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Abstract

In this paper we study G-constructible groups which are finitely gen-
erated subgroups of Z[t]-completion GZ[t] of a given CSA-group G. Using
Bass-Serre theory we prove that G-constructible groups can be obtained
from subgroups of G by free constructions of a special type. As an applica-
tion of this technique we compute cohomological and homological dimen-
sions of fully residually free groups which can be viewed as G-constructible
groups, where G is a free group.

1 Introduction

Let K be a class of groups. By K-constructible groups we denote groups which
can be obtained from groups from K by finitely many operations of a certain
type: free products, extensions of centralizers, free products with amalgamation
along abelian subgroups one of which is maximal, and HNN-extensions with
abelian associated subgroups one of which is maximal. We call these operations
elementary operations.

In particular, for a group G one can consider K-constructible groups, where
K = Sub(G) is the class of all subgroups of G. These groups play an important
part in algebraic geometry over groups and theory of quasi-varieties (see [18]).
Our interest to such groups originates from the following open problem:

For a given torsion-free hyperbolic group G describe finitely gener-
ated G-groups which are G-universally equivalent to G.

It is known [1, 17] that finitely generated G-groups G-universally equivalent
to G are precisely the coordinate groups of irreducible algebraic sets over G,
or equivalently, the finitely generated groups discriminated by G. In [17] the
authors, following Lyndon [14], introduced a Z[t]-completion GZ[t] of a given
CSA-group G. In paper [2] it was shown that finitely generated subgroups of
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GZ[t] are G-universally equivalent to G. There are reasonable indications that
the reverse is also true.

Conjecture. A finitely generated G-group H is G-universally equivalent
to a given torsion-free hyperbolic group G if and only if H is embeddable into
GZ[t].

Observe, that this conjecture holds when G is a free non-abelian group [9, 10].
Finitely generated subgroups of GZ[t] we call G-constructible groups.
Notice, the group GZ[t] is a union of an ascending chain of extensions of

centralizers of the group G (see [17]), so every G-constructible group H is also
a subgroup of a finite chain of extensions of centralizers of G. Therefore, H is a
subgroup of the fundamental group of a very particular graph of groups. Now,
Bass-Serre theory tells one that H is itself the fundamental group of an induced
graph of groups, hence (by induction) it can be obtained by free constructions
from subgroups of G and it can be shown that free constructions applied are in
fact elementary operations.

In fact, Bass-Serre theory gives one of many possible ways to obtain H
from subgroups of G by elementary operations (which are described by con-
struction trees, see Section 2). Every construction tree for H gives rise to the
corresponding Sub(G)-decomposition of H. Clearly, Sub(G)-decompositions of
H are closely related to very powerful JSJ-decompositions of H (see [19]) and
hierarchy theorems (see [7]). But in many cases it is much easier to construct
Z-splittings via construction trees, which are as robust as any other decompo-
sitions of H.

In this paper we show how one can refine a given construction tree for H
to obtain a particularly nice Sub(G)-decomposition of H. As an example, we
would like to mention the following result from Section 4.

Theorem 4 (p.16). Let G be a non-abelian CSA-group. Then any G-
constructible group H can be obtained from Z and finitely many subgroups of
G by finitely many operations of the following type: free products, extensions of
centralizers, free products with amalgamation along maximal abelian subgroups
in both factors and separated HNN-extensions with maximal abelian associated
subgroups.

Moreover, in the case of finitely generated fully residually free groups their Z-
decompositions as above can be constructed effectively (Corollary 3 in Section
4).

In Section 5 we apply this technique to study cohomological [homological]
dimension cd(H) [hd(H)] of a fully residually free group H

Mayer-Vietoris sequences allow one to derive a very simple formula for cd(H)
in terms of the ranks of centralizers of H. Namely, the following result holds
(in fully residually free groups all centralizers are free abelian of finite rank, so
here rankC(G) is the maximal rank of centralizers of G):

Theorem 5 (p.19). Let G be a fully residually free group. Then

1) if rankC(G) ≥ 2 then hd(G) = cd(G) = rankC(G),
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2) if rankC(G) = 1 then hd(G) = cd(G) ≤ 2 and hd(G) = cd(G) = 2 if and
only if G is not free.

Moreover, one can compute cd(G) effectively.

Theorem 8 (p.20). There exists an algorithm which for every finitely
generated fully residually free group G computes cd(G).

2 K-constructible groups

In this section we consider groups that can be obtained from a given collection of
groups by finitely many free products with amalgamation and HNN-extensions
of a very particular type.

The following constructions are called elementary operations:

1) a free product G ∗H of groups G and H;

2) a free product with amalgamation of groups G and H of the type

G ∗A H = 〈G ∗H | a = aφ (a ∈ A)〉,

where A is a maximal abelian subgroup in G and φ : A → H is an
embedding;

3) an HNN-extension of a group G (so-called separated HNN-extension)

〈G, t | at = aφ(a ∈ A)〉,

where A is a maximal abelian subgroup of G, φ : A → G is a monomor-
phism such that g−1Ag ∩Aφ = 1 for every g ∈ G;

4) a free extension of a centralizer of a group G, that is, the following free
product with amalgamation

G(u,A) = G ∗C(u) (C(u)×A),

where u ∈ G, u 6= 1, C(u) is the centralizer of u in G, A is a free abelian
group of finite rank and the same elements from C(u) are identified.

Notice that we do not assume in 2) and 3) that Aφ is a maximal abelian
subgroup in the ambient group.

Definition 1 Let K be a class of groups. By Kc we denote the minimal class
of groups which contains all groups from K and is closed under elementary
operations and isomorphisms. Groups from Kc are termed K-constructible.
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If K is a class of all finitely generated free groups then K-constructible groups
are called free constructible. Notice that every non-abelian finitely generated
group which is discriminated by free groups is free constructible [9]. Finitely
generated non-abelian groups which are universally equivalent to free groups
provide another type of examples of free constructible groups.

Recall that a group G is called a CSA-group if every maximal abelian sub-
group M of G is malnormal, that is, gMg−1∩M = 1 for every g ∈ G−M. It has
been proven in [8] that elementary operations 1)–4) preserve the CSA property.
Since free groups are CSA it follows that every free constructible group is CSA.

Operations 1)–3) preserve the hyperbolicity of groups ([10]), therefore a free
constructible group is hyperbolic if and only if all its centralizers of non-trivial
elements are cyclic.

