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We shall prove the conjecture of Myasnikov and Remeslennikov [?] which states that a finitely
generated group is fully residually free (every finite set of nontrivial elements has nontrivial images
under some homomorphism into a free group) if and only if it is embeddable in the Lyndon’s exponential
group FZ[x], which is the Z[x]-completion of the free group. Here Z[x] is the ring of polynomials of
one variable with integer coefficients. Historically, Lyndon’s attempts to solve Tarski’s famous problem
concerning the elementary equivalence of free groups of different ranks led him to introduce FZ[x].

An ∃-free group is a group G such that the class of ∃-formulas, true in G, is the same as the class
of ∃-formulas, true in a nonabelian free group. A finitely generated group is ∃-free if and only if it is
fully residually free [?]. Our result gives an algebraic description of ∃-free groups.

We shall give an algorithm to represent a solution set of arbitrary system of equations over F
as a union of finite number of irreducible components in the Zariski topology on Fn. The solution
set for every system is contained in the solution set of a finite number of systems in triangular form
with quadratic words as leading terms. The possibility of such a decomposition for a solution set was
conjectured by Razborov in [?] and also by Rips.

We shall give a description of systems of equations determining irreducible components using meth-
ods developed in [?] and [?]; it is possible to find some of these methods in [?].

We are thankful to E. Rips for attracting our attention to these techniques.

0. Introduction

All the necessary definitions can be found in [?]. Nevertheless, we repeat here most of them to make
this paper selfcontained.

Let G be a group, F (X) the free group with basis X = {x1, x2, . . . , xn}, and G[X] = G ∗ F (X) the
free product of G and F (X).

An element s fromG[X] is called an equation over the groupG. We write this as s(x1, . . . , xn, g1, . . . , gm) =
1 or, simply, as s(x̄, ḡ) = 1. A system of equations over group G is an arbitrary set of equations S =
{si = 1 | i ∈ I} (in more succint notation: S = 1). A solution of a system S (x1, . . . , xn, g1, . . . , gm) = 1
over a group G is a tuple of elements a1, . . . , an ∈ G such that after replacement of each xi by ai in
every equation s(x, g) = 1 one gets a trivial element in the group G. In other words, a solution of the
system S = 1 over G can be described as a G-homomorphism (i.e. a homomorphism which is identical
on G) πX̄ : G[X] −→ G such that φ(S ) = 1. If by V (S ) we denote the set of all solutions in G of the
system S = 1, then V (S) is called an algebraic subset or an (affine) variety in Gn.

For any S ⊆ G[X] we have V (S) = V (ncl(S)), where ncl(W ) is the normal closure of W in G[X].
A group G is called a CSA-group if every maximal abelian subgroup M of G is malnormal, i.e.

Mg ∩M = 1 for any g 6∈M .
1The first author was supported by NSERC grant; the second author was supported by the NSF Grant DMS-9103098
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It was shown in [?] that for a nonabelian CSA-group G all algebraic sets in Gn define a topology on
Gn in which they are exactly the closed sets. The topology defined by algebraic sets as closed subsets
is said to be a Zariski topology.

Below G is always a nonabelian group.

Definition 1 Let Y ⊆ Gn. Define a set

I(Y ) = {s ∈ G[X] | s(g1, . . . , gn) = 1 ∀(g1, . . . , gn) ∈ Y }

The set I(Y ) has a description in terms of homomorphisms. Any tuple g = (g1, . . . , gn) ∈ Y defines
a homomorphism πg : G[X] −→ G by the condition xi −→ gi. Then

I(Y ) =
⋂
g∈Y

ker(πg).

I(Y ) is a normal subgroup of G[X], and if G is a torsion-free group then I(Y ) is an isolated normal
subgroup of G[X], in particular, I(V (S)) contains the intersection

√
S of all normal isolated subgroups

containing S.

Definition 2 Let V (S) be a variety defined by S ⊂ G[X]. Then I(V (S)) is called the radical of the
system S = 1 and is denoted by Rad(S). Denote G[X]/Rad(S) by GR(S), and G[X]/ncl(S) by GS.

A system S = 1 over G is called consistent if there is a G-homomorphism π : G[X] → H ≥ G such
that S ∈ ker(π). Otherwise it is inconsistent over G. If a system S = 1 over G is consistent then the
canonical homomorphism G→ GR(S) is monic. An inconsistent system S = 1 defines the empty variety
over G. Therefore, for non-empty varieties V (S) we will assume that G is a subgroup of GR(S).

Definition 3 Let H be a group and G be a family of groups.

1) A homomorphism of groups ψ : H −→ G separates a nontrivial element h ∈ H if ψ(h) 6= 1;

2) A family of homomorphisms Ψ = {ψ : H −→ G | G ∈ G} is called a separating (discriminating
) family of homomorphisms if any nontrivial h ∈ H (any finite number of nontrivial elements
h1, . . . , hn ∈ H) can be separated by some ψ ∈ Ψ. In this case H is called a residually G group
(ω-residually G group or fully residually G group).

In the case when G consists of a single group G, which is also a subgroup of H and if the sepa-
rating (discriminating) homomorphisms in Ψ are all G-homomorphisms, we say that H is separated
(discriminated) by G-homomorphisms.

A group G is called Equationally Noetherian (EN) if for every system S of equations over G there
is a finite subsystem S0 such that V (S) = V (S0). A free group is EN group [?].

A closed set in a topological space is called irreducible if it is not a union of two proper closed
subsets.

Lemma 1 [?] Let G be a EN CSA-group. Then V (S) is irreducible if and only if GR(S) is discrim-
inated in G by G-homomorphisms.
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Definition 4 An equation is said to be quadratic if every variable occurs in the equation not more
than twice. An equation is said to be strictly quadratic if every variable occurs in the equation exactly
twice. A system is said to be quadratic if every variable occurs in the equations of the system not more
than twice (it may not occur at all). A system is said to be strictly quadratic if every variable occurs in
the equations of the system exactly twice.

Let the set X consist of three types of variables: xi, yi, zi. We call a quadratic equation standard if
it has one of the following forms:

Πn
i=1[xi, yi] = 1 (n > 0), (1)

Πn
i=1[xi, yi]Π

m
i=1z

−1
i cizid = 1, (2)

Πn
i=1x

2
i = 1 (n > 0), (3)

Πn
i=1x

2
iΠ

m
i=1z

−1
i cizid = 1, (4)

where d, ci(i = 1, . . .m) are nontrivial elements in G.

Definition 5 Let G be a group, C(u) the centralizer of the element u in G. Suppose C(u) is abelian.
Then the group C(u, t) =< G, t|[v, t] = 1, v ∈ C(u) > is called a free extension of the centralizer of u.

Let A be an arbitrary associative ring with identity and G a group. Fix an action of the ring A on
G, i.e. a map G × A → G. The result of the action of α ∈ A on g ∈ G is written as gα. Consider the
following axioms:

1. g1 = g, g0 = 1, 1α = 1 ;

2. gα+β = gα · gβ , gαβ = (gα)β ;

3. (h−1gh)α = h−1gαh;

4. [g, h] = 1 =⇒ (gh)α = gαhα.

Definition 6 Groups with A-actions satisfying axioms 1)–4) are called A–groups.

In particular, an arbitrary group G is a Z-group. We now recall the definition of A-completion.

Definition 7 Let G be a group . Then an A–group GA together with a homomorphism λ : G→ GA

is called a tensor A–completion of the group G if GA satisfies the following universal property: for any
A–group H and a homomorphism ϕ : G→ H there exists a unique A–homomorphism ψ : GA → H (a
homomorphism that commutes with the action of A) such that the following diagram commutes:

G GA

H

-

?

�
�

�
�

�
�

�
�	

ϕ ψ

λ
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By Z[x] we denote as usual the ring of polynomials of one variable with integer coefficients.

Lemma 2 [?] Every group obtained from a CSA group G by a sequence of free extensions of cen-
tralizers is embeddable into GZ[x].

Below x̄ denotes several variables.

Definition 8 Let G be a group, c̄ a tuple of elements from G, x̄1, . . . , x̄n disjoint tuples of variables.
A system

⋃m
i=1 Si(c̄, x̄i, . . . , x̄m) = 1 is said to be triangular quasi-quadratic if for every i the equation

Si(c̄, x̄i, . . . , x̄m) = 1 is quadratic in the variables from x̄i
Such a system is said to be nondegenerate if for each i the equation Si = 1 over G[x̄i+1, . . . x̄m]/R(

⋃i−1
j=1 Sj)

(with elements x̄i considered as variables and elements from c̄, x̄i+1 . . . x̄m as coefficients) has a solution.

In [?] the following result was proved.

Theorem 1 If S is a nondegenerate triangular quasi-quadratic system over a fully residually free
group G, then GR(S) is isomorphic to a subgroup of a group obtained from G by a sequence of free
extensions of centralizers and hence a subgroup of GZ[x].

If G is fully residually free, then every finitely generated subgroup of GZ[x] is a subgroup of a group
obtained from G by a finite series of free extensions of centralizers, and hence is discriminated by
G-homomorphisms [?]. This and Lemma 1 implies

Corollary 1 For a nondegenerate triangular quasi-quadratic system S over a fully residually free
group G the solution set V (S) is irreducible.

Theorem 2 For any finite system S(x̄) = 1 over a free group F , one can find effectively a finite
family of nondegenerate triangular quasi-quadratic systems U1, . . . , Uk and word mappings pi : VF (Ui) →
VF (S) (i = 1, . . . , k) such that for every b ∈ VF (S) there exists i and c ∈ VF (Ui) for which b = pi(c),
i.e.

VF (S) = p1(VF (U1)) ∪ . . . ∪ pk(VF (Uk))

and all sets pi(VF (Ui)) are irreducible; moreover, every irreducible component of VF (S) can be obtained
as a closure of some pi(VF (Ui)) in the Zariski topology.

This theorem will be proved in Sections 1-10. A system S is said to be irreducible if the solution set
V (S) is irreducible. The main objective in this paper is to prove the following

Theorem 3 For a system S = 1 over a free group, V (S) is irreducible if and only if FR(S) ⊆ FR(S1)

for a nondegenerate triangular quasi-quadratic system S1.

Sections 1-9 will be devoted to proving that for any irreducible system S = 1 over a free group F ,
FR(S) ⊆ FR(S1) for a nondegenerate triangular quasi-quadratic system S1.

Notice that in [?] it was shown that FZ[x] is fully residually free.
Theorem 3 implies

Theorem 4 A finitely generated group is fully residually free if and only if it is isomorphic to a
subgroup of FZ[x].
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Proof Consider a finitely generated fully residually free group G given by generators x1, . . . , xn and
relations sj(x1, . . . , xn), j ∈ J. Consider S = {sj(x1, . . . , xn), j ∈ J} as a system of equations over F .
Then G∗F = FS and ncl(S) = Rad(S), since FS is fully residually free. Hence G ≤ FR(S) is embeddable
into FZ[x].

Now we can describe the algebraic structure of finitely generated subgroups of FZ[x] in terms of free
constructions.

Let H =< G, t|At = B > be an HNN extension of G with associated subgroups A and B. H is
called a separated HNN-extension if for any g ∈ G, Ag ∩B = 1.

Corollary 2 Every finitely generated residually free group G is a subgroup of a direct product of
finitely many fully residually free groups; hence G is embeddable into FZ[x] × . . .× FZ[x]

Theorem 5 Let V be an irreducible variety over F . Then there exists a finite system of equations
S = 1 over F which defines the variety V and satisfies the Nullstellensatz.

Theorem 6 (joint with V. Remeslennikov) Let a group G be obtained from a free group F by a
series of finitely many free extensions of centralizers. Then every finitely generated subgroup H of G is
obtained from free abelian groups of finite rank by finitely many operations of the following type:

1. free products;

2. amalgamated products with abelian amalgamated subgroups at least one of which is maximal
abelian;

3. free extensions of centralizers;

4. separated HNN-extensions with abelian associated subgroups at least one of which is maximal
abelian.

The following four corollaries will be proved in section 10.

Corollary 3 Every finitely generated fully residually free group is finitely presented.

Corollary 3 was also announced by Z. Sela.

Corollary 4 All finitely generated subgroups of FZ[x] in which all proper centralizers are cyclic, are
hyperbolic.

Corollary 5 Every finitely generated group H which is ∀∃-equivalent to a nonabelian free group
is torsion-free hyperbolic; moreover, H can be obtained from infinite cyclic groups by finitely many
operations of the following type:

1. free products;

2. amalgamated products with infinite cyclic amalgamated subgroups at least one of which is maximal
abelian;
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3. separated HNN-extensions with infinite cyclic associated subgroups at least one of which is maximal
abelian.

In [?] Remeslennikov proved that every finitely generated fully residually free group acts freely on
some Zn-tree with some order for a suitable natural number n. In [?] he asks (Question A) if such
group acts freely on some Zn-tree with lexicographic order. Corollary 6 gives a positive answer to his
question.

Corollary 6 Every finitely generated fully residually free group acts freely on some Zn-tree, where
Zn is a direct sum of n copies of Z with lexicographic order.

Let U = {u1, . . . , un} be a set of parametric words, i.e. a subset of FZk

. By the definition we have
fixed some pure cyclic subgroup Z in Zk in such a way that the action of this subgroup Z coincides with
the integer powers in F . Because Z is pure in Zk we have Zk = Z⊕B, where B is a free abelian group
with a free base t1, . . . , tn. These generators ti-s are called parameters in FZk

. Any homomorphism
ξ : B −→ Z gives rise to a F -homomorphism ξ? : FZk −→ F . In this case we say that the image Uξ

?

is
obtained from U by specializing parameters by ξ. Let

U? =
⋃
{Uξ

?

| ξ ∈ Hom(Zk,Z)}

be the union of all specializations of the set U .
We can slightly generalize the construction of a specialization. Instead of a set U we can consider

a set of tuples of words from FZk

and specialize them coordinatewise. Then we will get the set U? of
tuples of elements from F .

Theorem 7 Let S(X) = 1 be a system of equations over a free group F . Then there exists a
finite set of n-tuples of parametric words U = (u1, . . . , un) ∈ (FZk

)n such that the set of all their
specializations U? is a dense subset of the variety VF (S) in the Zariski topology.

Corollary 7 Any system S = 1 over a free group F has a dense subset which can be parametrized
by finitely many parametric words.

Definition 9 The existential theory of G is the set of all formulas of the form

Φ = ∃x̄(
s∧
1

ui(x̄, ḡ) = 1
t∧
1

vj(x̄, ḡ) 6= 1),

that are true on G.

It was proved in [?] that the existential theory of a free group is decidable; this implies that for a
finite system S = 1 the group FR(S) has decidable word problem.

Definition 10 A fundamental sequence of length k for a system of equations φ is a triple

(M,Hom,Aut),
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where M consists of n systems of equations φ1 = 1, . . . φk = 1, φ = φ1 and φk is an empty system.
Hom is a collection of k − 1 homomorphisms π1, . . . , πk−1 where πi : FR(φi) → FR(φi+1), and πi is a
retract on F . Aut is a collection of k finitely generated automorphism groups P1, . . . , Pk of the groups
FR(φ1), . . . , FR(φk) respectively. A fundamental sequence Φ = (M,Hom,Aut) is effectively given if the
systems in M, homomorphisms from Hom, and automorphisms from Aut are effectively given. To
effectively define a homomorphism from FR(φ) → FR(ψ) means to define the images of the generators of
the group FR(φ).

