, say, the groups G1, . . . , Gn are non-abelian then the
set of elements Un = {u11, u12, . . . , un1, un2} such that ui1, ui2 ∈ Gi and
[ui1, ui2] 6= 1, satisfies Φn(Xn) in G.

Conversely, suppose a set of elements Un from G satisfies Φn(Xn) in G.
Take any im ∈ supp([um1, um2]). By the claim above im 6∈ supp(ujl) for every
j 6= m and l = 1, 2. In particular, im 6∈ supp([uj1, uj2]). It implies that
the groups Gi1 , . . . , Gin are non-abelian, as required. This proves 1). The
statement 2) easily follows from 1). ¤

Let F be a non-abelian free group. For a non-negative integer l put

Gl,0
∼= F × . . .× F︸ ︷︷ ︸

l

, Gl,1
∼= F × . . .× F︸ ︷︷ ︸

l

×Z.

Obviously, Lemma 8 implies the following result.

Corollary 5
Gn,i ≡∀ Gm,j ⇐⇒ m = n and i = j.

Theorem 6 Let H be a finitely generated group from qvar(F ). Then the
following holds:

1) if Z(H) = 1 then H ≡∀ Gl,0 for some positive integer l;

2) if Z(H) 6= 1 then H ≡∀ Gl,1 for some positive integer l.
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Proof. By Theorem 3 the group H is a coordinate group Γ(Y ) of an alge-
braic set Y defined by a coefficient-free system of equations over F . Since F
is equationally Noetherian the set Y is a finite union of its irreducible compo-
nents Y = Y1∪ . . .∪Yl. As we have seen above, in this case Γ(Y ) is a minimal
subdirect product of Γ(Y1) × . . . × Γ(Yl). This implies that Hi = H ∩ Γ(Yi)
is a non-trivial subgroup of H and H ≥ H1 × . . .×Hl.

Now suppose that Z(H) = 1. In this event each group Γ(Yi) is non-abelian
(otherwise, Hi ≤ Z(H)), hence it contains a subgroup which isomorphic to
F . Now by Theorem 3 the coordinate group Γ(Yi) is universally equivalent
to the free group F , so it is a non-abelian CSA group. Observe, that Hi is
a normal subgroup of a non-abelian CSA group Γ(Yi). It implies that Hi is
also non-abelian. Hence, Hi contains a copy of F as a subgroup. This shows
that H contains the direct product Gl,0 of l copies of F . Furthermore,

Gl,0 ≤ H ≤ Γ(Y1)× . . .× Γ(Yl) ≡∀ Gl,0.

Therefore H ≡∀ Gl,0. This proves 1).
Let now Z(H) 6= 1. If c ∈ Z(H) and i ∈ supp(c) then 1 6= πi(c) ∈

Z(Γ(Yi)), hence Γ(Yi) is abelian. Therefore, the group Hi is abelian if and
only if Γ(Yi) is abelian. Let Γ(Y1), . . . , Γ(Yk) be the only non-abelian groups
among all Γ(Yi). Put A = Γ(Yk+1)× . . .×Γ(Yl), so A is a torsion-free abelian
group. An argument similar to the case (1) shows that

Gk,0 × Z ≤ H ≤ Γ(Y1)× . . .× Γ(Yk)× A≡∀ Gk,0 × A.

Thus, H ≡∀ Gk,0 × A. Observe, that A ≡∀ Z, so

H ≡∀ Gk,0 × Z ≡∀ (Gk,1),

as required. ¤
The following result implies Theorem D from the introduction.

Corollary 6 Let H be a finitely generated group from qvar(F ). Then there
exists a unique group Gl,i such that ucl(H) = ucl(Gl,i).
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