Every K-constructible group G can be associated with a directed labelled bi-
nary tree T (G) (a construction tree) which reflects the particular way of build-
ing G from groups of K by elementary operations. Vertices of T (G) are K-
constructible groups, each vertex has at most two incoming edges and at most
one outgoing edge. Arrows and labels show how a given vertex group is con-
structed from the preceding group (in the case of an extension of a centralizer
or an HNN-extension) or two groups (in the case of free products with amal-
gamation). The group G is in the root of T (G) and leaves vertices are groups
from K. We label edges as follows:

1. if H is obtained from P and Q by a free product, then we label each of
the edges (P,H) and (Q,H), directed into H, by the identity element 1;

2. if H is obtained from P and Q by a free product with amalgamation of
two abelian subgroups A = 〈ai | i ∈ I〉 and B = 〈bi | i ∈ I〉 under an
isomorphism φ : ai → bi, then we label the edge (P, H) by the indexed set
{ai | i ∈ I} and the edge (Q,H) by {bi | i ∈ I} (both edges are directed
towards H);

3. if H is obtained from the preceding group P as an HNN-extension, where
abelian groups A = 〈ai | i ∈ I〉 and B = 〈bi | i ∈ I〉 are identified under
an isomorphism φ : ai → bi, then we label the edge (P, H) by an indexed
set of pairs {(ai, bi) | i ∈ I};

4. if H is obtained from the preceding group P as an extension of a centralizer
CP (u) = 〈ui, i ∈ I〉 by a free abelian group A with a basis S = {a1, . . . , an}
then the label of the edge (P, H), directed from P to H, is the pair (U, S).

Observe that knowing leaves groups and labels of all edges, one can write down
particular presentations of all vertex groups, including G. Such presentation of
a group G is called the presentation of G related to the tree T (G).

Notice, that a K-constructible group G can be obtained from groups of K by
many different sequences of elementary operations, so G may have different trees
T (G) and, therefore, different related presentations. Let TG be the class of all
construction trees for G. If T (G) is a construction tree for G then by χ(T (G))
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we denote the number of vertices in T (G) which are not leaves. Clearly, χ(T (G))
is the number of elementary operations needed to build G according to T (G).
The following number is called the complexity of G

χ(G) = min{χ(T (G)) | T (G) ∈ TG}.
Thus, one needs at least χ(G) elementary operations to produce G. We call
T (G) minimal if χ(T (G)) = χ(G). In the case of a finitely generated group G
which is discriminated by free groups we consider only trees T (G) in which one
uses only operations 1)–4). In this event, the minimal trees are defined in a
similar way.

Lemma 1 Let G be a free constructible group. Then:

1) each proper centralizer of G is a free abelian group of finite rank;

2) Spec(G) = {rank(CG(g)) | 1 6= g ∈ G} is finite.

Proof. Let G be a free constructible group. It has been noticed above that
elementary operations preserve the CSA property, hence G is a CSA-group and
all its centralizers are maximal abelian. On the other hand, since a free group is
torsion-free, by the facts on torsion in free products, amalgamated free products
and HNN-extensions (see [16],[15]) it follows that G is torsion-free and hence all
its centralizers are free abelian.

Now we proceed by the induction on χ(G). Let T (G) be a construction tree
for G such that χ(T (G)) = χ(G).

If χ(T (G)) = 0 then G is a free group and the result is trivially true in this
case.

Suppose the lemma holds for χ(T (G)) < n and we assume χ(T (G)) = n > 0.
By definition it means that G is obtained from some free constructible groups
by operations 1)–4) described above.

a) G = G1 ∗G2 and the lemma holds for both G1 and G2.
By Corollary 4.1.6 [16], two elements of G commute either if they belong to

the same conjugate of G1 or G2, or if they are both powers of the same element.
Let g ∈ G. If all elements of CG(g) are powers of some element h then

CG(g) ' Z and

rank(CG(g)) ≤ max
i=1,2

{max{Spec(G1)},max{Spec(G2)}}.

Now, suppose there exist g1, g2 ∈ CG(g), which are not powers of the same
element. Hence, we can assume g1, g2 ∈ Gh

1 , h ∈ G and we have Cg(g) ≤ Gh
1 is

a free abelian of finite rank and

rank(CG(g)) ≤ max{Spec(G1)}.
Thus, both statements of the lemma hold for G.

b) G = G1 ∗A G2, where A is a maximal abelian subgroup in G1, and the
lemma holds for both G1 and G2.
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Let g ∈ G. We use the characterization of commuting elements in amalga-
mated free products given in Theorem 4.5 [16].

If g ∈ Ah for some h ∈ G then CG(g) = Ah. Indeed, let f ∈ CG(g). Then
we have

g(f1f2 · · · fla) = (f1f2 · · · fla)g,

where f1f2 · · · fla is a normal form for h−1fh, that is, fj , j ∈ [1, l] are non-
trivial representatives of the left cosets of Gi, i = 1, 2 by A, no two adjacent
ones belong to the same factor and a ∈ A. Without loss of generality we can
assume f1 ∈ G1 and we have gf1 = f1a1, a1 ∈ A. Hence, f−1

1 gf1 ∈ A. Since
A is maximal abelian and G1 is CSA, it follows that f1 ∈ A - a contradiction.
Hence, CG(g) ' Zk for some natural k and

rank(CG(g)) ≤ max
i=1,2

{max{Spec(G1)},max{Spec(G2)}}.

Suppose there exists h ∈ G such that f ∈ CG(g) − Ah belongs to a conjugate
of a factor. If f ∈ Gh

1 then CG(g) ≤ Gh
1 and since Ah is a maximal abelian

subgroup of Gh
1 then CG(g) = Ah ' Zk, k ∈ N. If f ∈ Gh

2 then CG(g) ≤ Gh
2 and

the induction step applies. In both cases we have

rank(CG(g)) ≤ max
i=1,2

{max{Spec(G1)},max{Spec(G2)}}.

Finally, we can assume that no element of CG(g) belongs to a conjugate of
a factor. In this case any f ∈ CG(g) can be represented as a product f =
hafh−1 · wkf , where h,w ∈ G, af ∈ A, kf ∈ N and [hafh−1, w] = 1. Suppose
there exists f ∈ CG(g) such that af 6= 1. Then [af , h−1wh] = 1 and we have

af (w1w2 · · ·wpa) = (w1w2 · · ·wpa)af ,

where w1w2 · · ·wpa is a normal form for h−1wh, that is, wj , j ∈ [1, p] are non-
trivial representatives of the left cosets of Gi, i = 1, 2 by A, no two adjacent ones
belong to the same factor and a ∈ A. Without loss of generality we can assume
w1 ∈ G1 and we have afw1 = w1a1, a1 ∈ A. Hence, w−1

1 afw1 ∈ A. Since, A is
maximal abelian and G1 is CSA, it follows that w1 ∈ A - a contradiction. Thus,
CG(g) = 〈w〉 ' Z and

rank(CG(g)) ≤ max
i=1,2

{max{Spec(G1)},max{Spec(G2)}}.

c) G = H(u,A) = H ∗C(u) (C(u) × A), where A is a free abelian group of
finite rank and the lemma holds for H.