If Φ is some fundamental sequence of length k for the system φ = 1, π : FR(φn) → F a homomor-
phism of free groups, and σ1, σ2, . . . σk are automorphisms from P1, P2 . . . , Pk respectively, then the
composition

FR(φ) →σ1 FR(φ) →π1 FR(φ2) →σ2 FR(φ2) →π2 . . . FR(φk) →σk
FR(φk) →π F (5)

equals πX̄ for some solution X̄ of the system φ. We say that Φ describes a solution X̄ of the system φ
if πX̄ can be represented in the form (5) for some choice of π1, . . . , πk, σ1, σ2, . . . σk.

Lemma 3 ([?], Lemma 1.1) In an infinite sequence

G1 →π1 G2 →π2 . . .→πr−1 Gr →πr . . .

of finitely generated residually free groups G1, . . . , Gr, . . . and surjective homomorphisms, almost all
homomorphisms are isomorphisms.

Proof Let g1, . . . , gn be a finite family of generators of G1. Consider system of equations

{φ(x1, . . . , xn) = 1 | ∃r(πr . . . π1(φ(g1, . . . , gn)) = 1)}. (6)

By Guba’s theorem [?] there exists a finite subsystem φ1(x̄) = 1, φ2(x̄) = 1, . . . , φm(x̄) = 1 of system
(6) which is equivalent to (6). Let r0 be such number that πr0 . . . π1(φi(g1, . . . , gn)) = 1, 1 ≤ i ≤ m. We
claim that πr is an isomorphism for r ≥ r0.

Indeed, πr is surjective by definition; so we only have to verify that it is injective. Let g ∈ Gr;πr(g) =
1. Choose g′ ∈ G1 such that πr−1 . . . π1(g′) = g and consider g′ = φ(g1, . . . , gn). Then φ(x1, . . . , xn) = 1
is an equation of the system (6), and for any X1, . . . , Xn ∈ F the following implication is true

m∧
i=1

φi(X1, . . . , Xn) = 1 → φ(X1, . . . , Xn) = 1.

Suppose now that g 6= 1. Besause Gr is residually free, there exists a homomorphism π : Gr → F
such that π(g) 6= 1. Let Xj = ππr−1 . . . π1(gj)(1 ≤ j ≤ n). Then for any 1 ≤ i ≤ m one has φi(X̄) =
ππr−1 . . . π1φi(ḡ) = 1 since r ≥ r0. But φ(X̄) = ππr−1 . . . π1(g′) = π(g) 6= 1. This gives a contradiction
with the implication above. 2

1. Reduction to a generalized equation.
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Everywhere below G = F will denote a free group F (ā), and F (x̄) will denote a free group with
generators x1, . . . , xn. We will consider now a finite system of equations S(x̄, ā) = 1.

A generalized equation is defined to be a collection consisting of the following:
1. An interval I, subdivided into ρ items h1, . . . , hρ which play the role of the unknowns. The points

of division are called ”boundaries”. This number ρ is called the number of unknowns. We have ρ + 1
boundary.

2. A system of 2n oriented subintervals, divided into pairs (a base and the dual base) and corre-
sponding system of n basic equations. If λ is the number of a base, then ∆(λ) = n + λ, if λ ≤ n and
∆(λ) = λ− n, if λ > n denotes the dual base; α(λ) and β(λ) denote the initial and terminal boundary
of λ.

The corresponding system of basic equations consists of the n equations

[hα(λ)hα(λ)+1 . . . hβ(λ)−1]ε(λ) = [hα(∆(λ))hα(∆(λ))+1 . . . hβ(∆(λ))−1]ε(∆(λ)),

where ε ∈ {1,−1}.
3. A system of m coefficient equations hil = aεl

jl
, (1 ≤ l ≤ m; t(l) = (il, jl, εl)).

4. A system of k boundary connections and corresponding system of k boundary equations. A
boundary connection is a connection between boundary p on the base λ and boundary q on the base
∆(λ). A corresponding boundary equation is an equation

[hα(λ)hα(λ)+1 . . . hp−1] = [hα(∆(λ))hα(∆(λ))+1 . . . hq−1],

if ε(λ) = ε(∆λ) and
[hα(λ)hα(λ)+1 . . . hp−1] = [hqhq+1 . . . hβ(∆(λ))−1]−1,

if ε(λ) = −ε(∆λ).
So there is a system of equations corresponding to the generalized equation. A solution of the

generalized equation Ω is defined to be a collection H̄ of nonempty words H1, . . . ,Hρ, which , when
substituted into this system, turn it into graphical equalities, and the left and right sides of the basic
equations are irreducible after this substitution.

The notation (Ω, H̄) means that H̄ is a solution of the generalized equation Ω.
If φ̄(h̄) = ψ̄(h̄) is an arbitrary list of equations, then the same list with asterisk (for example Ω∗)

denotes the system of equations of the form φ̄(h̄)(ψ̄(h̄))−1 = 1 in the free group. Obviously, if H̄ turns
all the equations of Ω into a graphical equality, then H̄ is a solution of the system Ω∗. The converse is
false.

For a solution H̄ of a generalized equation Ω we introduce the notation

Xµ ≡ [Hα(µ) . . .Hβ(µ)−1]ε(µ).

In the cases when several solutions are being considered at the same time, superscripts on the words
Xµ will indicate which solution they relate to.

The length of the word B will be denoted by d(B). The length of a solution H̄ of a generalized
equation is defined to be

d(H̄) =
ρ∑
i=1

d(Hi).
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The periodicity exponent of a list of words in the maximal number m such that some of the words
in the list contains a subword cm for some c.

The periodicity exponent of a solution H̄ is defined to be the periodicity exponent of the list of words
Xµ, µ ∈ {1, . . . , 2n}.

Lemma 4 [?] For a given system of equations in a free group S(x̄, ā) = 1 it is possible to construct
effectively a finite list of generalized equations Ω1, . . . ,Ωr and homomorphisms πi FR(S) → FR(Ω∗

i
) such

that for any solution X̄ of the system S = 1 there exists i ∈ {1, . . . , r} and a solution H̄ of Ωi such that
the following diagram commutes.

FR(S) FR(Ω∗
i
)

F (ā)

-

?

�
�

�
�

�
�

�
�	

πX̄ πH̄

πi

Proof Every system S can be transformed by adding new variables into a system S1 such that every
equation in S1 contains not more than 3 terms, and FR(S) is isomorphic to FR(S1). Thus we can suppose
that the system S = 1 has this property write it in the form

r11r12r13 = 1

r21r22r23 = 1,

. . .

rm1rm2rm3 = 1,

where rij are letters in the alphabet X̄±1 ∪ ā±1.
A partition table is defined to be a set of irreducible words {Vij(z1, . . . , zp)} (1 ≤ i ≤ m, 1 ≤ j ≤ 3)

in the alphabet {z±1
1 , . . . , z±1

p } such that the following condition are satisfied:

1. The equality Vi1Vi2Vi3 = 1, 1 ≤ i ≤ m holds in the free group with basis z̄;

2. d(Vij) ≤ 2;

3. if rij ∈ ā±1, then d(Vij) = 1.

The finite set of all partition tables can be effectively constructed for a system S = 1. An example
of a partition table for equation x1x2x3 = 1 is the following: V11 = z1z2, V12 = z−1

2 z3, V13 = z−1
3 z−1

1 .
To each partition table T = {Vij} assign a generalized equation ΩT in the following way. ( Below

we will use the notation .= for graphical equality.) Let

V
.= V11V12V13 . . . Vm1Vm2Vm3.
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Let ρ = d(V ). The equation ΩT contains ρ variables h1, . . . , hρ corresponding to the letters of the word
V . For any two distinct occurrences of z±1

i introduce a basic equation hε1j1 = hε2j2, where unknowns
hj1, hj2 correspond to the selected occurrences of z±1

i , and ε1 and ε2 are determined by the signs of
these occurrences.

For all 1 ≤ i1, i2 ≤ m, 1 ≤ j1, j2 ≤ 3 such that r±1
i1j1

= r±1
i2j2

= xk we introduce the basic equation

[hα1 . . . hβ1−1]ε1 = [hα2 . . . hβ2−1]ε2 ,

where the words [hα1 . . . hβ1−1] and [hα2 . . . hβ2−1] correspond to the occurrences of the words Vi1j1 and
Vi2j2 in V .

For any rij = a±1
k introduce the coefficient equation hα = a±1

k , where hα corresponds to the
occurrence of Vij in V .

The list of boundary equations is empty.
For an arbitrary letter xk in x̄ we choose some occurrence rikjk of the letter xεk

k in the system.
Suppose that the word hαk

hαk+1 . . . hβk−1 corresponds to the occurrence of Vikjk in V . We define a
homomorphism π : FR(S) → FR(Ω∗

T
) as follows π(xk) = (hαk

. . . hβk−1)εk . The value of π(xk) does not
depend on the choice of the occurrence of rikjk . 2

A pair of dual bases (µ,∆(µ)) is said to be matched if α(µ) = α(∆(µ)).
We note some trivial properties satisfied by all generalized equations having at least one solution:
a) If ε(µ) = −ε(∆(µ)), then the bases µ and ∆(µ) do not intersect.
b)If two boundary equations have respective parameters (p, λ, q) and (p1, λ, q1) with p ≤ p1, then

q ≤ q1 in the case when ε(λ)ε(∆(λ)) = 1, and q ≥ q1 in the case ε(λ)ε(∆(λ)) = −1.
c) For a matched pair of bases (µ,∆(µ)) and a boundary connection (p, µ, q) we must have p = q.
d) A variable cannot occur in two distinct coefficient equations.
e) If hi is a variable from some coefficient equation, and if (i, µ, q1), (i + 1, µ, q2) are boundary

connections, then |q1 − q2| = 1.
Generalized equations satisfying these restrictions will be called nondegenerate.

2. Elementary transformations

We say that an item hi belongs to the base µ if α(µ) ≤ i ≤ β(µ)− 1. An item is said to be empty if
it does not belong to any base. A boundary i cuts the base µ if α(µ) < i < β(µ). A boundary i touches
the base µ if i = α(µ) or i = β(µ). A boundary is said to be open if it cuts at least one base and is
closed otherwise. A boundary is said to be free if it does not touch any base and is not connected by
any boundary connection. A set of items {hi, . . . , hi+j−1}, denoted by [i, i + j] is called a section. A
section is said to be closed if the boundaries i and i+ j are closed and all the boundaries between them
are open.

An elementary transformation of a nondegenerate generalized equation Ω gives a set of generalized
equations Ω1, . . . ,Ωr and a collection of surjective homomorphisms θi : GR(Ω∗) → GR(Ω∗

i
) such that for

every pair (Ω, H̄) there exists an unique pair (Ωi, H̄(i)) for which the following diagram commutes.
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FR(Ω∗) FR(Ω∗
i
)

F (ā)

-

?

�
�

�
�

�
�

�
�	

πH̄ πH̄(i)

θi

Here H̄ = (H1, . . . ,Hn) and πH̄(xj) = Hj .
We need 5 types of elementary transformations.
E1 (Cutting a base): (Fig. 1) Suppose there is a boundary connection < p, λ, q >. Then we cut the

base λ into two bases λ1 and λ2 in the boundary p. We also cut ∆(λ) into ∆(λ1) and ∆(λ2) in the
boundary q, replace the corresponding basic equation by the two equations and correct all the remaining
boundary equations.

Fig. 1

-

p q

λ ∆(λ)

p q

λ1 λ2 ∆(λ1) ∆(λ2)

If Ω is a generalized equation, then by Ω̃ we denote a generalized equation obtained from Ω by a
consequent application of all possible E1 transformations. The groups FR(Ω∗) and FR(Ω̃∗) are isomorphic.

E2 (Transfer of a base): (Fig. 2) Suppose that the base θ is contained in the base µ (α(µ) ≤ α(θ) <
β(θ) ≤ β(µ)). Suppose futher that there are boundary connections < α(θ), µ, γ1 > and < β(θ), µ, γ2 >
and that if there are some boundary connections for some boundaries cut by θ then these boundaries
are connected through boundary connections to the corresponding boundaries on ∆(µ).

Then we transfer θ from the situation on the base µ to the situation on the base ∆(µ) and adjust
all the basic and boundary equations.

11



Fig. 2

θ θ

µ µ∆(µ) ∆(µ)

-

E3 (Removal of matched bases): Remove a pair of matched bases.
For the transformations E1-E3 the output consists of a single equation Ω1; the list of unknowns

remains the same; every solution H̄ of Ω is a solution of Ω1, and the systems Ω∗ and Ω∗1 in the free
groups are equivalent. The homomorphism π1 is induced by the identity isomorphism on G and is itself
an isomorphism.

E4 (Removal of a single base): Suppose the section [hα(µ) . . . hβ(µ)−1]ε is covered by the a single
base µ and that for all i (1 ≤ i ≤ β(µ) − α(µ) − 1) there exists a w(i) such that the list of boundary
connections contains < α(µ) + i, µ, w(i) > .

The transformation E4 carries Ω into a unique generalized equation Ω1 obtained from Ω by deleting
hα(µ), . . . , hβ(µ)−1 from the list of unknowns. We define the homomorphism π1 as follows:

π1(hj) = hj if j < α(µ) or j ≥ β(µ);

π1(hα(µ) + i− 1) = { hw(i−1) . . . hw(i)−1, ifε(µ) = ε(∆µ),
hw(i) . . . hw(i−1)−1, ifε(µ) = −ε(∆µ)

for 1 ≤ i ≤ β(µ)− α(µ). π1 is obviously an isomorphism.
E5 (Introduction of a boundary): Suppose the list of boundary connections does not contain any

connections with the first two parameters < p, µ, .. > . Let q be a boundary on ∆(µ). Then we perform
one of the following two transformations:

1. Introduce the boundary connection < p, µ, qi > if the new generalized equation is nondegenerate
(the corresponding homomorphism from GR(Ω∗) into GR(Ω∗

i
) will be induced by the identity isomorphism

on G[h̄] and is not necessary an isomorphism).
2. Replace the unknown hqi by the two items h′ and h′′ and introduce the new connection, connecting

boundary p with the boundary between h′ and h′′ (the corresponding homomorphism πi from GR(Ω∗)

onto GR(Ω∗
i
) will be induced by the following homomorphism on G[h̄]: π̂i(hk) = hk if k 6= qi, and

π̂i(hqi
) = h′h′′. And πi is an isomorphism).

From now on we consider solutions of generalized equations in the extended alphabet ā∪ b̄. Let now
F = F (ā, b̄). Suppose we have a generalized equation Ω and a solution H̄.

Let P be a group of automorphisms of FR(Ω∗) and H̄(1) and H̄(2) be two solutions of the generalized
equation Ω. We will write H̄(1) <P H̄

(2) if there exists an endomorphism π of the group F which is an
ā-homomorphism, and an automorphism σ ∈ P such that πH̄(2) = ππH̄(1)σ and d(H(1)

k ) ≤ d(H(2)
k ) for

12



all 1 ≤ k ≤ ρ and such that at least for one k, d(H(1)
k ) < d(H(2)

k ). A solution H̄ of Ω is called minimal
with respect to the group of automorphisms P if there is no solution H̄+ of the equation Ω such that
H̄+ < H̄. A solution H̄ of Ω is called minimal if it is minimal with respect to the canonical group of
automorphisms of FR(Ω∗) (to be defined below).

3. Some results about irreducible systems

The following lemma was proved in [?] (Lemma 19).

Lemma 5 Let H be a CSA-group and

Φ = {φ : H −→ Hφ}

a separating family of homomorphisms of H. Then for any finite partition Φ =
⋃n
i=1 Φi there exists an

index i, (1 ≤ i ≤ n), such that Φi is also a separating family of homomorphisms.

Every fully residually free group is CSA; hence for any irreducible system S we can apply this
lemma to H = FR(S) and any separating family of homomorphisms.