The same argument as in b).
d) G = 〈H, t | at = aφ (a ∈ A)〉, where A is a maximal abelian subgroup of

H, φ : A → G is a monomorphism such that g−1Ag ∩ Aφ = 1 for every g ∈ G
and the lemma holds for H.

Observe that A = malH(A) and B E B1 = malH(B), where B1 is maximal
abelian subgroup of H. Also, since G is CSA then centralizers of G are exactly
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maximal abelian subgroups of G. By Lemma 2 [8] it follows that any centralizer
of G either is a conjugate of B1, or belongs to a conjugate of H, or is cyclic. In
all these cases the statement of the lemma is straightforward.

¤

3 Subgroups of K-constructible CSA-groups

In this section we consider subgroups of K-constructible CSA-groups. It turns
out that these subgroups can be constructed from subgroups of groups from K
and an infinite cyclic group Z by elementary operations 1)–4). In particular,
if the class K consists of CSA-groups, contains Z, and is closed under taking
subgroups then subgroups of K-constructible CSA-groups are K-constructible.
This is a corollary of Bass-Serre theory and the results of [8].

We begin with a discussion of a particular type of K-constructible groups
which are fundamental groups of graphs of groups.

A graph X consists of a set of vertices V (X), a set of edges E(X) (here
V (X) ∩ E(X) = ∅) and three maps

σ : E(X) → V (X), τ : E(X) → V (X), − : E(X) → E(X),

which satisfy the following conditions:

σ(ē) = τ(e), τ(ē) = σ(e), ¯̄e = e, ē 6= e.

Recall, that a graph of groups (G, X) consists of a connected graph X and
an assignment Gx ∈ G to every x ∈ V (X)∪E(X), such that for every e ∈ E(X),
Ge = Gē, and there exists a boundary monomorphism ie : Ge → Gσ(e).

Let (G, X) be a graph of groups and T be a maximal subtree of X. Recall
that the fundamental group π(G, X, T ) of a graph of groups (G, X, T ) is the
group with the following presentation:

〈Gv (v ∈ V (X)), te (e ∈ E(X)) | rel(Gv), teie(g)t−1
e = iē(g) (g ∈ Ge),

tetē = 1, te = 1 (e ∈ T )〉.
The fundamental group π(G, X, T ) can be obtained from vertex groups by

a sequence (in general, infinite) of free products with amalgamation and HNN-
extensions. To show this we need the following definition. Let Γ = (G, X, T ) be
a graph of groups and Z ⊂ X be a connected subgraph of X such that Z ∩ T
is a maximal subtree of Z. Denote by ΓZ = (G|Z , Z, Z ∩ T ) the subgraph of
groups which rises from Z (the group assignment G|Z is the restriction of G to
Z). The identical maps

Gv → Gv, te → te, (v ∈ V (Z), e ∈ E(Z))

extend to the canonical monomorphism

φ : π(ΓZ) → π(Γ).
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The collapse of the graph of groups Γ along the subgraph Z is the graph of groups
Γ/Z which is defined as follows. We replace the subgraph Z by a new point z in
X, that is, for each edge e ∈ X−Z with an endpoint v in Z we replace v by z and
assign to the vertex z the group Gz = π(ΓZ). Finally, we define the boundary
monomorphism from Ge into Gz equal to the old boundary monomorphism
Ge → Gv (this is possible since Gv is a subgroup of Gz under the canonical
embedding). Notice that π(Γ/Z) = π(Γ). The operation which is inverse of a
collapse is called a refinement of the vertex z by the graph ΓZ . So, collapses
and refinements do not change the fundamental group (up to isomorphism). It
follows that the fundamental group G = π(Γ) is isomorphic to the fundamental
group π(Γ/T ) (collapse along the maximal subtree T ) which has only one vertex.
So, G can be obtained from π(Γ/T ) by a sequence of HNN-extensions. Observe,
that the vertex group of the graph of groups Γ/T is isomorphic to π(ΓT ) which
can be obtained from vertex groups associated with T by a sequence of free
products with amalgamation. Now it is clear how to construct a tree T (G) for
the fundamental group G starting with a graph of groups (G, X, T ).

Our description of subgroups of K-constructible CSA-groups is based on the
Bass-Serre technique. We consider here in detail only the case of free products
with amalgamation. The case of HNN-extensions can be treated similarly.

Let
G = A ∗U B

be a free product of groups A and B with amalgamation along an abelian
subgroup U . Observe, that G is isomorphic to the fundamental group of the
graph of groups

A
U−→ B. (1)

By the standard procedure (see for example [6]) one can construct a directed
tree X on which G acts without inversions in such a way that the quotient graph
X/G is isomorphic to the initial graph of groups (1) for G. In our case the tree
X is the following: V (X) consists of all cosets gA and gB (g ∈ G); E(X)
consists of all cosets gU (g ∈ G), the maps σ and τ defined by

σ(gU) = gA, τ(gU) = gB.

Now we can convert the directed graph X into non-oriented graph, adding, as
usual, inverse edges and the involution e → ē (e ∈ E(X)). Notice, that due
to the chosen orientation an edge gU goes from gA to gB. It is easy to check
that X is a tree and G acts on X without inversions by the left multiplication.
Hence the subgroup H also acts on X without inversions. Let Y = X/H and
T be a maximal subtree of Y. Following Bass-Serre theory we define a graph of
groups (G, Y, T ) with the fundamental group isomorphic to H.

Denote by p : X → X/H = Y the canonical projection of X onto its
quotient, so p(v) = Hv and p(e) = He. There exists an injective morphism of
graphs j : T → X such that pj = idT (see, for example [6]), in particular jT
is a subtree of X. One can extend j to a map (which we again denote by j)
j : Y → X such that j maps vertices into vertices, edges into edges, and such
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that pj = idY . Notice, that in general j is not a graph morphism. To this end
choose an orientation O of the graph Y . Let e ∈ O − T . Then there exists
an edge e′ ∈ X such that p(e′) = e. Clearly, σ(e′) and jσ(e) are in the same
H-orbit. Hence hσ(e′) = jσ(e) for some h ∈ H. Define je = he′ and jē = je.
Notice that vertices jτ(e) and τ(je) are in the same H-orbit. Hence there exists
an element γe ∈ H such that γeτ(je) = jτ(e).