4. Kernel of a generalized equation

Let Ω be a generalized equation and let γi denote the number of bases containing hi.
Suppose first that Ω does not contain boundary connections. The base µ is called eliminable in the

equation Ω if at least one of the following two conditions is satisfied:
a) There exists hi such that hi ∈ µ, γi = 1 and hi is not contained in the coefficient equations.
b) At least one of the boundaries α(µ), β(µ) is different from 1, ρ+ 1, and does not touch any other

base and any coefficient equation.
Consider a sequence

Ω = Ω0 → Ω1 → . . .→ Ωl, (7)

in which Ωi+1 is obtained from Ωi by deleting some eliminable base µi+1 together with ∆(µi+1). Suppose
Ωl does not contain eliminable bases.

Lemma 6 Equation Ωl in the sequence (7) depends only on Ω but not on the choice of sequence
(7).

Proof Suppose there is another sequence

Ω = Ω0 → Ω′1 → . . .→ Ω′l′ , (8)

with the same properties and Ωl 6= Ω′l′ . Without loss of generality we can suppose that the pair (µ,∆(µ))
belongs to Ωl but not to Ω′l′ . Suppose this pair is deleted with the transformation Ω′k → Ω′k+1. Let k
be minimal with these two properties. Then the set of bases of Ωl is contained in the set of bases of
Ω′k. This implies that µ is eliminable in Ωl. This contradicts the definition of sequence (7). 2

Equation Ωl in (7) will be called the kernel of the equation Ω and denoted Ker(Ω). We say that hi
belongs to the kernel, if hi belongs to at least one base in the kernel or hi occurs in some coefficient
equation.

Let the generalized equation Ω̄l be obtained from Ωl by deleting variables hi 6∈ Ker(Ω).

13



Lemma 7 [?] FR(Ω∗) is isomorphic to F (ȳ) ∗ FR(Ω̄∗
l
), where F (ȳ) is a free group with a finite basis

ȳ.

5. Construction of T (Ω)

Let Ω be a nondegenerate generalized equation. We describe the construction of the tree T (Ω), which
is oriented from the root. To each vertex of T (Ω) we assign a generalized equation Ωv, and an equation
corresponding to the root v0. For any edge e : v → v′ we assign a surjective homomorphism π(v, v′) :
FR(Ω∗

v) → FR(Ω′∗
v ). If v → v1 → . . . → vs → v′ is a path in T (Ω), then π(v, v′) is a composition of

π(vs, v′), π(vs−1, vs), . . . , π(v, v1). The set of all edges is subdivided into principal and auxiliary edges.
Closed sections of Ωv are subdivided into working and constant sections. We will suppose that the

union of working closed sections forms the section [1, jv] for some boundary jv of the equation Ωv, and
the union of constant sections forms section [jv, ρv +1]. The edges are also subdivided into two classes:
principal and auxiliary.

The construction begins with announcing all closed sections as working sections.
Denote by ρ′ the number of variables in the working sections of some equation Ω, and by n′ the

number of bases on these sections, by ν′ the number of open boundaries in the working sections, σ′ the
number of closed boundaries in the working sections. The number of closed working sections containing
zero bases, one base, or more than one base are denoted by t′, u′, w′ respectively. The complexity of the
equation Ω is the number

τ ′ = n′ − u′ − 2w′ = Σmax{0, ni − 2},

where ni is the number of bases on the closed working section with number i, and the summation is
taken over all closed working sections.

It is obvious that τ ′ ≥ 0, and equality holds if and only if each closed working section contains not
more than two bases.

Suppose we are at the vertex v. The outgoing edges of this vertex depend on which of the cases
described below takes place. If we have Case i, (i < 15), then suppose that Cases 1 . . . , i − 1 do not
take place. Cases 14 and 15 can take place for the same vertex v.

In Cases 1 and 2 the vertex is said to be the end vertex.
Case 1. The homomorphism π(v0, v) is not an isomorphism.
Case 2. Ωv does not contain working sections.
Case 3. Ωv contains hk, which belongs to the working sections and to some coefficient equation, and

the section [k, k + 1] is not closed. Then we first perform a series of elementary E5 transformations,
continuing the boundaries k and k + 1 through all bases they intersect. Then perform a series of E1
transformations, cutting these bases on the introduced boundaries. In all the equations obtained this
way [k, k + 1] is closed.

Case 4. The generalized equation contains hk, which belongs to the closed section [k, k+1] contained
in some coefficient equation. The section [k, k + 1] becomes constant and the corresponding edge is
auxiliary.

Case 5. Ωv contains a fictitious unknown hq belonging to the working section. The section [q, q+ 1]
is transferred into constant sections and the edge is auxiliary.

Case 6. Ωv contains a pair of matched bases in a working section. Perform E3 and delete it.
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Case 7. γi = 1 for some hi belonging to a working section, such that both boundaries i and i + 1
are closed. Apply E4 and delete the closed section [i, i+ 1] together with unique base that is contained
in this section.

Case 8. γi = 1 for some hi belonging to a working section, and one of the boundaries i, i+1 is open
and the other is closed. Without loss of generality we can consider i as a closed boundary. Perform E5
and continue i+ 1 through the only base µ it intersects; cut µ in i+ 1, and delete [i, i+ 1] which is now
closed.

Case 9. γi = 1 for some hi belonging to a working section, and both i, i+1 are open. In addition, some
closed section [j1, j2] contains exactly two bases µ1, µ2, such that α(µ1) = α(µ2), and β(µ1) = β(µ2)
and all the bases of Ω̃v, obtained from µ1, µ2 by cuttings, do not belong to the kernel of Ω̃v.

Using E5 continue through µ1 all the boundaries that intersect it. Using E2 transfer µ2 from the
situation on µ1 to the situation on ∆(µ1). Delete µ1 together with the closed section [j1, j2].

Case 10. The first assumption in case 9 holds and the second does not. Perform E5, continue i and
i + 1 through µ, perform twice E1, and then cut µ into 3 new bases. Finally, delete [i, i + 1] together
with the unique base that is contained in it.

Case 11. Some boundary ` on the working part is free. Since we do not have case 5, ` intersects at
least one base µ. Continue ` through µ using E5.

Before considering Case 12 let us proceed to the consideration of the entire transformation composed
in a definite way from the elementary ones. We apply this transformation only to equations with γi ≥ 2,
for each i. We can perform the entire transformation on the union of some closed sections of the equation
Ωv. First suppose that these sections are all situated on the interval [1, j+1]. A base µ of the equation
Ω is called a leading base, if α(µ) = 1. A leading base is said to be maximal if β(λ) ≤ β(µ), for any
other leading base λ. The base having largest index among the maximal bases is called the carrier base.
A base λ is called a transfer base if β(λ) ≤ β(µ) and λ 6= µ, where µ is the carrier base. Let µ be
the carrier base of an equation Ω. Take a transfer base λ and applying an E5 transformation, continue
through µ all the boundaries on λ. Using E2 we transfer all the transfer bases from the situation at the
base µ to the situation at the base ∆(µ). Now, there exists some w < β(µ) such that h1, . . . , hw belong
to only one base µ, while the interval hw+1 belongs to at least two bases. Applying E1 we cut µ along
the boundary i + 1. An application of E4 annihilates the section [1, w + 1] which has become closed
together with the unique base belonging to it. Notice that the entire transformation does not increase
complexity.

Case 12. γi ≥ 2 for each hi belonging to working sections. In addition, for some base µ section
[α(µ), β(µ)] is closed. Using E5 continue all the boundaries which intersect µ through µ. Using E3
transfer all the bases situated on µ to the situation on ∆(µ). Using E2 delete [α(µ), β(µ)] together with
the pair µ, ∆(µ).

Case 13. γi ≥ 2 for each hi belonging to working sections. In addition some boundary `, belonging
to a working section and touching some base intersects some base µ and is not continued through µ by
a boundary connection. Continue ` through µ using E5.

Case 14. γi ≥ 2 for each hi and γi = 2 for some hi and in addition FR(Ω∗
v) is not isomorphic to

FR(s∗2), where s2 is a generalized equation as defined below.
Notice that the function γi is constant when hi belongs to some closed section of Ω̃v.
Consider the following transformation of Ωv. Applying E1 transformations to cut the bases contain-

ing hi covered exactly twice, we finally get that the union of bases covered twice becomes a union of
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closed sections.
Renumbering hi’s we can suppose that the section [1, j + 1] is covered exactly twice. We say now

that this is a quadratic section.
If µ and ∆µ both belong to the quadratic section, then µ is called a variable base. If µ belongs and

∆µ does not belong to the quadratic section, then µ is called a constant base.
Apply now the entire transformations to the quadratic section of Ω̃v. Each time we apply the entire

transformation we do not increase complexity and do not increase the total number of items in the
whole interval.

Every time we express some items of the quadratic section through the other items of the quadratic
section and the rest of the items. The number of items on the quadratic section and the number of
bases can not increase. We also delete pairs of matched bases. If the process continues for too long then
the equation with the same quadratic part will occur twice, and the corresponding homomorphism is
an automorphism invariant with respect to the items in the nonquadratic part ([?], Lemma 3.3, second
part). Lemma 8 in [?] and [?] imply that this group of automorphisms is finitely generated and there
is an effective procedure to obtain the generating set.

After we get a repetition of the equation, we have to introduce a new boundary equation without
introducing a new boundary in the quadratic section. This operation decreases the number of items in
the quadratic section. Finally, we find a solution of a quadratic equation expressed in terms of h’s not
belonging to the quadratic part.

There are several new h’s and several new equations on the h’s not belonging to the quadratic part
obtained after the process stopped.

Let s1 be a generalized equation consisting of bases such that one of the paired bases is either
variable or a constant base with respect to the quadratic part. Let p2 be a generalized equation on h’s
not belonging to the quadratic part before the process started. Let s2 be a generalized equation on h’s
not belonging to the quadratic part which we get after we have finished the process with the quadratic
part. We have Ωv = s1 ∪ p2.

There are two possibilities.
1. The canonical homomorphism FR(s1∪p2) → FR(s2) is an isomorphism. In this case we do not

apply the transformation described above, instead we construct outgoing edges as described in Case 15
below.

2. The canonical homomorphism FR(s1∪p2) → FR(s2) is not an isomorphism. Then we construct a
path

v = v1 → v2 → . . . vn (9)

in T (Ω), such that each edge vi → vi+1 corresponds to one entire transformation. We say that for each
vi in this path we have Case 14 and for vn Ωvn

= s2. To each vi assign the group of automorphisms
Pi of FR((Ωvi

)∗) invariant with respect to the nonquadratic part of Ωvi
and call it a canonical group of

automorphisms for the equation Ωvi
in Case 14. We have a piece of Razborov’s fundamental sequence

FR(Ω∗
v) →σ1 FR(Ω∗

v) →π(v1,v2) FR(Ω∗
v1

) →σ2 FR(Ω∗
v1

) →π(v2,v3) . . . FR(Ω∗
vn

) →σn
FR(Ω∗

vn
), (10)

where σi ∈ Pi, correspond to some epimorphisms π : FR((s1∪p2)∗) → FR(s∗2).
Let P be the group of all such epimorphisms. In Case 15 we can also consider the group P which

will be a group of automorphisms of FR(Ω∗
v). We call it canonical for Case 15.
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Let λ be a natural homomorphism FR((s1∪p2)∗) → FR((s1∪s2)∗). Then for any epimorphism π ∈ P
there is a natural epimorphism φ : FR((s1∪s2)∗) → FR(s∗2) such that the following diagram commutes.

FR((s1∪p2)∗) FR((s1∪s2)∗)

FR(s∗2)

-

?

�
�

�
�

�
�

�
�	

π
φ

λ

In the situation where the canonical homomorphism FR((s1∪p2)∗) → FR(s∗2) is an isomorphism , λ is
an embedding of FR((s1∪p2)∗) into FR((s1∪s2)∗), because all the epimorphisms π are isomorphisms.

Lemma 8 The natural homomorphism ψ : FR((s2)∗) → FR((s1∪s2)∗) is a monomorphism.

Proof Let H be the subgroup ψ(FR(s∗2)) in FR((s1∪s2)∗). The epimorphism φ : FR((s1∪s2)∗) → FR(s∗2)

defined above is identical on H and determines a solution of the system s∗1 over FR(s∗2). Hence φ ◦ ψ is
an identity on FR(s∗2). 2

Let F̃R((s1∪p2)∗) be the factor-group of FR((s1∪p2)∗) over the intersection of the kernels of all epimor-
phisms in P .

Lemma 9 The homomorphism λ induces an embedding of F̃R(s1∪p2) into FR((s1∪s2)∗).

Proof Take an element g ∈ FR((s1∪p2)∗) which does not belong to the intersection of all these kernels.
Then there is an epimorphism π : FR((s1∪p2)∗) → FR(s∗2) such that π(g) 6= 1. This implies that λ(g) 6= 1
by the commutativity of the diagram above.

Case 15. γi ≥ 2 for each hi belonging to working sections (and the application of Case 14 would
give an isomorphism FR((s1∪p2)∗) → FR(s∗2), so we do not apply the transformation of Case 14). In this
case it must be some hi with γi > 2. Apply the entire transformation. Continue all boundaries that
touch at least one base through all the bases they intersect.

In Case 15 it is also possible that there are some auxiliary edges coming out of the vertex v, this is
described below in Case 15.1.

Case 15.1. All the assumptions of Case 15 hold. In addition the carrier base µ of the equation Ωv
intersects with ∆(µ). First construct some equation Ωv′ in the following way. Introduce the new closed
section [ρv + 1, ρv + 2], and announce this section as a constant section. Introduce a new pair of bases
(λ,∆(λ)), such that α(λ) = 1, β(λ) = β(∆(µ)), α(∆(λ)) = ρv + 1, β(∆(λ)) = ρv + 2. In other words
we introduce the new basic equation h′ = h[1, β(∆(µ))], where h′ is a new variable. Let π(v, v′) be a
natural isomorphism. Notice that Ωv can be obtained from Ωv′ with the use of E4 by deleting δ(λ)
together with the closed section [ρv+1, ρv+2]. For the equation Ωv′ we have Case 15, but λ is a carrier
base. Applying to Ωv′ transformations described for Case 15, we obtain the list of all auxiliary edges
coming out of the vertex v.
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The tree T (Ω) is described. In Case 14 we can not say that every solution of one of the equations
Ωv′ is a solution of Ωv, but we can say that every solution of one of the equations Ω∗v′ is a solution
of Ω∗v. We can also say that every solution of Ωv is a solution of one of the equations Ωv′ and every
solution of Ω∗v is a solution of one of the equations Ω∗v′ .

Notice that our first 11 cases coincide with 11 cases in Razborov’s thesis. Our Cases 12 and 13
correspond to his Cases 13 and 14 respectively. Our Case 14 is different; our Case 15 is a partial case
of his Case 15.

If Case i (1 ≤ i ≤ 13) takes place for a vertex v, we say that v has type i and write tp(v) = i. In
Case 14 (resp. 15) we say that tp(v) = 14 (resp. tp(v) = 15) depending on whether we apply to v the
transformation of Case 14 or 15.

Lemma 10 (Lemma 3.1, [?]) If v1 → v2, is the principal edge of the tree T (Ω), then

1. n′2 ≤ n′1, if tp(v1) 6= 3, 10. This inequality is proper if tp(v1) = 6, 7, 9, 12.

2. If tp(v1) = 10, then n′2 ≤ n′1 + 2.

3. ν′2 ≤ ν′1 if tp(v1) ≤ 12 and tp(v1) 6= 3, 11.

4. τ ′2 ≤ τ ′1, if tp(v1) 6= 3, 14.

All these assertions can be verified directly.