Now we are in the position to define a graph of groups (G, Y, T ). Put

Gv = StabH(jv), Ge = StabH(je),

and define boundary monomorphisms as inclusion maps Ge ↪→ Gσ(e) for edges
e ∈ T ∪O and as conjugations by γē for edges e /∈ T ∪O, that is,

ie(g) =
{

g, if e ∈ T ∪O,
γēgγ−1

ē , if e /∈ T ∪O.

According to the Bass-Serre structure theorem we have H ' π(G, Y, T ). Ob-
serve, that

StabH(gA) = H ∩ gAg−1, StabH(gB) = H ∩ gBg−1, StabH(gU) = H ∩ gUg−1.

So H can be obtained (up to isomorphism) from an infinite cyclic group Z and
subgroups of A and B by free products, free products with amalgamation and
HNN-extensions in which amalgamated and associated subgroups are abelian.

Similar argument provides the following result for HNN-extensions. Let G
be an HNN-extension of a group G0 with associated abelian subgroups A and
B. Then a subgroup H of G can be obtained (up to isomorphism) from Z
and subgroups of G0 by free products, free products with amalgamation and
HNN-extensions in which amalgamated and associated subgroups are abelian.

Based on these results, we prove the following theorem. For a class of groups
K denote by Sub(K) the class of all subgroups of groups from K.

Theorem 1 Let K be a class of groups such that Sub(K) = K and Z ∈ K.
Then every finitely generated subgroup H of a CSA K-constructible group G is
K-constructible.

Proof. Let G be a CSA K-constructible group and H be a subgroup of G. We
prove the theorem by induction on χ(G). If χ(G) = 0 then G ∈ K and we
have nothing to prove. In all other cases G is obtained from K-constructible
groups of lesser complexity by one of the elementary operations 1)–4). By the
discussion preceding the theorem we can assume that H is obtained from Z and
subgroups of some K-constructible groups by free products with amalgamation
and HNN-extensions with abelian amalgamated and associated subgroups. By
induction these subgroups are K-constructible. Indeed, they are subgroups of
K-constructible groups of lesser complexity and every subgroup of a CSA-group
is a CSA-group. Notice, that among free products with amalgamation and
HNN-extensions in which amalgamated and associated subgroups are abelian
only elementary operations 1)–4) preserve the CSA property by Theorems 4
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and 6 in [8]. Hence H is constructed from K-constructible groups by operations
1)–4), therefore H is K-constructible, as desired.

¤
Since elementary operations 1)–4) preserve the CSA property, the following

result follows directly from Theorem 1.

Corollary 1 Let K be a class of CSA-groups such that Sub(K) = K and Z ∈ K.
Then Sub(Kc) = Kc. In particular, subgroups of free constructible groups are free
constructible.

4 Subgroups of extensions of centralizers of
CSA-groups

In this section we consider finitely generated subgroups of extensions of cen-
tralizers of CSA-groups. If the CSA-group G is fixed then we call them G-
constructible groups.

These subgroups play a key role in the study of fully residually free groups.
Indeed, it has been proven in [9] that every finitely generated fully residually
free group is a subgroup of a group obtained from a free group by finitely many
extensions of centralizers.

Now let A be a CSA-group, U = CA(u) be the centralizer of a non-trivial
element u ∈ A, and B = U × C be a direct product of U and a torsion-free
abelian group C. Notice that proper centralizers in CSA-groups are abelian, it
follows that U , and hence B, is an abelian group. Denote by

G = A ∗U B

the extension of the centralizer U by B. Let H be a subgroup of G. We avail
ourselves to the technique and notations developed in the previous sections.

As we have seen in the previous section the group H is the fundamental
group of the graph of groups π(G, Y, T ). Notice, that the vertex groups and the
edge group corresponding to an edge e of the type gA → gB are

H ∩ gAg−1, H ∩ gBg−1, H ∩ gUg−1.

Let e ∈ O. Then je = gU for some g ∈ G. If Ge = H ∩ gUg−1 = 1 then we
have a free product of vertex groups.

If e ∈ T then σ(je) = gA, τ(je) = gB, and boundary monomorphisms for
e and ē are inclusions. Obviously, ie(Ge) is maximal abelian in Gσ(e) (at least
one of the subgroups must be maximal abelian). On the other hand, the image
iē(Ge) = H ∩ gUg−1 is a direct factor in the group Gτ(e) = H ∩ gBg−1. Indeed,
it suffices to show that H ∩ gUg−1 is a pure subgroup of H ∩ gBg−1, that is,
the quotient

H ∩ gBg−1/H ∩ gUg−1
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is torsion free. Let h ∈ H ∩ gBg−1 then h = gucg−1, where u ∈ U, c ∈ C (recall
that B = U × C). If hm ∈ gUg−1, then cm = 1 and hence c = 1, consequently,
h ∈ H ∩ gUg−1.

Now suppose, e /∈ T . Then jσ(e) = gA and jτ(e) = γegB. As before
the boundary monomorphism ie of Ge = StabH(je) into Gσ(e) = StabH(jσ(e))
is an inclusion. But the boundary monomorphism iē of Ge into the group
Gτ(e) = StabH(jτ(e)) = H ∩ γegBg−1γ−1

e is the conjugation by γe. Hence, we
have

iē(Ge) = γeGeγ
−1
e = γe(H ∩ gUg−1)γ−1

e .

Since γe ∈ H we have

iē(Ge) = H ∩ γegUg−1γ−1
e ≤ H ∩ γegBg−1γ−1

e .

Denote y = g−1γ−1
e . So the image of Ge in Gτ(e) under the boundary monomor-

phism iē is equal to H ∩ Uy. As we saw before in this event H ∩ Uy is a direct
factor of H ∩By = Gτ(e).

The discussion above shows that the following result holds.

Lemma 2 Let G = A∗U B be an extension of a centralizer U of a CSA-group A
by an abelian group B = U ×C, where C is torsion free. Suppose a subgroup H
of G is the fundamental group of the graph of groups (G, Y, T ) described above.
Then for each e ∈ E(Y ) the edge group Ge is either trivial or a maximal abelian
subgroup of Gσ(e), and the image of Ge under the boundary map iē is a direct
summand of the abelian group Gτ(e).