Lemma 11 Let v1 → v2 → . . . → vr . . . be an infinite path in the tree T (Ω). Then there exists N
such that all the edges of this path starting with N are principal edges, and one of the following holds:

1. 7 ≤ tp(vn) ≤ 10 for all n ≥ N,

2. tp(vn) = 15 for all n ≥ N .

Proof Notice that if some generalized equation contains a coefficient equation hi = a±1
j , such that

hi belongs to the working part, then we apply transformations of Cases 3,4, decreasing the number of
such equations. So in generalized equations of 2t’s level (where t is the number of coefficient equations
in initial Ω) unknowns on the working part will not belong to coefficient equations, and without loss
of generality we can think that Ω already has this property. Then we do not use Cases 3,4 in the
construction of the tree. Case 14 can only occur finitely many times , because the transformation 14
gives a proper homomorphism FR(Ω∗

v) → FR(s∗2). So we can suppose that we do not have it. So all our
transformations do not increase complexity. We can suppose that tp(vi) ≥ 5 for all i.

We show that the number of vertices for which tp(vi) = 5 is not more than ρ. Indeed, if we denote
by Ω′ the generalized equation obtained from Ω by deleting all the coefficient equations, then the tree
T (Ω′) can be obtained from T (Ω) by replacing all generalized equations Ωv by Ωv′ ; hence for any vertex
there is a surjective homomorphism from FR(Ω′∗) to FR(Ω′∗

v ). This implies that FR(Ω′∗
v ) can be generated

by ρ+ ω elements, where ω = card(ā). If the path from the root v0 to v contains at least ρ+ 1 vertex
of type 5, then Ω′v would have at least ρ+ 1 fictitious variables (on the constant sections). Sending all
the other variables into identity we would have a homomorphism from FR(Ω′∗

v ) onto a free group of rank
ρ+ ω + 1, which gives a contradiction (see Proposition 1.2.7 [?]).

So we can suppose that tp(vi) 6= 5.
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The value of complexity must be stabilized for the infinite path. If we have an auxiliary edge then it
only can be constructed by using the Case 15.1. But by applying the transformation of Case 15 to the
equation Ω′v, constructed for the Case 15.1, both bases µ and ∆(µ) will be transferred from the base λ
to the constant part, so the complexity will be decreased by 2. But τv′ = τi+1, hence τ ′i+1 < τ ′i . Hence
the number of auxiliary edges in the path must be finite. So we can suppose that τ ′i is a constant and
all the edges of the path are principal edges.

If now tp(vi) = 6 , then the closed section, containing matched bases µ,∆(µ), can not contain any
other bases, because then complexity would be decreased. But if this section does not contain any other
bases, then tp(vi+1) = 5 which is also impossible.

So we can suppose that tp(vi) ≥ 7. If the equation Ω1 does not contain free boundaries and Ω2

is obtained from it by an elementary transformation other than E3, then Ω2 does not contain free
boundaries. Hence tp(vi) 6= 6 implies that tp(vi) 6= 11.

If 12 ≤ tp(vi) ≤ 13, or tp(vi) = 15, then tp(vi+1) ∈ {6, 13, 14, 15, 12}. Since tp(vi) 6= 6, 14, this
implies that for all vertices vj(j ≥ i) we also have 12 ≤ tp(vi) ≤ 13 or tp(vi) = 15. In this case the
sequence n′ stabilizes by lemma 10. In addition, if tp(vj) = 12, then n′j+1 < n′j . Hence tp(vj) 6= 12 for
all j. There can not be more than 8(n′)2 vertices of type 13 in a row; hence there exists j ≥ i such
that tp(vj) = 15. The series of transformations E5 in Case 15 guarantees the inequality tp(vj+1) 6= 13;
hence tp(vj+1) = 15, and we have assertion 2 of the lemma.

So we can suppose tp(vi) ≤ 10 for all the vertices of our path. Then we have assertion 1 of the
lemma. 2

6. Periodized equations

This section is basically a translation of the corresponding section from [?].
Let us assume at first that the equation Ω contains no boundary connections and is nondegenerate.

The periodic structure of the equation Ω is a pair 〈P, R〉, where P is a set of unknowns, bases, and
closed sections of the equation Ω; R is an equivalence relation on a certain set of boundaries (which will
be defined below – see item e)), and where the pair 〈P, R〉 satisfies the following six properties:

a) if hi ∈ P and hi ∈ µ, then µ ∈ P; moreover, this holds ∀hi ∈ P (γi ≥ 1);

b) if µ ∈ P, then ∆(µ) ∈ P;

c) if µ ∈ P and µ ∈ [i, j], then [i, j] ∈ P;

d) there exists a function X mapping the set of closed sections from P into {−1,+1} such that for
every µ, [i1, j1], [i2, j2] ∈ P, the condition that µ ∈ [i1, j1] and ∆(µ) ∈ [i2, j2] implies

ε(µ) · ε(∆(µ)) = X ([i1, j1]) · X ([i2, j2]);

e) R is an equivalence relation on the set of those boundaries l for which there exists [i, j] ∈ P such
that i ≤ l ≤ j. Furthermore, if a boundary l is closed, and both closed sections [j, l] and [l, j]
belong to P, then we consider two copies of the boundary l, not related to each other, one of
which is associated with [i, l] and the other with [l, j];

f) if µ ∈ P, then R(α(µ), α(∆(µ))), R(β(µ), β(∆(µ))) in the case where ε(µ) = ε(∆(µ)) and
R(α(µ)), β(∆(µ))), R(β(µ), α(∆(µ))) in the case where ε(µ) = −ε(∆(µ)). Here the boundaries
α(µ), β(µ) are associated with the closed section on which the base µ lies.
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A solution H̄ of a generalized equation Ω is called periodic with respect to a period P (P is a
primitive cyclically irreducible word), if for every closed section [i, j] containing at least one base either
d(H[i, j]) = 1 or the word H[i, j] can be represented in the form

H[i, j] = ArA1 (11)

(r ≥ 1, A = A1A2, A is a primitive word, d(A) ≤ d(P )),

where for at least one such section the word A in presentation (11) is a cyclic shift of the word P±1,
and r ≥ 2.

Now we will show how one associates to each solution H̄ of a generalized equation Ω a periodic
structure 〈P, R〉, which will be denoted by P(H̄, P ). A closed section [i, j] is included in the list P if
and only if it contains at least one base and has a presentation (11) in which A is a cyclic shift of the
word P±1 and r ≥ 2. An unknown hi is included in the list P if and only if hi belongs to a closed
section from P and d(Hi) ≥ 2d(P ). A base µ is included in P if and only if either µ or ∆(µ) contains
an unknown from P.

For a set P defined in this way, items a) and b) from the definition of a periodic structure can be
trivially verified.

Let µ ∈ P and µ ∈ [i, j]. There exists an unknown hk ∈ P such that hk ∈ µ or hk ∈ ∆(µ). If
hk ∈ µ, then, obviously, [i, j] ∈ P. If hk ∈ ∆(µ) and ∆(µ) ∈ [i′, j′], then [i′, j′] ∈ P, and hence, the
word H[α(∆(µ)), β(∆(µ))] can be written in the form Qr

′
Q1, where Q = Q1Q2; Q is a cyclic shift of the

word P±1 and r′ ≥ 2. Now let (11) be a presentation for the section [i, j]. Then H[α(µ), β(µ)] = BsB1,
where B is a cyclic shift of the word A±1, d(B) ≤ d(P ), B = B1B2, and s ≥ 0. From the equality
H[α(µ), β(µ)]ε(µ) = H[α(∆(µ)), β(∆(µ)))]ε(∆(µ)) and Lemma 1.2.9 [1] it follows that B is a cyclic
shift of the word Q±1. Consequently, A is a cyclic shift of the word P±1 and r ≥ 2 in (11), since
d(H[i, j]) ≥ d(H[α(µ), β(µ)]) ≥ 2d(P ). Therefore, [i, j] ∈ P; i.e, part c) of the definition of a periodic
structure holds.

Put X ([i, j]) = ±1 depending on whether in (11) the word A is conjugate to P or to P−1. If
µ ∈ [i1, j1], ∆(µ) ∈ [i2, j2], and µ ∈ P, then the equality ε(µ) · ε(∆(µ)) = X ([i1, j1]) · X ([i2, j2]) follows
from the fact that given ArA1 = BsB1 and r, s ≥ 2, the word A cannot be a cyclic shift of the word
B−1. Hence, part d) also holds.

Now let [i, j] ∈ P and i ≤ l ≤ j. Then there exists a subdivision P = P1P2 such that if X ([i, j]) = 1,
then the word H[i, l] is the end of the word (P∞)P1 and H[l, j] is the beginning of the word P2(P∞),
and if X ([i, j]) = −1, then the word H[i, l] is the end of the word (P−1)∞P−1

2 and H[l, j] is the
beginning of P−1

1 (P−1)∞. Again, Lemma 1.2.9 [?] implies that the subdivision P = P1P2 with the
indicated properties is unique; denote it by δ(l). Let us define a relation R in the following way:
R(l1, l2) ⇀↽ δ(l1) = δ(l2). Item e) of the definition of a periodic structure obviously holds.

Item f) follows from the graphic equality H[α(µ), β(µ)]ε(µ) = H[α(∆(µ)), β(∆(µ))]ε(∆(µ)) and
Lemma 1.2.9 [?].

Now let us fix a nonempty periodic structure 〈P, R〉. Item d) allows us to assume (after replacing
the variables hi, . . . , hj−1 by h−1

j−1, . . . , h
−1
i on those sections [i, j] ∈ P for which X ([i, j]) = −1) that

ε(µ) = 1 for all µ ∈ P. For a boundary k, we will denote by (k) the equivalence class of the relation R
to which it belongs.

Let us construct an oriented graph Γ whose set of vertices is the set of R–equivalence classes. For
each unknown hk lying on a certain closed section from P, we introduce an oriented edge e leading
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from (k) to (k + 1) and an inverse edge e−1 leading from (k + 1) to (k). This edge e is assigned the
label h(e) ⇀↽ hk (respectively, h(e−1) ⇀↽ h−1

k .) For every path r = e±1
1 . . . e±1

s in the graph Γ denote
by h(r) its label h(e±1

1 ) . . . h(e±1
j ). The periodic structure 〈P, R〉 is called connected, if the graph Γ is

connected. Suppose first that 〈P, R〉 is connected.

Lemma 12 Let H̄ be a solution of a generalized equation Ω periodic with respect to a period P ,
〈P, R〉 = P(H̄, P ); c a cycle in the graph Γ at the vertex (l); δ(l) = P1P2. Then there exists n ∈ Z such
that H(c) = (P2P1)n.

Proof If e is an edge in the graph Γ with initial vertex V ′ and terminal vertex V ′′ and P = P ′1P
′
2,

P = P ′′1 P
′′
2 are two subdivisions corresponding to the boundaries from V ′, V ′′ respectively, then,

obviously, H(e) = P ′2P
nkP ′′1 (nk ∈ Z). The claim is easily proven by multiplying together the values

H(E) for all the edges e taking part in the cycle c.
A generalized equation Ω is called periodized with respect to the periodic structure 〈P, R〉 of this

equation, if for every two cycles c1 and c2 in the graph Γ having the same initial vertex, the following
equality holds in the group FR(Ω∗):

[h(c1), h(c2)] = 1. (12)

Let Γ0 be the subgraph of the graph Γ having the same set of vertices and consisting of the edges
e whose labels do not belong to P. Choose a maximal subforest T0 in the graph Γ0 and extend it
to a maximal subforest T of the graph Γ. Since 〈P, R〉 is connected by assumption, it follows that
T is a tree. Let V0 be an arbitrary vertex of the graph Γ and r(V0, V ) the (unique) path from V0

to V all of whose vertices belong to T . For every edge e : V → V ′ not lying in T , introduce a
cycle ce = r(V0, V )e(r(V0, V

′))−1. Then (see the proof of Proposition 3.2.1 [?]) the fundamental group
π1(Γ, V0) is generated by the cycles ce. This and the decidability of the universal theory of a free group
imply that the property of a generalized equation “to be periodized with respect to a given periodic
structure” is algorithmically decidable.

Furthermore, the set of elements

{h(e) | e ∈ T} ∪ {h(ce) | e 6∈ T} (13)

forms a basis of the free group with the set of generators {hk | hk is an unknown lying on a closed
section from P}. If µ ∈ P, then (β(µ)) = (β(∆(µ))), (α(µ)) = (α(∆(µ))) by part f) from the definition
of a periodic structure and, consequently, the word h[α(µ), β(µ)]h[α(∆(µ)), β(∆(µ))]−1 is the label of
a cycle c′(µ) from π1(Γ, (α(µ))). Let c(µ) ⇀↽ r(V0, (α(µ)))c′(µ)r(V0, (α(µ)))−1. Then

h(c(µ)) = uh[α(µ), β(µ)]h[α(∆(µ)), β(∆(µ))]−1u−1, (14)

where u is a certain word. Since c(µ) ∈ π1(Γ, V0), it follows that c(µ) = bµ({ce | e 6∈ T}), where bµ is a
certain word in the indicated generators which can be effectively constructed on the basis of the proof
of Proposition 3.2.1 [?].

Let b̃µ denote the image of the word bµ in the factor group of π1(Γ, V0) over the derived subgroup.
Denote by Z̃ the free abelian group consisting of formal linear combinations

∑
e 6∈T nec̃e (ne ∈ Z), and

by B̃ its subgroup generated by the elements b̃µ (µ ∈ P) and the elements c̃e (e 6∈ T, h(e) 6∈ P). Let
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Ã = Z̃/B̃, T (Ã) the torsion subgroups of the group Ã, and Z̃1 the preimage of T (Ã) in Z̃. The group
Z̃/Z̃1 is free; therefore, there exists a decomposition of the form

Z̃ = Z̃1 ⊕ Z̃2, B ⊆ Z̃1, (Z̃1 : B̃) <∞. (15)

Note that it is possible to express effectively a certain basis ˜̄c(1), ˜̄c(2) of the group Z̃ in terms of
the generators c̃e so that for the subgroups Z̃1, Z̃2 generated by the sets ˜̄c(1), ˜̄c(2) respectively, relation
(15) holds. For this it suffices, for instance, to look through the bases one by one, using the fact
that under the condition Z̃ = Z̃1 ⊕ Z̃2 the relations B̃ ⊆ Z̃1, (Z̃1 : B̃) < ∞ hold if and only if the
generators of the groups B̃ and Z̃1 generate the same linear subspace over Q, and the latter is easily
verified algorithmically (a more economical algorithm can be constructed by analyzing the proof of
the classification theorem for finitely generated abelian groups). By Proposition 1.4.4 [7], one can
effectively construct a basis c̄(1), c̄(2) of the free (nonabelian) group π1(Γ, V0) so that ˜̄c(1), ˜̄c(2) are the
natural images of the elements c̄(1), c̄(2) in Z̃.

A generalized equation Ω is called singular with respect to a connected periodic structure 〈P, R〉, if
at least one of the following three conditions holds:

a) Ω is not periodized with respect to 〈P, R〉;

b) rk(A⊗Q) ≥ 2;

c) rk(A⊗Q) = 1 and there exists e 6∈ T such that h(e) 6∈ P and h(ce) 6= 1 in the group FR(Ω∗).

Otherwise, the equation Ω is called regular. Thus , Ω is regular with respect to 〈P, R〉 if and only
if Ω is periodized, rk(A⊗Q) ≤ 1, and in the case rk(A⊗Q) = 1 for all e 6∈ T such that h(e) 6∈ P, we
have h(ce) = 1 in the group FR(Ω∗). The definitions of singularity and regularity formally depend on
the tree T , therefore we assume that T is fixed once and for all in an arbitrary way.

Now assume that 〈P, R〉 is an arbitrary periodic structure of a generalized equation Ω, not necessarily
connected. Let Γ1, . . . ,Γr be the connected components of the graph Γ constructed above. The labels
of edges of the component Γi form in the equation Ω a union of closed sections from P; moreover, if
a base µ ∈ P belongs to such a section, then its dual ∆(µ), by item f) of the definition of a periodic
structure, also possesses this property. Therefore, by taking for Pi the set of labels of edges from Γi
belonging to P, sections to which these labels belong, and bases µ ∈ P belonging to these sections, and
restricting in the corresponding way the relation R, we obtain a periodic connected structure 〈Pi, Ri〉
with the graph Γi. A generalized equation Ω is called singular with respect to 〈P, R〉 if it is singular
with respect to at least one structure 〈Pi, Ri〉 (1 ≤ i ≤ r) and regular otherwise.

The notation 〈P ′, R′〉 ⊆ 〈P, R〉 means that P ′ ⊆ P, and the relation R′ is a restriction of the relation
R. In particular, 〈Pi, Ri〉 ⊆ 〈P, R〉 in the situation described above.

Lemma 13 Let Ω be a nondegenerate generalized equation with no boundary connections, singular
with respect to the periodic structure < P,R >. Then FR(Ω∗) is isomorphic to FR(S) where S is such
that the list of variables x̄ of Ω is subdivided into two parts ȳ and z̄, and the list of equations in S is
subdivided into two parts θ and ψ, such that ȳ does not occur in the equations ψ, and θ has the following
form.
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a) If Ω is singular of type a, then θ is empty.

b) If Ω is singular of type b, then

[y1, y2] = [y1, Ui(z̄, ā)] = [y2, Ui(z̄, ā)] = 1, i = 1, . . . k. (16)

c) If Ω is singular of type c, then

[y1, Ui(z̄, ā)] = 1, i = 1, . . . k. (17)

The group FR(S) is isomorphic to F(θ,R(ψ)). There is a finite family of cycles c1, . . . , cr in the graph
Γ such that h(ci) 6= 1 (1 ≤ i ≤ r) in the group FR(Ω∗) and for any solution H̄ of the equation Ω
periodic with respect to some period P , such that < P, R >= P(H̄, P ), there is an automorphic image
H̄+ of H̄ with respect to the group of automorphisms P0 of FR(S) invariant on elements from ā, z̄
(πH̄+ = πH̄σ, σ ∈ P0) such that there exists i (1 ≤ i ≤ r) such that H̄+(ci) = 1. In case a) r = 1. In
case b) r = 1 and y1 = h(c1).

In all cases every solution of the system ψ can be extended to a solution of the system θ ∪ ψ.

In other words, every solution H̄ of Ω can be obtained as a composition of a solution of θ over a factor-
group of FR(Ω∗) over the normal subgroup generated by one of the h(ci) and a canonical homomorphism
from this factor-group into F corresponding to a solution H̄+.

Proof We can restrict ourselves to the case of a connected graph Γ.
Consider 3 types of equations singular with respect to the periodic structure < P, R > .
In case a) the list {ci} consists of some cycle [ce1 , ce2 ], e1, e2 6∈ T which is not equal to the identity

in FR(Ω∗), and we put H̄+ = H̄.
In case b): Ωv = Ω is periodized and rk(A

⊗
Q) ≥ 2. Adding to the system Ω∗ equations (12) for all

pairs of cycles ce1 , ce2 (e1, e2 6∈ T ), we have an equivalent system. Consider in the free group F (Ω∗) a
new basis ā, x̄ consisting of ā, variables not belonging to the closed sections from P, variables {h(e)|e ∈
T} and words h(c̄(1)), h(c̄(2)). Notice that |c̄(2)| = rk(A

⊗
Q) ≥ 2. Let y1 = h(c(2)1 ), y2 = h(c(2)2 ), and

the rest of the variables from the list x̄ will be considered as variables from z̄. All the equations of the
system Ω∗ can be rewritten modulo (12) in the variables z̄ as a system ψ̄(0)(z̄, ā) = 1.

The relations in (12) can be rewritten in the form

[h(c), h(c′)] = [y1, y2] = [y1, h(c)] = [y2, h(c)] = 1, (c, c′ ∈ c̄(1), c(2)3 , c
(2)
4 , . . . , c(2)m ). (18)

The system φ̄, obtained as a union of equations (18) and equations from ψ̄(0) is equivalent to Ω∗ so
there is a natural isomorphism between FR(Ω∗) and FR(φ̄).

If in these relations some h(c) is a proper power, we can replace it by the corresponding root, get a
new system φ̄1, and by lemma 12 R(φ) = R(φ̄1).

We assign equations from ψ̄(0) and [h(c), h(c′)] = 1 to the list ψ̄ and the rest of the equations (18)
to the list θ̄. We have a splitting of equations and can consider canonical group of automorphisms
connected to this splitting.

The list c1, . . . , cr consists of the one cycle c(2)1 .
Every solution H̄ of Ω can be obtained as a composition of a solution of θ over a factor-group FR(Ω∗)

over the normal subgroup generated by h(c1), and a canonical homomorphism from this factor-group
into F corresponding to the solution H̄+.
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If the equation Ω has at least one solution, then ψ also has a solution Z̄. Take as Y1 and Y2 an
arbitrary nontrivial word that commutes with components C̄(1), C

(2)
3 , . . . , C

(2)
m of the solution Z̄ we will

have a solution of system φ̄; this implies that h(c(2)1 ) 6= 1 in the group FR(Ω∗).
Let solution H̄ of generalized equation Ω be periodized with respect to the period P , and < P, R >⊆

P(H̄, P ). By lemma 12, H(c(2)1 ) = Qn1 ,H(c(2)2 ) = Qn2 .
Applying the automorphism from the canonical group of automorphisms we can make y1 = 1. This

means that sending y1 = c
(2)
1 into a trivial element we have a proper homomorphism from FR(Ω∗) into

the subgroup generated by the rest of the generators including y2, and FR(Ω∗) is the extension of a
centralizer, since the subgroup generated by h(c), c ∈ c̄(1), c

(2)
3 , c

(2)
4 , . . . , c

(2)
m is maximal abelian in the

group generated by z̄.
Consider now case c). The system of equations is equivalent to some list ψ̄(0) which does not contain

the variable w = h(c(2)1 ) and has commutativity relations:

[w, h(c)] = 1 (c ∈ c̄(1)), (19)

[h(c), h(c′)] = 1 (c, c′ ∈ c̄(1)). (20)

These relations can be also rewritten in the form

u = h(ce0);w
−1uw = h(ce0); [u, h(c)] = 1 (c ∈ c̄(1)). (21)

The group FR(Ω∗) is isomorphic to the extension of a centralizer of a maximal abelian subgroup of
the group generated by all the generators ā, x̄ except w.

The epimorphism from FR(Ω∗) to the subgroup generated by all the generators except w is proper.
As a list of cycles c1, . . . cr we can take cie0(c

(2)
1 )j , where i, j run through the set of pairs of integers

not simultaneously equal to zero and |i|, |j| ≤ 2ρ (ρ is the number of items in Ω).
Verify that if h(ce0)

ih(c(2)1 )j = 1 in FR(Ω∗), then i = j = 0. Suppose h(ce0)
ih(c(2)1 )j = 1. Let σ0

be a generator of the group of automorphisms P0 such that σ0(h(ce0)) = (h(ce0)) and σ0(h(c
(2)
1 )) =

(h(ce0))(h(c
(2)
1 )). Hence (h(ce0))

i+jh(c(2)1 )j = 1 in FR(Ω∗) and (h(ce0))
j = 1. This implies (h(ce0)) = 1

(because FR(Ω∗) is torsion-free) unless j = 0. But (h(ce0)) 6= 1; hence j = 0. In the same way we get
i = 0.

Let a solution H̄ of the generalized equation Ω be periodic with respect to the period P and
〈P, R〉 ⊆ P(H̄, P ). Observe that e0 = r1ce0r2, where r1 and r2 are paths in the tree T . Since e0 ∈ Γ0, it
follows that the initial vertex and the terminal vertex of the edge e0 lie in the same connected component
of the graph Γ0 and, consequently, are connected by a path s in the forest T0. Furthermore, r1 and
sr−1

2 are paths in the tree T connecting the same vertices; therefore, r1 = sr−1
2 . Hence, ce0 = r2c

′
e0r

−1
2 ,

where c′e0 is a certain cycle in the graph Γ0.
From the equality H(ce0) = H(r2)H(c′e0)H(r2)−1 it follows that the cyclically irreducible words

H(ce0) and H(c′e0) are conjugate, and hence d(H(ce0)) = d(H(c′e0)) ≤ 2ρd(P ), since the cycle c′e0 is
primitive and for every unknown hk 6∈ P the inequality d(Hk) < 2d(P ) is true by the definition of the
structure P(H̄, P ).

Without loss of generality we may assume that δ(V0) = ΛP , where Λ is the empty word, so by
Lemma 12, H(ce0) = Pn0 , and H(C(2)

1 ) = W = Pn (|n0| ≤ 2ρ).
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If n0 = 0, we can take σ = 1, H̄+ = H̄ and the set of cycles {ce0}.
Let n0 6= 0, n = tn0 + n′, and |n′| ≤ 2ρ. Take as σ the power σt0 of the generator σ0 and define the

vector H̄+ by the formula πH̄+ = πH̄σ. If we take the cycle c = (ce0)
−n′(c(2)1 )n0 , then H+(ce0) = Pn0 ,

H+(c(2)1 ) = Pn
′
and H+(c) = 1. The proof of Lemma 13 is complete.

Lemma 14 (lemma 2.11 from [?]) Let Ω be a consistent generalized equation without boundary
connections, regular with respect to a periodic structure 〈P, R〉. Then it is possible to effectively construct
a group of automorphisms P0 of the group FR(Ω∗), which is a direct product of a finite number of
canonical groups of automorphisms, so that the following condition is satisfied.

Let H̄ be a solution of the generalized equation Ω, periodic with respect to a period P , and 〈P, R〉 =
P(H̄, P ). If the solution H̄ is minimal with respect to the group of automorphisms P0, then for every
hk ∈ P the inequality d(Hk) ≤ f2(Ω,P, R) · d(P ) holds, where f2 is a certain computable function.

Proof Let Γ be the graph corresponding to the periodic structure 〈P, R〉, and Γ1, . . . ,Γr its connected
components. Let 〈Pi, Ri〉 be the corresponding connected periodic structures. If we were able to prove
Lemma 14 for each of the structures 〈Pi, Ri〉 and construct the required groups of automorphisms
P1, . . . , Pr, then every solution minimal with respect to P0 =< P1, . . . , Pr >= P1 × . . .× Pr would also
be minimal with respect to all the Pi, which would imply Lemma 14 for 〈P, R〉. Therefore, it suffices
to restrict ourselves to the case of a connected periodic structure.

Let e1, . . . , em be all the edges of the graph Γ from T \ T0. Since T0 is the spanning forest of the
graph Γ0, it follows that h(e1), . . . , h(em) ∈ P. Let us choose a basis x̄, ā in the same way as in the proof
of the previous lemma and study in more detail how the unknowns h(ei) (1 ≤ i ≤ m) can participate
in the equations from Ω∗ rewritten in this basis.

If hk does not lie on a closed section from P, or hk ∈ P, but e 6∈ T (where h(e) = hk), then hk belongs
to the basis x̄, ā and is distinct from each of h(e1), . . . , h(em). Now let h(e) = hk, hk 6∈ P and e 6∈ T .
Since e ∈ Γ0, the vertices (k) and (k+1) lie in the same connected component of the graph Γ0, and hence
are connected by a path s in the forest T0. Furthermore, r1 and sr−1

2 are paths in the tree T connecting
the vertices (k) and V0; consequently, r1 = sr−1

2 . Thus, e = sr−1
2 cer2 and hk = h(s)h(r2)−1h(ce)h(r2).

The unknown h(ei) (1 ≤ i ≤ m) can occur in the right-hand side of the expression obtained (written
in the basis x̄, ā) only in h(r2) and at most once. Moreover, the sign of this occurrence (if it exists)
depends only on the orientation of the edge ei with respect to the root V0 of the tree T . If r2 = r′2e

±1
i r′′2 ,

then all the occurrences of the unknown h(ei) in the words hk written in the basis x̄, ā, with hk 6∈ P,
are contained in the occurrences of words of the form h(ei)∓1h((r′2)

−1cer
′
2)h(ei)

±1, i.e., in occurrences
of the form h(ei)∓1h(c)h(ei)±1, where c is a certain cycle of the graph Γ starting at the initial vertex
of the edge e±1

i . The system Ω∗ is equivalent to the following system: we introduce new variables
ū(i) = {uie|e 6∈ T}, z̄(i) = {zie|1 ≤ i ≤ m, e 6∈ T} and add to Ω∗ equations

uie = h(r(V0, Vi)−1cer(V0, Vi)), (22)

h(ei)−1uieh(ei) = zie, (23)

[uie1 , uie2 ] = 1, (24)

where e runs over the list of edges not belonging to T and i is fixed. Because h(ei) does not belong to
the right part of (22), we can rewrite Ω∗ in the form ψ̄(1)(x̄, z̄(i), ā) = 1, such that h(ei) does not occur
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in ψ̄(1). Include now all the variables except h(ei) into the list z̄ and also all the variables ū(i) except
some fixed uie0 . Let ψ̄ consist of the equations ψ̄(1) and those equations (22), (24) which do not contain
this uie0 . θ consists of (23) and the rest of (22), and (24).

We write u = uie0 , w = h(e), U1 = h(r(V0, Vi)−1cer(V0, Vi)), U0 = zie0 , and let pairs < U, V > be
pairs < uie, zie > (e 6= e0).

Then we have a presentation
w−1uw = U0(z̄, ā), u = U1, (25)

and several pairs
w−1Uw = V, [u, U ] = 1. (26)

Canonical automorphisms have the form u→ u,w → urw.
Now let H̄ be a solution of the generalized equation Ω periodic with respect to some period P , 〈P, R〉

a connected component of the structure P(H̄, P ), and let the solution H̄ be minimal with respect to
the group of automorphisms P0. Without loss of generality, we can assume that δ(V0) = ΛP . Then, by
Lemma 12, there is a homomorphism γ : Z̃ → Z such that for every cycle c ∈ π1(Γ, V0) the condition
H(c) = P γ(c̃) holds. Let us first verify that if for some variable hk ∈ P

d(Hk) ≥ 2ρ2d(P ), (27)

then γ(Z̃) contains a certain n such that 1 ≤ n ≤ 2ρ (ρ is the number of unknowns in the equation Ω).
To verify this, let us construct a chain

(Ω, H̄) = (Ω0, H̄
(0)) → (Ω1, H̄

(1)) → · · · → (Ωt, H̄(t)), (28)

in which every term is obtained from the previous one by extending a certain boundary through
a certain base µ ∈ P with the help of the E.5 transformation. The construction of the chain (28)
terminates when all boundaries intersecting bases from P turn out to be extended through these bases.
Let Ω′i be the equation obtained from Ωi by deleting all boundary connections. It is obvious that the
solution H̄(i) of the equation Ω′i is periodic with respect to the period P . Denote by 〈Pi, Ri〉 the periodic
structure P(H̄(i), P ) of the equation Ω′i restricted to the closed sections of P, and by Γ(i), Z̃(i), γi the
corresponding graph, abelian group of cycles and homomorphism Z̃(i) → Z, respectively.