Lemma 3 Let G = A ∗U B be a extension of a centralizer U of a CSA-group A
by an abelian group B = U×C, where C is torsion free. Then for every maximal
abelian subgroup K of A there exists the unique maximal abelian subgroup M of
G such that M = K × CM , where CM is either trivial or torsion-free abelian.

Proof. Let M be the maximal abelian subgroup of G such that K ≤ M . By
Lemma 2 [17] we have the following cases.

1. M ≤ Ag, g ∈ G.
Hence, K ≤ A ∩Ag and g = g1 b1 g2 · · · gn bn gn+1 is the normal form of g,

where gi ∈ A, i ∈ [1, n + 1], bi ∈ B, i ∈ [1, n]. Now, for any f ∈ K we have

(g1 b1 g2 · · · gn bn gn+1) f (g−1
n+1 b−1

n gn · · · g−1
2 b−1

1 g−1
1 ) ∈ A.

It follows that either g = g1 ∈ A and we are done because K ≤ M ≤ A and
K = M since K is maximal in A, or gn+1 f g−1

n+1 ∈ U . In the latter case
K ≤ Ugn+1 ≤ A and since Ugn+1 is abelian then K = Ugn+1 . Now, observe that

Bgn+1 = Ugn+1 × Cgn+1

and Cgn+1 is torsion free. Finally, Bgn+1 is a maximal abelian subgroup of G if
and only if B is, hence the proof follows from the Claim below.

Claim. B is a maximal abelian subgroup of G.
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Let B < B1 ≤ G, where B1 is abelian. Hence, there exists b ∈ B1−B and we
have the normal form b = w1 w2 · · ·wk+1, where wi, i ∈ [1, k] are representatives
of the left cosets of A and B by U such that wi, wi+1, i ∈ [1, k − 1] do not
belong to the same factor while wk+1 is any element of A or B. Without loss
of generality we can assume w1 ∈ A− U . Since commutation is transitive in G
then [b, u] = 1 for any 1 6= u ∈ U . Thus, w1 w2 · · · (wk+1u) is the normal form
for bu and

u (w1 w2 · · ·wk+1) = w1 w2 · · · (wk+1u).

It follows that u w1 = w1 u1, u1 ∈ U and w−1
1 u w1 ∈ U which is possible only

when w1 ∈ B - contradiction.
2. M ≤ Bg, g ∈ G.
Hence M = Bg because M is maximal and K ≤ A∩Bg. Let g = g1 b1 g2 · · ·

gn bn gn+1, hence for any f ∈ K we have

(g1 b1 g2 · · · gn bn gn+1) f (g−1
n+1 b−1

n gn · · · g−1
2 b−1

1 g−1
1 ) ∈ B.

Like in 1, it follows that either g = g1 = gn+1 ∈ A or gn+1 f g−1
n+1 ∈ U . In the

former case we have Kgn+1 ∈ A ∩B = U , hence, K = Ugn+1 while in the latter
one we have K ≤ Ugn+1 ≤ A and again K = Ugn+1 . Now the proof follows from
Claim above like in 1.

3. M = 〈z〉, where z /∈ Ag, Bg for any g ∈ G.
But then A ∩ 〈z〉 6= 1 which is impossible because of the assumption about

z. This completes the proof of the lemma.
¤

Lemma 4 Let G = A∗U B be an extension of a centralizer U of a CSA-group A
by an abelian group B = U ×C, where C is torsion free. Suppose a subgroup H
of G is the fundamental group of the graph of groups (G, Y, T ) described above.
Then for each v ∈ V (Y ) the maximal abelian subgroup K of the vertex group
Gv is a direct summand of the unique maximal abelian subgroup M of H.

Proof. Consider two cases.
1. Gv = H ∩ gAg−1 = H ∩Ag−1

.
Since K is maximal in H∩Ag−1

then K = H∩Kg−1

1 , where K1 is a maximal
abelian subgroup of A. By Lemma 3 there exists the unique maximal abelian
subgroup M1 of G such that M1 = K1 × C1, where C1 is either trivial or
torsion-free abelian.

Let M be maximal abelian in H such that K = H ∩ Kg−1

1 < M . Since
commutation is transitive in G it follows that [h, fg−1

] = 1 for any h ∈ M, f ∈
K1 and then [hg, f ] = 1. Hence, [hg, f1] = 1 for any f1 ∈ M1 and then hg ∈ M1

for any h ∈ M . Now, M ≤ Mg−1

1 and M ≤ H, thus M ≤ H ∩Mg−1

1 and since
M is maximal abelian in H then it follows that

M = H ∩Mg−1

1 = H ∩ (K1 × C1)g−1
.

12



Observe that H ∩Kg−1

1 E H ∩ (K1 × C1)g−1
and it is left to check if

H ∩ (K1 × C1)g−1
/ H ∩Kg−1

1

is torsion free. Take any z ∈ H ∩ (K1×C1)g−1
. Then z = gz1z2g

−1 ∈ H, where
z1 ∈ K1, z2 ∈ C1. If zk ∈ H ∩Kg−1

1 then it follows that zk
2 = 1 because C1 is

torsion free. Hence, z = gz1g
−1 ∈ H ∩Kg−1

1 .
Thus, K is a direct summand of M .
2. Gv = H ∩ gBg−1 = H ∩Bg−1

.
In this case Gv is abelian and K = H ∩ Bg−1

. Moreover, since Bg−1
is

maximal abelian in G then H ∩ Bg−1
is maximal abelian in H, so the result

follows immediately.
¤

Let (G, Y, T ) be a graph of groups for H so that H = π(G, Y, T ) and let
e ∈ E(Y ). Observe that we have two cases.

1. Y − {e} is connected.
Then

π(G, Y, T ) = 〈H(e), te | t−1
e Gete = Gφe

e 〉,
where H(e) = π(G′, Y ′, T ′), Y ′ = Y − {e}, T ′ ⊆ T is the maximal subtree
of Y ′, G′ is a restriction of G on Y ′ and φe = iē ◦ φ, where φ is a canonical
embedding of Gτ(e) into H(e). Hence, we say that H splits over e as an HNN-
extension.

2. Y − {e} is not connected.
Then

π(G, Y, T ) = H1(e) ∗Ge H2(e),

where Hi(e) = π(Gi, Yi, Ti), i = 1, 2, Y − {e} = Y1 ∪ Y2, T1 ∪ T2 ⊆ T is the
maximal subtree of Y − {e} and Gi is a restriction of G on Yi, i = 1, 2. Hence,
we say that H splits over e as a free product with amalgamation. We can assume
that Gσ(e) ≤ H1(e) and Gτ(e) ≤ H2(e)

Now, combining Lemma 2 with Lemma 4 we obtain the following result.