If 〈P, µ, q〉 (µ ∈ P) is a boundary connection of the equation Ωi (1 ≤ i ≤ t), then δ(p) = δ(q); there-
fore, all the graphs Γ(0), Γ(1), . . . ,Γ(t) have the same set of vertices, whose cardinality does not exceed
ρ. The solution H̄(t) of the equation Ωt is minimal with respect to the trivial group of automorphisms.
Suppose that for some unknown hl lying on a closed section from P the inequality d(H(t)

l ) > 2d(P )
holds. In the vector H̄(t), replace all the components that are graphically equal to (H̄(t)

l )±1 and cor-
respond to the unknowns lying on the closed sections from P, by a letter u±1 of the alphabet Σ2 not
participating in the solution H̄(t). The resulting vector obviously satisfies the conditions of nonempti-
ness and irreducibility. It satisfies all basic equations of the generalized equation Ωt with numbers µ ∈ P
and all the corresponding boundary equations, since in the equation Ωt all the boundaries from P are
extended through all possible boundaries. If, on the other hand, µ 6∈ P, then for every unknown hk ∈ µ
of the equation Ω lying on a closed section from P, we have hk 6∈ P and, consequently, d(Hk) ≤ 2d(P ).
In particular, this inequality holds for the unknowns hk ∈ µ of the equation Ωt; therefore, such un-
knowns have not been replaced in the vector H̄(t). Consequently, the vector constructed is a solution
to the equation Ωt, which contradicts the minimality of the solution H̄(t).
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Thus we have established the fact that d(H(t)
l ) ≤ 2d(P ), if hl lies on a closed section from P. In

particular, the unknown hk of the equation Ω for which inequality (27) holds was divided during the
transition to the equation Ωt into at least ρ distinct unknowns. Since the graph Γ(t) contains at most ρ
vertices, in the equation Ω′t we can choose boundaries l and l′ such that l < l′, (l) = (l′), and l′− l ≤ ρ.
The word h[l, l′] is a label of a cycle ct of the graph Γ(t) for which 0 < d(H(ct)) ≤ 2ρd(P ), i.e., γt(Z̃(t))
contains a number n with the property 1 ≤ n ≤ 2ρ. By πij (0 ≤ i < j ≤ t) we denote from now on the
homomorphism G(Ω∗i ) → G(Ω∗j ) defined by the sequence (28). It remains to prove the existence of a
cycle c0 of the graph Γ for which π0t(h(c0)) = h(ct).

To do this, it suffices to show that for every path ri+1 : V → V ′ in the graph Γ(i+1) there exists a
path ri : V → V ′ in the graph Γ(i) such that πi,i+1(h(ri)) = h(ri+1). In turn, it suffices to verify the
latter statement for the case where ri+1 is the edge e. If the unknown h(e) of the equation Ωi+1 is also
an unknown of the equation Ωi, then this is obvious. Otherwise one should use the formulas

π−1
i,i+1(h

′) = h[α(∆(µ)), q]−1h[α(µ), p],

π−1
i,i+1(h

′′) = h[α(µ), p]−1h[α(∆(µ)), q + 1],

defining the inverse isomorphism to πi,i+1, and notice that the right-hand sides of these formulas are
labels of paths in Γ(i), since (α(µ)) = (α(∆(µ))).

Thus, we have deduced from (27) that γ(Z̃) is a nonzero subgroup in Z whose generator n0 satisfies
the inequality |n0| ≤ 2ρ. Assume first that, let rk(A ⊗ Q) = 1. Then the regularity of the equation
Ω implies that for all e 6∈ T with h(e) 6∈ P we have H(ce) = 1, i.e., γ(c̃e) = 0. Since H̄ is a solution,
it follows that γ(b̃µ) = 0 (µ ∈ P). Therefore, γ(B̃) = 0. By (2.54) we obtain that γ(Z̃1) = 0
and, consequently, γ(Z̃) is generated by the single element γ(c̃(2)1 ). Therefore, |γ(c̃(2)1 )| ≤ 2ρ. By the
representation (15), one can effectively construct an expression c̃e = nec̃

(2)
1 + z̃

(1)
e (z̃(1)

e ∈ Z̃1) of the
elements c̃e (e 6∈ T ) in terms of the basis elements. Hence |γ(c̃e)| = |neγ(c̃(2)1 )| ≤ 2ρne, and we finally
obtain

|γ(c̃e)| ≤ g1(Ω,P, R), (29)

where g1 is a computable function.
Now let us analyze the case rk(A ⊗ Q) = 0, i.e., Z̃ = Z̃1. As we have already seen in the proof

of Lemma 13, the cycle ce (e 6∈ T, h(e) 6∈ P) is conjugate to a certain cycle of the graph Γ0, and
d(H(ce)) ≤ 2ρd(P ). Hence, |γ(c̃e)| ≤ 2ρ for h(e) 6∈ P. Because (Z̃ : B̃) <∞, for every e0 6∈ T one can
effectively construct a valid equality of the form ne0 c̃e0 =

∑
h(e) 6∈P nec̃e +

∑
µ∈P nµb̃µ, which implies

|γ(c̃e0)| ≤ |γ(ne0 c̃e0)| ≤
∑

h(e) 6∈P

|neγ(c̃e)| ≤ 2ρ ·
∑

h(e) 6∈P

|ne|.

Thus, in this case we have also demonstrated the estimate (29) for a certain computable function
g3.

Let δ((k)) = P
(k)
1 P

(k)
2 . Denote by t(c, hk) the number of occurrences of the edge with label hk in

the cycle c, calculated taking into account the orientation. Finally, let

Hk = P
(k)
2 PnkP

(k+1)
1 (30)
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(hk lies on a closed section from P), where the equality in (30) is graphic whenever hk ∈ P. Direct
calculations show that

H(c) = P
∑

k
t(c,hk)(nk+1). (31)

Since γ(Z̃) 6= 0, e0 6∈ T can be chosen in such a way that γ(c̃e0) 6= 0. Let nk = |γ(c̃e0)|mk + rk, where
0 < rk ≤ |γ(c̃e0)|. Equation (31) implies that the vector {mk|hk ∈ P} is a solution to the following
system of Diophantine equations in variables {zk|hk ∈ P}:∑

hk∈P

t(ce, hk)(|γ(c̃e0)|zk + rk + 1) +
∑
hk 6∈P

t(ce, hk)(nk + 1) = γ(c̃e) (e 6∈ T ). (32)

Note that the number of unknowns and coefficients of the system (32) are bounded from above (this
follows from (29), the simplicity of the cycles ce and the inequality |nk| ≤ 2ρ (hk 6∈ P) ) by a certain
computable function of Ω, P, and R.

A solution {mk} of a system of linear Diophantine equations is called minimal [?], if mk ≥ 0 and
there is no other solution {m+

k } such that 0 ≤ m+
k ≤ mk for all k, and that at least one of the inequalities

m+
k ≤ mk is strict. Let us verify that the solution {mk|hk ∈ P} of the system (32) is minimal.
Indeed, let {m+

k } be another solution to the system (32) such that 0 ≤ m+
k ≤ mk for all k, and at

least for one k the inequality is strict. Let n+
k = |γ(c̃e0)|m+

k + rk. Form a vector H̄+, putting H+
k = Hk

if hk 6∈ P, and H+
k = P

(k)
2 Pn

+
k P

(k+1)
1 if hk ∈ P. Since the words H+

k and Hk start (and end) with the
same letter, it follows that

T (H̄+) = T (H̄). (33)

Obviously, the vector H̄+ satisfies all the coefficient equations and the basic equations with numbers
µ 6∈ P. Since {m+

k } is a solution of the system (32), H+(ce) = P γ(c̃e) = H(ce). Therefore, for every
cycle c we have H+(c) = H(c) and, in particular, H+(bµ) = H(bµ) = 1. Thus the vector H̄+ is a
solution of the system Ω∗.

The vector H̄+ satisfies the condition of nonemptiness, and by (33) it also satisfies the condition of
irreducibility. Since for every µ it is true that

H+[α(µ), β(µ)]H+[α(∆(µ)), β(∆(µ))]−1 = 1,

and the words H+[α(µ), β(µ)], H+ [α(∆(µ)), β(∆(µ))] are irreducible; it follows that H+[α(µ), β(µ)]
= H+[α(∆(µ)), β(∆(µ))]. Thus, H̄+ is a solution to the generalized equation Ω.

Denote by δie0 the generator of the group of automorphisms Pie0 constructed above. In the ba-
sis x̄, ā the map δie0 acts in the following way: δie0 : h(ei) 7→ h(r(V0, Vi)−1ce0r(V0, Vi))h(ei) (the
other unknowns remain unchanged). Therefore, if πH̄′ = πH̄δie0 and h(ei) = hk ∈ P, then H ′

k =
P

(k)
2 Pnk+γ(ẽ0)P

(k+1)
1 , and all the other components of H̄ ′ (in the basis x̄, ā) are the same as in H̄.

Denote δ =
∏m
i=1 δ

∆i
ie0

, where h(ei) = hki
, ∆i = (m+

ki
−mki

) · sgn(γ(ẽ0)). Let us verify the equality

πH̄+ = πH̄δ. (34)

Let πH̄δ = πH̄(1) . Then, by construction, H(1)
k = P

(k)
2 Pm

+
k P

(k+1)
1 = H+

k for all hk that are labels
of edges from T \ T0. If the edge with label hk lies in T0, or hk does not lie on a closed section from
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P, then hk 6∈ P and H
(1)
k = Hk = H+

k . Finally, note that for every e 6∈ T H(1)(ce) = H(ce) = H+(ce).
Since cxe = r1er2, where r1, r2 are paths in the tree T , and for every unknown hk which is a label of
an edge from T , the equality H(1)

k = H+
k has already been established, it follows that H(1)(e) = H+(e).

This proves (34).
From (33) and (34) it follows that H̄+ ≤P0 H̄, which contradicts the minimality of the solution

H̄ with respect to the group P0. Consequently, the solution {mk|hk ∈ P} of the system of linear
Diophantine equations (32) is minimal.

Lemma 1.1 from [?] states that the components of the minimal solution {mk|hk ∈ P} can be bounded
from above by a recursive function depending on the parameters of the system. Since the parameters of
the system (32), as was mentioned earlier, are bounded from above by a computable function depending
on Ω, P and R, we have the estimate mk ≤ g2(Ω,P, R). The conclusion of Lemma 14 holds if we put

f2(Ω,P, R) ⇀↽ g2(Ω,P, R)(2ρ+ 1).

7. Construction of T0(Ω)

We assign to some vertices v of the tree T (Ω) the groups of automorphisms of groups FR(Ω∗
v). We

also assign for some paths v → w homomorphisms from FR(Ω∗
v) into F ∗R(s1∪s2), where s1 is some system

of equations over FR(Ω∗
w) with a solution in FR(Ω∗

w) and s2 = Ωw.
For each vertex v such that tp(v) = 14, s1 and s2 are defined as in Case 14.
For each vertex v such that 7 ≤ tp(v) ≤ 10 we assign the group of automorphisms invariant with

respect to the kernel; in this case s1 is an empty system over FR(Ω∗
w).

For each vertex v such that tp(v) = 15 and the transformation of case 14 is not applicable (because
it gives an isomorphism π : FR(Ω∗

v) → FR(s∗2)) systems s1 and s2 are those that are defined in the
description of case 14. Take the group P described in case 14 as the group of automorphisms of FR(Ω∗

v)

assigned to v.
Let tp(v) = 2. Equation Ωv will be called nontrivial, if it has a closed section containing at least

one base and not containing variables from the coefficient equations. From the construction it follows
that Ωv is nontrivial if and only if the path from v0 to v contains an auxiliary edge, corresponding to
the case 15.1 If all the auxiliary edges correspond to the cases 4,5, then the equation Ωv is trivial.

For each vertex v such that tp(v) = 2, assign a group generated by the groups of automorphisms
constructed in Lemma 14 that applied to Ωv and all possible periodic structures of this equation with
respect to which Ω̃v is regular. For each periodic structure < Pi, Ri > there is a natural embedding of
the group FR(Ω∗

v) into a free extension of a centralizer of the element U1 ∈ FR(Ω∗
v) from equation (25) by

a letter t, sending w into tw0, where w0 is a minimal solution of Ωv with respect to the automorphism
group Pi of FR(Ω∗

v) from lemma 14.

Lemma 15 [Lemma 3.3 from [?]] Let v1 → v2 → . . . → vk → . . . be an infinite path in the tree
T (Ω), and 7 ≤ tp(vk) ≤ 10 for all k. Then among {Ωk} some generalized equation occurs infinitely
many times. If Ωvk

= Ωvl
, then π(vk, vl) is an isomorphism invariant with respect to the kernel. .

Proof By Lemma 10, τ ′k ≤ τ ′1 and ν′k ≤ ν′1 for all k. Hence, we can suppose τ ′k = τ ′1 and ν′k = ν′1 for all
k. These equalities imply that all the transformations E5 introduce a new boundary.

For all k, Ker(Ω̃vk
) have the same bases. Indeed, consider equations Ω̃vk

and Ω̃vk+1 . Because we do
not have cases 3,4, the working part of Ω̃vk

does not contain coefficient equations.
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If tp(vk) = 7, 8, 10, then Ω̃vk+1 can be obtained from Ω̃vk
by cutting some µ eliminable in Ω̃vk

and
then by deletion of one of the new bases (which is also eliminable by item a) in the definition of the
eliminable base. But the rest of the base µ will also be eliminable by item b). So the set of bases from
the kernel does not change.

Let tp(vk) = 9. By similar reasoning one can show that all the bases of Ω̃vk+1 obtained from
µ2 by cutting do not belong to the kernel. If we cut bases µ1 and µ2 in all boundaries that are
continued in the equation Ωvk

through both these bases, then we can suppose that the section [j1, j2]
does not contain closed boundaries of the equation Ω̃vk

; hence is closed in this equation. Construct some
sequence (7) for the equation Ω̃vk

and take the first equation Ωi, such that one of the bases obtained
by cutting from µ1, µ2,∆µ1,∆µ2 is eliminated in this equation. Denote it by ν. This base ν cannot
be obtained from µ1, µ2. In addition, if ν is eliminable in the equation Ωi using item b), then either
α(ν) ∈ {α(∆(µ1)), α(∆(µ2))} or β(ν) ∈ {β(∆(µ1)), β(∆(µ2))}. We can start the construction of the
sequence (7) for Ω̃vk+1 by deletion of the same first i bases as was done for Ω̃vk

. Then some base ν′

obtained by cutting from µ2,∆(µ2) of the equation Ωvk+1 will become eliminable. But after deletion
of ν′ one can subsequently delete all the other bases obtained from µ2 by cutting, using item b) of
the definition since all the boundaries, touching these bases (except α(µ2), β(µ2)) were not continued
through ∆(µ1) in the equation Ωvk

, and hence do not touch any other bases of Ω̃vk+1 . So, all the bases
of equation Ω̃vk+1 , obtained from µ2 do not belong to the kernel.

We have shown, that the number of bases is the same in all the equations Ker(Ω̃vk
). We denote this

number by n′′. We will now prove the inequality

n′k ≤ 3τ ′ + 6n′′ + 1. (35)

Indeed, if k is the first number for which it fails, then

n′k−1 ≤ 3τ ′ + 6n′′ + 1, n′k > 3τ ′ + 6n′′ + 1. (36)

By Lemma 10, tp(vk−1) = 10. Hence we cannot apply transformations of Cases 5-9 to the equation
Ωvk−1 . Hence every working section of Ωvk−1 either contains at least three bases or contains some base
of the equation Ker(Ω̃vk−1). Hence u′k−1 +w′k−1 ≤ 1

3n
′
k−1 +n′′ and by (10) τ ′ = n′k−1−2w′k−1−u′k−1 ≥

1
3n
′
k−1 − 2n′′, which contradicts (36). Now (10) and (35) imply that u′k +w′k ≤ n′k ≤ 3τ ′ + 6n′ + 1 and

ρ′k ≤ ν′k + u′k + w′k + 1 ≤ 3τ ′ + 6n′′ + ν′ + 2. Hence the set {Ωvk
|k ∈ N} is finite and some generalized

equation occurs in this set infinitely many times.
Let now Ωvk

= Ωvl
. Ker(Ω̃vi+1) is obtained from Ker(Ω̃vi

) by cutting some variables and deletion
of some variables not belonging to Ker(Ω̃vi

). So the number of variables belonging to the bases and
coefficient equations of Ker(Ω̃) can only increase, but Ωvk

= Ωvl
; hence this number is the same for all

the vertices vk, vk+1, . . . , vl. Thus π(vk, vl)(hi) = hi for any such variable. 2

Let the tree T1(Ω) be obtained from T (Ω) by replacing the infinite path in T (Ω) corresponding
to the case 7 ≤ tp(vk) ≤ 10 by a finite initial subpath r such that every generalized equation with ρ
variables in the set {Ωvk

} occurs in r not more than once. For each vertex v in r assign an extra edge
v → w, where Ωw = (̄Ωv)l is the kernel of Ωv (see Lemma 7). Then for w we have Case 1.

Introduce the new parameter
τ ′′v = τ ′v + ρ− ρ′′v ,
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where ρ is the number of variables in the initial equation Ω, ρ′′v the number of variables belonging to
the constant sections of the equation Ωv. We have ρ′′v ≤ ρ, hence τ ′′v ≥ 0. In addition if v1 → v2 is an
auxiliary edge, then τ ′′2 < τ ′′1 .

Define by the joint induction on τ ′′v a finite subtree T0(Ωv) and a natural number s(Ωv). The tree
T0(Ωv) will have v as a root and consist of some vertices and edges of T1(Ω) that lie higher than v. Let
τ ′′v =0; then in T1(Ω) there can not be auxiliary edges and vertices of type 15 higher than v. Hence a
subtree T0(Ωv) consisting of vertices of T1(Ωv) that are higher than v is finite.

Let now
s(Ωv) = maxwmax<P,R>ρwf2(Ωw,P, R), (37)

where w runs through all the vertices of T0(v) for which tp(w) = 2 and Ωw is nontrivial, < P, R > is
the set of periodic structures of the equation Ω̃w, such that Ω̃w is regular with respect to < P, R > and
f2 is a function appearing in Lemma 14.

Suppose now that τ ′′v > 0 and that for all v1 with τ ′′v1 < τ ′′v the tree T0(Ωv1) and the number s(Ωv1)
are already defined. We begin with the consideration of the paths

r = v1 → v2 → . . .→ vm, (38)

where tp(vi) = 15 (1 ≤ i ≤ m). We have τ ′′vi
= τ ′′v .

Denote by µi the carrier base of the equation Ωvi
. The path (38) will be called µ-reducing if µ1 = µ

and either there are no auxiliary edges from the vertex v2 and µ occurs in the sequence µ1, . . . , µm−1

at least twice, or there are auxiliary edges v2 → w1, v2 → w2 . . . , v2 → wk from v2 and µ occurs in the
sequence µ1, . . . , µm−1 at least max1≤i≤ks(Ωwi) times.

The path (38) will be called prohibited, if it can be represented in the form

r = r1s1 . . . rlslr
′, (39)

such that for some sequence of bases η1, . . . , ηl the following three properties hold:

1. every base occuring at least once in the sequence µ1, . . . , µm−1 occurs at least 40n3 + 20n + 1
times in the sequence η1, . . . , ηl, where n is the number of pairs of bases in Ωvi

;

2. the path ri is ηi-reducing;

3. every transfer base of some equation of path r is a transfer base of some equation of path r′.

The property of path (38) of being prohibited is algorithmically decidable. Every infinite path (38) con-
tains a prohibited subpath. Indeed, let ω be the set of all bases occuring in the sequence µ1, . . . , µm, . . .
infinitely many times, and ω̃ the set of all bases, that are carrier bases of infinitely many equations
Ωvi

. If one cuts out some finite part in the beginning of this infinite path, one can suppose that all
the bases in the sequence µ1, . . . , µm, . . . belong to ω and each base that is a carrier base of at least
one equation, belongs to µ̃. Such infinite path for any µ ∈ ω contains infinitely many non-intersecting
µ-reducing finite subpaths. Hence it is possible to construct a subpath (39) of this path, satisfying the
first two conditions in the definition of a prohibited subpath. Making r′ longer one obtains a prohibited
subpath.

Let T2(Ωv) be a subtree of T1(Ωv) consisting of the vertices v1 for which the path from v to v1 in
T (Ω) contains neither prohibited subpaths nor vertices v2 with τ ′′v2 < τ ′′v , except perhaps v1. So the
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terminal vertices of T2(Ωv) are either vertices v1 such that τ ′′v1 < τ ′′v , or terminal vertices of T1(Ωv).
A subtree T2(Ωv) can be effectively constructed. T0(Ωv) is obtained by attaching of T0(Ωv1) (already
constructed by the induction hypothesis) to those terminal vertices v1 of T2(Ωv) for which τ ′′v1 < τ ′′v .
The function s(Ωv) is defined by (37). Let now T0(Ω) = T0(Ωv0).

Notice, that if tp(v) ≥ 6 and v → w1, . . . , v → wm is the list of principal outgoing edges from
v, then the generalized equations Ωw1 , . . . ,Ωwm are obtained from Ωv by the application of several
elementary transformations. Denote by e a function that assigns a pair (Ωwi , H̄

(i)) to the pair (Ωv, H̄).
For tp(v) = 4, 5 this function is identical.

If tp(v) = 15 and there are auxiliary edges from the vertex v, then the carrier base µ of the equation
Ωv intersects ∆(µ). For any solution H̄ of the equation Ωv one can construct a solution H̄ ′ of the
equation Ωv′ by H ′

ρv+1 = H[1, β(∆(µ))]. Let e′(Ωv, H̄) = e(Ωv′ , H̄ ′).
Let H̄ be a solution of the equation Ω with quadratic part [1, j + 1]. Define the following numbers.

d1(H̄) = Σji=1d(Hi), (40)

d2(H̄) = Σµd(H[α(µ), β(µ)]), (41)

where µ is a constant base.

Lemma 16 If in case 14 π : FR(Ω∗
v) → FR(s∗2) is an isomorphism, then for any solution H̄ of Ωv

there is another solution H̄+, which is an automorphic image of H̄ with respect to the canonical group
of automorphisms defined in the beginning of this section, such that

d1(H̄+) ≤ n′d2(H̄+).

Proof If π is an isomorphism, then every base (except one constant base) in the quadratic part can
be transfered to the nonquadratic working part with the use of some constant base as a carrier base.
Thismeans that the length of the transfered base is equal to the length of the part of the constant
carrier base, which will then be deleted. 2

In the beginning of this section we assigned to some vertices of T (Ω) the groups of automorphisms
Pv. Denote by P the group of automorphisms of FR(Ω∗) , generated by all groups π(v0, v)−1Pvπ(v0, v),
v ∈ T0(Ω). (Here π(v0, v) is an isomorphism, because tp(v) 6= 1.) In the proof of the following
lemma a minimal solution of the equation Ωv means a solution minimal with respect to the group
π(v0, v)Pπ(v0, v)−1.

Lemma 17 For any solution H̄ of a generalized equation Ω there exists a path v0 → v1 → . . . vn = w
into a terminal vertex w of the tree T0(Ω) having type 1 or 2, and a solution H̄(w) of a generalized
equation Ωw such that

1. πH̄ = ππH̄(w)σn . . . σ1π(v0, v1)σ0, where π is an endomorphism of a free group and σi is an auto-
morphism in the canonical group of automorphisms of FR(Ω∗

vi
).

2. if tp(w) = 2 and the equation Ωw is nontrivial, then there exists a primitive cyclically reduced
word P such that H̄w is periodic with respect to P and the equation Ωw is singular with respect
to the periodic structure P (H̄w, P ).
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3. Let s1i be a linear or quadratic equation corresponding to the edge vi → vi+1 described in the
beginning of section 6, and FR(Ω∗

vi+1
) ' FR(s2i), then there is a natural homomorphism γw :

FR(Ω∗) → FR(s10∪s11∪...s1(n−1)∪s2(n−1))∗ . If Fw is the factor-group of FR(Ω∗) over the intersection
of the kernels of all the homomorphisms from FR(Ω∗) into FR(Ω∗

w) corresponding to the path in
T0(Ω) from v0 to w, then the induced homomorphism γ̄ : Fw → FR(s10∪s11∪...s1(n−1)∪s2(n−1))∗ is a
monomorphism.

Proof
Construct a sequence

(Ω, H̄) = (Ωv0 , H̄
(0)) → (Ωv1 , H̄

(1)) → . . .→ (Ωvu
, H̄(u)) → . . . (42)

in which the vi are the vertices of the tree T (Ω) in the following way. Let v1 = v0 and let H̄(1)

be some minimal solution of the equation Ω with the property H̄ ≥ H̄(1). If tp(vi) = 15 and there are
auxiliary edges from vertex vi: vi → w1, . . . , vi → wm (the carrier base µ intersects with its double
∆(µ)) and there exists a primitive word P such that

H(i)[1, β(∆(µ))] ≡ P rP1, P ≡ P1P2, r ≥ max1≤j≤ms(Ωwj ) (43)

(note that in such a case Ω̃vi is not regular with respect to a periodic structure < P, R >= P(H̄(i), P )),
then we set (Ωvi+1 , H̄

(i+1)) = e′(Ωvi
, H̄(i)). In all of the other cases we set (Ωvi+1 , H̄

(i+1)) = e(Ωvi
, H̄(i))

and H̄(i+1) is a minimal solution of Ωvi+1 with respect to the canonical group of automorphisms assigned
to vi+1 . The sequence (42) ends if tp(vi) ≤ 2.

We will show that in the sequence (42) vi ∈ T0(Ω). It can be proved by induction on q − p that for
p < q solutions H̄(p) and H̄(q) in the sequence (42) are connected by the equation

πH̄(p) = ππH̄(q)σqπ(vq−1, vq)σq−2 . . . π(vp, vp+1)σp. (44)

Suppose vi 6∈ T0(Ω), and let i0 be the first of such numbers. It follows from the construction of
T0(Ω) that there exists i1 < i0 such that the path from vi1 into vi0 contains a subpath prohibited
in the construction of T2(Ωvi1

). From the minimality of i0 it follows that this subpath goes from
vi2 (i1 ≤ i2 < i0) to vi0 . So tp(vi) = 15(i2 ≤ i ≤ i0).

Suppose we have a subpath (38) corresponding to the fragment

(Ωv1 , H̄
(1)) → (Ωv2 , H̄

(2)) → . . .→ (Ωvm , H̄
(m)) → . . . (45)

of the sequence (42). Here v1, v2, . . . , vm−1 are vertices of the tree T0(Ω), and for all vertices vi having
outcoming auxiliary edges condition (43) does not hold.

As before, let µi denote the carrier base of Ωvi
, and ω = {µ1, . . . , µm−1}, andω̃ denote the set of

such bases which are transfer bases for at least one equation in (45). By ω1 denote the set of such bases
µ for which either µ or ∆(µ) belongs to ω ∪ ω̃; by ω2 denote the set of all the other bases. Let

α(ω) = min(minµ∈ω2α(µ), j),

where j is the boundary between working and constant sections. Let Xµ
.= H[α(µ), β(µ)]. If (Ω, H̄) is

a member of sequence (45), then denote

dω(H̄) = Σα(ω)−1
i=1 d(Hi), (46)
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ψω(H̄) = Σµ∈ω1d(Xµ)− 2dω(H̄). (47)

Every item hi of the section [1, α(ω)] belongs to at least two bases, and both bases are in ω1, hence
ψω(H̄) ≥ 0.

Consider the quadratic part of Ω̃v1 which is situated to the left of α(ω). If we apply the transforma-
tion of Case 14 to this part, we will get an isomorphism at the end. The solution H̄(1) is minimal with
respect to the canonical group of automorphisms corresponding to this vertex. By Lemma 16 we have

d1(H̄(1)) ≤ n′d2(H̄(1)). (48)

Using this inequality estimate dω(H̄(1)) from above.
Denote by γi(ω) the number of bases µ ∈ ω1 containing hi. Then

Σµ∈ω1d(X
(1)
µ ) = Σρi=1d(H

(1)
i )γi(ω). (49)

Let I = {i|1 ≤ i ≤ α(ω)− 1&γi = 2} and J = {i|1 ≤ i ≤ α(ω)− 1&γi > 2}. By (46)

dω(H̄(1)) = Σi∈Id(H
(1)
i ) + Σi∈Jd(H

(1)
i ) = d1(H̄(1)) + Σi∈Jd(H

(1)
i ). (50)

Let (λ,∆(λ)) be a pair of constant bases of the equation Ω̃v1 , where λ belongs to the nonquadratic
part. This pair can appear only from the bases µ ∈ ω1. There are two types of constant bases.

Type 1. λ is situated to the left of the boundary α(ω). Then λ is formed by items {hi|i ∈ J} and
hence d(Xλ) ≤ Σi∈Jd(H

(1)
i ). Thus the sum of the lengths d(Xλ) + d(X∆(λ)) for constant bases of this

type is not more than 2n′Σi∈Jd(H
(1)
i ).

Type 2. λ is situated to the right of the boundary α(ω). The sum of length of the constant bases of
the second type is not more than 2Σρi=α(ω)d(H

(1)
i )γi(ω).

We have
d2(H̄(1)) ≤ 2n′Σi∈Jd(H

(1)
i ) + 2Σρi=α(ω)d(H

(1)
i )γi(ω). (51)

Now (47) and (49) imply

ψω(H̄(1)
i ) ≥ Σi∈Jd(H

(1)
i ) + Σρi=α(ω)d(H

(1)
i )γi(ω). (52)

Inequalities (48), (50),(51),(52) imply

dω(H̄(1)) ≤ ψω(H̄(1))(2n′2 + 1). (53)

From the definition of Case 15 it follows that all the words H(i)[1, ρi + 1] are the ends of the word
H(1)[1, ρ1 + 1], that is

H(1)[1, ρ1 + 1] .= UiH
(i)[1, ρi + 1]. (54)

On the other hand bases µ ∈ ω2 participate in these transformations neither as carrier bases nor as
transfer bases; hence H(1)[α(ω), ρ1 + 1] is the end of the word H(i)[1, ρi + 1], that is

H(i)[1, ρi + 1] .= ViH
(1)[α(ω), ρ1 + 1]. (55)
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So we have

dω(H̄(i))− dω(H̄(i+1)) = d(Vi)− d(Vi+1) = d(Ui+1)− d(Ui) = d(X(i)
µi

)− d(X(i+1)
µi

). (56)

In particular (47),(56) imply that ψω(H̄(1)) = ψω(H̄(2)) = . . . ψω(H̄(m)) = ψω. Denote the number
(56) by δi.

Let the path (38) be µ-reducing, that is either µ1 = µ and v2 does not have auxiliary edges and µ
occurs in the sequence µ1, . . . , µm−1 at least twice, or v2 does have auxiliary edges v2 → w1, . . . v2 → wk
and the base µ occurs in the sequence µ1, . . . , µm−1 at least max1≤i≤ks(Ωwi

) times. Estimate d(Um) =
Σm−1
i=1 δi from below. First notice that if µi1 = µi2 = µ(i1 < i2) and µi 6= µ for i1 < i < i2 then

Σi2−1
i=i1

δi ≥ d(Hi1+1[1, α(∆(µi1+1))]). (57)

Indeed, if i2 = i1 + 1, then δi1 = d(H(i1)[1, α(∆(µ))] = d(H(i1+1)[1, α(∆(µ))]. If i2 > i1 + 1, then
µi1+1 6= µ and µ is a transfer base in the equation Ωvi1+1 . Hence δi1+1 + d(H(i1+2)[1, α(µ)]) =
d(H(i1+1)[1, α(µi1+1)]). Now (57) follows from

Σi2−1
i=i1+2δi ≥ d(H(i1+2)[1, α(µ)]).