Lemma 5 Let G = A ∗U B be an extension of a centralizer U of a CSA-group
A by an abelian group B = U ×C, where C is torsion free. Suppose a subgroup
H of G is the fundamental group of the graph of groups (G, Y, T ) and e ∈ E(Y ).

1. If H splits over e as an HNN-extension and Ge is not trivial then there
exist maximal abelian subgroups M1, M2 of H(e) such that

M1 = Ge ×D1, M2 = Gφe
e ×D2,

where D1, D2 are torsion free abelian and at least one of them is trivial.
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2. If H splits over e as a free product with amalgamation and Ge is not trivial
then there exist maximal abelian subgroups M1 ≤ H1(e), M2 ≤ H2(e) such
that

M1 = Ge ×D1, M2 = Ge ×D2,

where D1, D2 are torsion free abelian and at least one of them is trivial.

Proof. Let e ∈ E(Y ). Consider two cases.
1. H splits over e as an HNN-extension.
Then

π(G, Y, T ) = 〈H(e), te | t−1
e Gete = Gφe

e 〉,
where H(e) = π(G′, Y ′, T ′), Y ′ = Y − {e}, T ′ ⊆ T is the maximal subtree
of Y ′, G′ is a restriction of G on Y ′ and φe = iē ◦ φ, where φ is a canonical
embedding of Gτ(e) into H(e).

By Lemma 2 Ge is maximal in Gσ(e), while Gφe
e is a direct summand of Gτ(e)

which is maximal abelian in H (so in H(e) too) since Gτ(e) = H ∩ gBg−1 for
some g ∈ G. By Lemma 4 there exists the unique maximal abelian subgroup
M1 of H (so of H(e) too) such that M2 = Ge × D1, where D1 is torsion free
abelian. On the other hand we set M2 = Gτ(e) and then M2 = Gφe

e ×D2, where
D1 is torsion free abelian. Finally, since H is CSA then by Proposition 3 [8] it
follows that either D1 or D2 is trivial.

2. H splits over e as a free product with amalgamation.
The same argument as above.

¤
The following theorem is a direct corollary of Lemma 5.

Theorem 2 Let A∗UB be an extension of a centralizer U of a non-abelian CSA-
group A by an abelian group B = U × C, where C is torsion-free. Then every
finitely generated subgroup H of G can be obtained from finitely many subgroups
of A and B by finitely many operations of the following types: free products, ex-
tensions of centralizers, free products with amalgamation along maximal abelian
subgroups in both factors and separated HNN-extensions with maximal abelian
associated subgroups.

Proof. Let H be a subgroup of G. Then H is a fundamental group of the graph
of groups (G, Y, T ) described above. We prove by induction that the statement
of the lemma holds for the fundamental group of (G′, Y ′, T ′), where Y ′ is any
connected subgraph of Y and T ′ is the corresponding subtree of T .

If |E(Y )| = 0 then Y contains only one vertex and either H = H ∩ Ag or
H = H ∩ Bg for some g ∈ G. In both cases H is canonically isomorphic to a
subgroup of either A or B.

We assume now that we have proved the required result for any connected
subgraph of Y ′ with |E(Y ′)| < |E(Y )|.

Choose any edge e ∈ E(Y ) and consider Y ′ = Y − {e}.
1. Y ′ is connected.

14



Hence, H splits over e as an HNN-extension

π(G, Y, T ) = 〈H(e), te | t−1
e Gete = Gφe

e 〉,

where H(e) = π(G′, Y ′, T ′) and by the induction hypothesis H(e) can be ob-
tained from finitely many subgroups of A and B by finitely many operations
described.

If Ge is trivial then H = H(e) and we are done. Let Ge 6= 1 then by Lemma
5 there exist maximal abelian subgroups M1, M2 of H(e) such that

M1 = Ge ×D1, M2 = Gφe
e ×D2,

where D1, D2 are torsion free abelian and at least one of them is trivial. Without
loss of generality we can assume D2 = 1. Below we use the operation which is
called a sliding of H(e) along M1. That is, if we set

H∗ = H(e) ∗Gφe
e =t−1

e Gete
(t−1

e M1te)

which can be viewed as a centralizer extension of Gφe
e then

H = 〈H∗, te | teM1t
−1
e = Mφ

1 〉,

where Mφ
1 = M1 and φ is an identity map, that is, H is obtained from H∗ by

a separated HNN-extensions with maximal abelian associated subgroups.
2. Y ′ is disconnected.
Hence, Y ′ = Y1∪Y2 and H splits over e as a free product with amalgamation

π(G, Y, T ) = H1(e) ∗Ge H2(e),

where Hi(e) = π(Gi, Yi, Ti), i = 1, 2 and by the induction hypothesis H1(e),
H2(e) can be obtained from finitely many subgroups of A and B by finitely
many operations described.

If Ge is trivial then H is a free product H1(e) ∗ H2(e) and we are done.
Let Ge 6= 1 then by Lemma 5 there exist maximal abelian subgroups M1 ≤
H1(e), M2 ≤ H2(e) such that

M1 = Ge ×D1, M2 = Ge ×D2,

where D1, D2 are torsion free abelian and at least one of them is trivial. Without
loss of generality we can assume D1 = 1. Below we use the operation which is
called a sliding of H along M2. That is, if we set H∗ = H1(e)∗Ge M2 which can
be viewed as a centralizer extension of Ge then H = H∗ ∗M2 H2(e), where M2

is maximal in both H2(e) and H∗.
¤

One can generalize the theorem above in the following way.

Theorem 3 Let A be a non-abelian CSA-group and let a group G be obtained
from A by finitely many successive free extensions of centralizers. Then every
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finitely generated subgroup H of G can be obtained from finitely many subgroups
of A and B by finitely many operations of the following type: free products, ex-
tensions of centralizers, free products with amalgamation along maximal abelian
subgroups in both factors and separated HNN-extensions with maximal abelian
associated subgroups.

Proof. If G is an extension of a single centralizer of A, then the result follows
from Theorem 2. In the case of several extensions we proceed by induction
in the following way. Let G be obtained from A by n consecutive centralizer
extensions. Then we have the following chain of groups

A = G0 ≤ G1 ≤ · · · ≤ Gn = G,

where Gi+1 is obtained from Gi by a single centralizer extension. Without loss
of generality we can assume n to be the minimal natural number such that
H ≤ Gn, otherwise the result follows by the induction hypothesis.

Since G is obtained from Gn−1 by a centralizer extension and Gn−1 is a CSA-
group then by Theorem 2 it follows that H is isomorphic to the fundamental
group of a graph of groups (G, Y, T ), in which every vertex group is either
a subgroup of Gn−1 or a free abelian group of a finite rank and every edge
represents either a free product, or a free product with amalgamation along a
maximal abelian subgroup, or a separated HNN-extension with an association
along a maximal abelian subgroup or an extension of a centralizer. Since H is
finitely generated, then all vertex groups of (G, Y, T ) are finitely generated and
the induction hypothesis holds for them, which completes the proof.

¤
Theorem 3 can be reformulated for G-constructible groups as follows.

Theorem 4 Let G be a non-abelian CSA-group. Then any G-constructible
group H can be obtained from Z and finitely many subgroups of G by finitely
many operations of the following type: free products, extensions of centralizers,
free products with amalgamation along maximal abelian subgroups in both factors
and separated HNN-extensions with maximal abelian associated subgroups.

Observe that if G is a CSA-group with cyclic centralizers (for example, a
torsion-free hyperbolic group) then free products with amalgamation and HNN-
extensions in Theorem 3 are taken along cyclic subgroups. Namely, the following
corollary holds.

Corollary 2 Let G be a non-abelian CSA-group with cyclic centralizers. Then
any G-constructible group H can be obtained from Z and finitely many subgroups
of G by finitely many operations of the following type: free products, extensions
of centralizers, free products with amalgamation along maximal cyclic subgroups
in both factors and separated HNN-extensions with maximal cyclic associated
subgroups.

Notice, that if Γ is a finite graph of groups and G = π(Γ) then G can be
presented by a finite directed graph T (G) (see Section 1) which corresponds to
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a sequence of collapses of all edges of Γ (in some particular order). In this event,
χ(T (G)) is equal to the number of edges in Γ.

This observation makes it possible, given a splitting of G as a graph of
groups, to find a construction tree for G effectively. Moreover, in the case of fully
residually free groups such a splitting can be found effectively and one can talk
about effectiveness of the overall procedure. Indeed, in algebraic geometry over
a free group fully residually free groups arise as coordinate groups of irreducible
algebraic sets, hence the initial object from which one obtains G is a system
of equations S over a free group F , which can be assumed to have a solution
and can be given effectively. In [11] Kharlampovich and Myasnikov give an
algorithm which effectively finds finitely many irreducible systems S1, . . . , Sk

(their union is equivalent to S), computes radicals of these systems and G arises
as a coordinate group of an algebraic set of Si0 for some i0 ∈ [1, k]. Finally, the
algorithm computes a corresponding finite presentation of G and a Z-splitting
of G as a graph of groups. Hence the following result follows immediately.

Corollary 3 Let G be a finitely generated fully residually free group. Then one
can effectively find a construction tree T (G) of G.

5 Homological and cohomological dimensions of
fully residually free groups

Let G be a group and R a commutative ring with unit element 1 6= 0. Define

hdR(G) = inf{n | R as an RG−module admits a flat resolution of length n},
cdR(G) = inf{n | R as an RG−module admits a projective resolution of

length n}.
hdR(G) (cdR(G)) is called the homology (cohomology) dimension of G over R.
Observe that hdR(G) (cdR(G)) can be equal ∞.

Our main tool for computing homological and cohomological dimensions of
a group G, denoted hd(G) and cd(G) respectively is the following result.

Proposition 1 (Proposition 6.1 and Proposition 6.12 [3])

1) Let G = G1 ∗S G2 be a free product with amalgamated subgroup S and let
n = max{cdR(G1), cdR(G2)} and m = max{hdR(G1), hdR(G2)}. Then

n ≤ cdR(G) ≤ n + 1, m ≤ hdR(G) ≤ m + 1.

Moreover, cdR(G) = n + 1 implies cdR(G1) = cdR(G2) = cdR(S) = n and
hdR(G) = m + 1 implies hdR(G1) = hdR(G2) = hdR(S) = m.

2) Let G = G∗∗S,σ be an HNN-extension of G∗ with associated cyclic sub-
groups S and T , and stable letter p. If n = cdR(G∗) and m = hdR(G∗)
then

n ≤ cdR(G) ≤ n + 1, m ≤ hdR(G) ≤ m + 1.
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Moreover, cdR(G) = n + 1 implies cdR(G∗) = cdR(S) = n and hdR(G) =
m + 1 implies hdR(G∗) = hdR(S) = m.

Here are some general results about homological and cohomological dimen-
sions of a group.

Proposition 2 [3] Let G be a group and R a commutative ring with unit ele-
ment 1 6= 0. Then

1. hdR(G) ≤ cdR(G);

2. if H ≤ G then hdR(H) ≤ hdR(G), cdR(H) ≤ cdR(G).

Now we restrict ourselves to some special class of groups known as groups
of type FP . The following definitions can be found in the book [3].

Let G be a group, R a commutative ring with unit element 1 6= 0 and A an
RG-module.

A projective resolution P →→ A is said to be finitely generated if the RG-
modules Pi are finitely generated in each dimension i ≥ 0. A is said to be of
type FPn if there is a projective resolution P →→ A with Pi finitely generated
for all i ≤ n. If the modules Pi are finitely generated for all i then we say that
A is of type FP∞.

G is said to be of type FPn over R, n = ∞ or an integer ≥ 0, if the trivial
G-module R is of type FPn as an RG-module. If G is of type FPn over Z then
we merely say that G is of type FPn

A group G is of type FP if Z admits a finite projective resolution over ZG.
From now on we assume R = ZG and respectively use the notation

hdZG(G) = hd(G), cdZG(G) = cd(G).

Proposition 3 [4] A group G is of the type FP if and only if

1. cd(G) < ∞;

2. G is of type FP∞.

It turns out that groups of type FP possess many nice properties which
make it easier to study them.

Proposition 4 [3] If G is of type FP then cd(G) = hd(G).

From Propositions 1 and 4 one can obtain the following result.

Corollary 4 1) If G = G1 ∗S G2, where S is an infinite cyclic, G1, G2 are
of type FP and maxi=1,2{cd(Gi)} ≥ 2 then

cd(G) = hd(G) = max
1=1,2

{cd(Gi)}.
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2) If G = G∗∗S,σ, where S is an infinite cyclic, G∗ is of type FP and
cd(G∗) ≥ 2 then

hd(G) = cd(G) = cd(G∗).

The following lemma makes it possible to use all the results above for fully
residually free groups.

Lemma 6 If K consists of CSA-groups of type FP then any K-constructible
group is a CSA-group of type FP .

Proof. If G is K-constructible and K consists of CSA-groups then G is CSA
because elementary operations preserve this property. Finally, the fact that G
is of type FP follows from Proposition 2.13 [3].

¤

Corollary 5 If G is a fully residually free group then cd(G) = hd(G).

Let us denote rankC(G) = max{Spec(G)} (see Section 2).

Theorem 5 Let G be a fully residually free group. Then

1) if rankC(G) ≥ 2 then hd(G) = cd(G) = rankC(G);

2) if rankC(G) = 1 then hd(G) = cd(G) ≤ 2 and hd(G) = cd(G) = 2 if and
only if G is not free.

Proof. hd(G) = cd(G) follows from Corollary 5 since G is fully residually free.
Since a free group is CSA with cyclic centralizers then by Corollary 2 there

exists a construction tree T (G) for G such that the leaves groups of T (G) are
finitely generated free groups and G is built up using free products with amal-
gamation and HNN-extensions taken along cyclic subgroups. We prove by the
induction on the height of T (G).

If χ(T (G)) = 1 then G is free and everything is proved. Suppose χ(T (G)) ≥
2.

a) G = G1 ∗S G2, where S is infinite cyclic.
Observe that rankC(G) = maxi=1,2{rankC(Gi)} and the induction hypoth-

esis holds for G1 and G2.
If maxi=1,2{rankC(Gi)} ≥ 2 then we can assume rankC(G1) ≥ rankC(G2)

and rankC(G1) ≥ 2. Then by the induction hypothesis we have cd(G1) =
rankC(G1) ≥ 2. Hence, maxi=1,2{cd(Gi)} ≥ 2 and by Corollary 4

cd(G) = max
i=1,2

{cd(Gi)} ≥ 2.

Now, if rankC(G2) = 1 then by induction cd(G2) ≤ 2 and we have

cd(G) = max
i=1,2

{cd(Gi)} = max
i=1,2

{rankC(Gi)}.
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Suppose maxi=1,2{rankC(Gi)} = 1. Then both G1 and G2 are free and G is
a one relator group without torsion. It follows that either hd(G) = cd(G) = 2
(see [13]) or G is free so hd(G) = cd(G) = 1 (see [21]).

b) G = G∗∗S,σ is an HNN-extension of G∗ with associated cyclic subgroups
S and T , and stable letter p.

The argument is similar to a).
¤

It turns out that cohomological dimension of a fully residually free group G
can be computed effectively. From Theorem 5 it follows that for this purpose
it is enough to be able to compute effectively rankC(G) and decide if G is free.
The following results are crucial.

Theorem 6 [12] For any finitely generated fully residually free group G one
can find the set Spec(G) effectively.

Theorem 7 [11] There exists an algorithm which for every finitely generated
fully residually free group G determines whether G is a free group or not.

Combining the above results with Theorem 5 one obtains the following result.

Theorem 8 There exists an algorithm which for every finitely generated fully
residually free group G computes cd(G).

Proof. By Theorem 6 one can effectively find Spec(G), hence the number
rankC(G) = max{Spec(G)}. If rankC(G) ≥ 2 then cd(G) = rankC(G). If
rankC(G) = 1 then by Theorem 5 to compute cd(G) it suffices to check whether
the group G is free or not. Now the result follows from Theorem 7.

¤
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présentation finie. Topology, 40 no. 3 (2001), 617–629.

[8] D. Gildenhuys, O. Kharlampovich and A. Myasnikov, CSA-groups and sep-
arated free constructions. Bull. Austral. Math. Soc., 52 no. 1 (1995), 63–84.

[9] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a
free group. I: Irreducibility of quadratic equations and Nullstellensatz. J.
Algebra, 200 no. 2 (1998), 472–516.

[10] O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a
free group. II: Systems in triangular quasi-quadratic form and description
of residually free groups. J. Algebra, 200 no. 2 (1998), 517–570.

[11] O. Kharlampovich and A. Myasnikov, Effective JSJ decompositions, to ap-
pear in Contemp. Math., 2004.

[12] O. Kharlampovich, A. Myasnikov, V. Remeslennikov and D.Serbin, Sub-
groups of fully residually free groups: algorithmic problems. to appear in
Group Theory, Statistics and Cryptography, Editors A.G. Myasnikov and
V.Shpilrain, Contemp. Math., Amer. Math. Soc., 2004.

[13] R. Lyndon, Cohomology theory of groups with a single defining relation.
Ann. Math., 52 (1950), 650–665.

[14] R. Lyndon, Groups with parametric exponents. Trans. Amer. Math. Soc.,
9 no. 6 (1960), 518–533.

[15] R. Lyndon and P. Schupp, Combinatorial group theory. Ergebnisse der
Mathematik und ihrer Grenzgebiete, 89, Springer-Verlag, Berlin, Heidel-
berg, New York, 1977.

[16] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: presen-
tations of groups in terms of generators and relators. Dover Publications,
New York, 1976.

[17] A. Myasnikov and V. Remeslennikov, Exponential groups II: extensions of
centralizers and tensor completion of CSA-groups. Internat. J. Algebra and
Comput., 6 no. 6 (1996), 687–711.

[18] A. Myasnikov and V. Remeslennikov. Algebraic geometry II: logical foun-
dations. J. of Algebra, 234 (2000), 225–276.

[19] E. Rips and Z. Sela, Cyclic splittings of finitely presented groups and the
canonical JSJ decomposition, Ann. Math., 146 (1997), 53–109.

[20] J.-P. Serre, Trees. New York, Springer, 1980.

21



[21] J.R. Stallings, Groups of cohomological dimension one. Proc. Sympos. Pure
Math. Amer. Math. Soc., 1970, 17, 124–128.

Olga G. Kharlampovich,
McGill University, Department of Mathematics and Statistics, 805 Sherbrooke
W., Montreal QC H3A 2K6, Canada
olga@math.mcgill.ca
http://www.math.mcgill.ca/olga/

Alexei G. Myasnikov,
McGill University, Department of Mathematics and Statistics, 805 Sherbrooke
W., Montreal QC H3A 2K6, Canada
alexeim@att.net
http://home.att.net/˜ alexeim/index.htm

Vladimir N. Remeslennikov,
Omsk Branch of the Mathematical Institute SB RAS, 13 Pevtsova Street, 644099
Omsk, Russia
remesl@iitam.omsk.net.ru

Denis E. Serbin,
McGill University, Department of Mathematics and Statistics, 805 Sherbrooke
W., Montreal QC H3A 2K6, Canada
zloidyadya@yahoo.com

22