So if v2 does not have outgoing auxiliary edges, that is the bases µ2 and ∆(µ2) do not intersect in the
equation Ωv2 ; then (57) implies that

Σm−1
i=1 δi ≥ d(H(2)[1, α(∆µ2)]) ≥ d(X(2)

µ2
) ≥ d(X(2)

µ ) = d(X(1)
µ )− δ1,

which implies that

Σm−1
i=1 δi ≥

1
2
d(X(1)

µ ). (58)

Suppose now there are outgoing auxiliary edges from the vertex v2: v2 → w1, . . . , v2 → wk. The
equation Ωv1 has some solution. Let H(2)[1, α(∆(µ2))]

.= Q, and P a primitive word (in the final
h’s) such that Q .= P d, then X

(2)
µ2 and X

(2)
µ are beginnings of the word H(2)[1, β(∆(µ2))], which is a

beginning of P∞. By the construction of (42), relation (43) does not hold for v2; hence

X(2)
µ

.= P rP1, P
.= P1P2, r < max1≤j≤ks(Ωwj

). (59)

Let µi1 = µi2 = µ; i1 < i2;µi 6= µ for i1 < i < i2. If

d(X(i1+1)
µi1+1

) ≥ 2d(P ) (60)

andH(i1+1)[1, ρi1+1+1] begins with a cyclic permutation of P 3, then d(H(i1+1)[1, α(∆(µi1+1))]) ≥ d(P ).
Together with (57) this gives Σi2−1

i=i1
δi ≥ d(P ). The base µ occurs in the sequence µ1, . . . , µm−1 at least

max1≤i≤ks(Ωwi) times, so either (60) fails for some i1 ≤ m− 1 or Σm−1
i=1 δi ≥ (r − 3)d(P ).

If (60) fails, then the inequality d(X(i+1)
µi ) ≤ d(X(i+1)

µi+1 ), the definition (56) and (59) imply that

Σi1i=1δi ≥ d(X(1)
µ )− d(X(i1+1)

µi1+1
) ≥ (r − 2)d(P );

so everything is reduced to the second case.
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Let
Σm−1
i=1 δi ≥ (r − 3)d(P ).

Notice that (57) implies for i1 = 1 Σm−1
i=1 δi ≥ d(Q) ≥ d(P ); so Σm−1

i=1 δi ≥ d(P )max{1, r − 3}. Together
with (59) this implies Σm−1

i=1 δi ≥ 1
5d(X

(2)
µ ) = 1

5 (d(X(1)
µ )− δ1). Finally,

Σm−1
i=1 δi ≥

1
10
d(X(1)

µ ). (61)

Comparing (58) and (61) we can see that for the µ-reducing path (38) inequality (61) always holds.
Suppose now that the path (38) is prohibited; hence it can be represented in the form (39). From

definition (47) we have Σµ∈ω1d(X
(m)
µ ) ≥ ψω; so at least for one base µ ∈ ω1 the inequality d(X(m)

µ ) ≥
1
2nψω holds. Because X(m)

µ
.= (X(m)

∆(µ))
±1, we can suppose that µ ∈ ω ∪ ω̃. Let m1 be the length of the

path r1s1 . . . rlsl in (39). If µ ∈ ω̃ then by the third part of the definition of a prohibited path there
exists m1 ≤ i ≤ m such that µ is a transfer base of Ωvi

. Hence, d(X(m1)
µi ) ≥ d(X(i)

µi ) ≥ d(X(i)
µ ) ≥

d(X(m)
µ ) ≥ 1

2nψω. If µ ∈ ω, then take µ instead of µi. We proved the existence of a base µ ∈ ω such
that

d(X(m1)
µ ) ≥ 1

2n
ψω. (62)

By the definition of a prohibited path, the inequality d(X(i)
µ ) ≥ d(X(m1)

µ )(1 ≤ i ≤ m1), (61), and (62)
we obtain

Σm1−1
i=1 δi ≥ max{ 1

20n
ψω, 1}(40n3 + 20n+ 1). (63)

By (56) the sum in the left part of the inequality (63) equals dω(H̄(1))− dω(H̄(m1)); hence

dω(H̄(1)) ≥ max{ 1
20n

ψω, 1}(40n3 + 20n+ 1),

which contradicts (53).
This contradiction was obtained from the supposition that there are prohibited paths (45) in the

sequence (42). Hence (42) does not contain prohibited paths. This implies that vi ∈ T0(Ω) for all vi in
(42). For all i vi → vi+1 is an edge of a finite tree. Hence the sequence (42) is finite. Let (Ωw, H̄w) is
final term of this sequence. We show that (Ωw, H̄w) satisfies all the properties formulated in the lemma.

The first property follows from (44).
Let tp(w) = 2 and let Ωw be nontrivial. It follows from the construction of (42) that if [j, k] is a

constant section for Ωi then H(i)[j, k] .= H(i+1)[j, k] .= . . .H(w)[j, k]. Hence (43) and the definition of
s(Ωv) imply that the word h1 . . . hρw

can be subdivided into subwords h[i1, i2], . . . , h[ik−1, ik], such that
for any a either H(w) has length 1, or h[ia, ia+1] does not participate in basic and coefficient equations,
or H(w)[ia, ia+1] can be written as

H(w)[ia, ia+1]
.= P raP

′
a; Pa

.= P ′aP
′′
a ; r ≥ max<P,R>ρwf2(Ωw, P,R), (64)

where Pa is a primitive word, and < P,R > runs through all the periodic structures of Ω̃w for which
Ω̃w is regular. Then for a maximal such Pa, Ω̃w is singular, because if it were regular we would have
hk such that d(H(w)

k ) ≥ f2(Ωw, P,R). This contradicts the minimality of H̄(w).
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The third assertion of the lemma follows by induction from the first and second assertions, by
Lemma 9 and the fact that automorphisms corresponding to the equation (26) have the form u → u,
w → urw. Thus Lemma 17 is proved.2

8. Tree T4(Ω)

Let w be the terminal vertex of T0(Ω), such that tp(w) = 2 and Ωw is nontrivial. Let < P, R > be a
periodic structure such that Ω̃w is singular, and let c be a cycle in Γ. There is a homomorphism φ from
the group FR(Ωw)∗ in the free extension of a centralizer of the group FR(Ω∗

w∪h(c)=1) by the element y,
where h(c) = hi1 . . . hik is the label of the cycle from the set {c1, . . . , ck} from Lemma 13. Denote by
ΩT a generalized equation for the subequation consisting of bases in P and equation hi1 . . . hik = 1.
Denote the new variables by z. Let the generalized equation Ω̄ obtained from Ω̃ by deleting all the
bases and variables in P. Consider these two generalized equations ΩT and Ω̄ together on the disjoint
sets of variables. And add the following basic equations: hk = π̃T (hk)(hk 6∈ P), where the hk in the
left side is considered as a variable in Ω̄v, and in the right side as some section of the generalized
equation ΩT . Denote it by Ωw(P, R, c, T ). The homomorphism φ induces a homomorphism ψ from the
group FR(Ωw) in the free extension of a centralizer of the group FR(Ωw(P,R,c,T ))∗ . Denote by F̃R(Ωw)

the factor-group of FR(Ωw)∗ over the intersection of the kernels of all the homomorphisms from FR(Ωw)∗

into FR(Ωw(P,R,c,T ))∗ which can be obtained as a composition of σ ∈ P0 and πH̄+ .(Lemma 13). Then ψ
is monic on F̃R(Ωw).

Add the corresponding edge to the tree T0(Ω) and denote by T3(Ω) the tree obtained by using
this procedure on each final vertex w of T0(Ω), such that tp(w) = 2 and Ωw is nontrivial. So if w′

(corresponding to the edge w → w′) is a final vertex of T3(Ω), which is not the vertex of T0(Ω) then
π(v0, w) is not an isomorphism . Finally glue T3(Ωw) to those final vertices w of T3(Ω), for which Ωw
is nontrivial, and iterate this process. Finally we get T4(Ω). By Lemma 3 it does not contain infinite
branches; so it is finite. The construction of T4(Ω) is effective.

9. The proof of Theorems 2 and 3

We shall first prove Theorem 3. Consider an irreducible system S = 1. By Lemma 5, FR(S) can be
approximated by the homomorphisms in only one Razborov’s fundamental sequence, corresponding to
some path in T4(Ω) v0 → v11 → v12 → . . . v1,n1 = w1 → v21 → v22 → . . . v2,n2 = w2 . . . wm−1 → vm1 →
vm2 → . . . vm,nm

, where wi+1 is the terminal vertex of type 2 for the tree T3(wi).
Let Sij be a quadratic equation from the beginning of section 7 corresponding to the vertex vij

(in case j = ni Sini corresponds to the extension of a centralizer). Denote by Fv0,...,vm,nm
the factor-

group of FR((Ωv0 )∗) over the intersection of the kernels of all the homomorphisms from FR((Ωv0 )∗) into
FR((Ωvm,nm

)∗) corresponding to this sequence. The group FR((Ωvm,nm
)∗) is free. It follows from Lemma 17

that Fv0,...,vm,nm
is embedded into FR(S0∪...∪Smnm−1 ). But FR(S) is embedded into Fv0,...,vm,nm

; hence
FR(S) is embedded into FR(S0∪...∪Smnm−1 ).

The system S0 ∪ . . . ∪ Smnm−1 is triangular quasi-quadratic. 2

To prove Theorem 2 we have to follow the process described for the irreducible system in the proof
of Theorem 3. Instead of one branch of the tree T4(Ω) we will have several branches. The construction
of T4 is effective, hence this process is effective. 2

10. The proof of Theorems 6,5 and Corollaries 2–5, 6
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Proof of Corollary 2
Let G be a finitely generated residually free group, and < X,S > be a finitely generated presentation

for G. Let F = F (A) be a nonabelian free group with some basis A disjoint with X. We can think of
S as a system of equations S = 1 over F . The group F [X]/S =< F ∗ F (X)|S(X) = 1 >= F ∗ G is
approximated in F by F -homomorphisms; hence R(S) = ncl(S) and F ∗ G = F [X]/R(S). Thus G is
a free factor of the affine coordinate group FR(S). The variety V (S) is a finite union of its irreducible
components V (S) = V (S1)∪. . .∪V (Sn). This implies that FR(S) is embedded into FR(S1)×. . .×FR(Sn),
and each group FR(Si) is fully residually free. By the theorem G is embedded into FZ[x] × . . .× FZ[x].
2

Proof of Theorem 5
Let F = F (A) be a free group, and S(X) be a system of equations over F which determines an

irreducible variety over F . Then FR(S) = F (A ∪ X)/R(S) is a fully residually free group; hence it
is finitely presented. So there are finitely many relations ri(A ∪ X), i = 1, . . . n, such that R(S) =
ncl(r1, . . . rn). The system S′ = {r1, . . . , rn} is equivalent to S and satisfies the Nullstellensatz.

Remark. There exists a variety V (reducible) which cannot be defined by a finite system satisfying
Nullstellensatz.

Indeed, this follows from the existence of finitely generated residually free and not finitely presented
groups.

Proof of Theorem 6
Let G(X) be a graph of groups:

1. X is a connected graph;

2. For every vertex v of X and every edge e groups Gv and Ge are defined such that Ge = Gē (here
ē is the inverse edge for e);

3. For every edge e ∈ X, Ge ≤ Geσ and there exists a monomorphism τ : Ge → Geτ (here eσ and
eτ are initial and terminal vertices of e).

The fundamental droup π1(G(X)) of a graph of groups G(X) is defined as follows. Let T be a maximal
subtree of X. Then

π1(G(X)) =< (∗v∈V (X)Gv), te(e ∈ E(X))|te = 1(e ∈ T ), t−1
e gte = gτ (g ∈ Ge), tetē = 1 > .

It is known that π1(G(X)) is independent (up to isomorphism) of T . The group π1(G(X)) can be
obtained from the vertex groups by a tree product with amalgamation and then by HNN-extensions.
Subgroups of π1(G(X)) are again fundamental groups of some special graphs of groups related to G(X).

Theorem 8 [?] Let G(X) be a graph of groups, and let H ≤ π1(G(X)). Then H = π1(G(Y )) where
the vertex groups of G(Y )) are H ∩ gGvg−1 for all vertices v ∈ X, and g runs over a suitable set of
(H,Gv) of double coset representatives, and the edge groups are H ∩ gGeg−1 for all edges e ∈ X, where
g runs over a suitable set of (H,Ge) double coset representatives.

Let G be obtained as a union of the finite chain:

F < G1 < . . . < Gn = G,
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where Gi+1 is a free extension of a centralizer of Gi. We prove the theorem by induction on n. If
n = 0 it is obvious, because all finitely generated subgroups of F are free of finite rank. By induction
all finitely generated subgroups of Gn−1 satisfy the conclusion of the theorem. The group G is a free
product with amalgamation: G = Gn−1 ∗C=C̄ (C̄× < t >), where C = CGn−1(u) is a centralizer of some
element u ∈ Gn−1, and C̄ is an isomorphic copy of C. In particular, G is a fundamental group of the
graph of groups with vertex groups Gn−1 and C̄× < t >, and edge group C. By Theorem 8 a finitely
generated subgroup H of G is a fundamental group of some graph of groups H(Y ), where the vertex
groups of Y are of the form H ∩ g−1Gn−1g or H ∩ g−1(C̄× < t >)g and edge groups are of the form
H ∩ g−1Cg.

From general properties of amalgamated products one can deduce (see [?] for details) that centralizers
in G are free abelian groups of finite rank (≤ n). Therefore all edge groups in the graph of groups H(Y )
are finitely generated abelian groups. Since H = π1(H(Y )) and H is finitely generated, H is an HNN-
extension with finitely many stable letters of a free product with amalgamation of finitely many vertex
groups.

Notice, that if amalgamated subgroups are finitely generated and at least one of the free factors is
not finitely generated, then the whole amalgamated product is not finitely generated (this follows from
normal forms of elements in amalgamated products). Similarly, if the base group is not finitely gener-
ated, and associated subgroups are finitely generated, then an HNN-extension is not finitely generated.
This implies, that the vertex groups H ∩ g−1Gn−1g are finitely generated. Therefore, by induction, the
vertex groups can be obtained from free abelian groups of finite rank by finitely many operations of the
type 1–4.

The group G as well as all the subgroups of G are CSA-groups. It was shown in [?] that if a free
product with abelian amalgamation results in a CSA-group, then at least one of the amalgamated
subgroups is maximal abelian. Similarly, an HNN-extension with abelian associated subgroups is a
CSA-group if and only if this HNN-extension is of type 3 or 4 [?]. 2

Proof of Corollary 4
According to the theorem 6, if all proper centralizers in a finitely generated subgroup H of FZ[x]

are cyclic, then H is obtained from cyclic groups by operations 1, 2, 4, which preserve hyperbolicity
(see [?], [?], [?]). 2

Proof of Corollary 5
Consider the following formula

∀x∀y∀z∃u([x, y] = [x, z] = [y, z] = 1 → (xy = u2 ∨ xz = u2 ∨ yz = u2)).

This formula holds in all subgroups of FZ[x] in which all centralizers are cyclic, and does not hold in
any other subgroup. Hence every finitely generated group which is ∀∃-equivalent to a free group is a
subgroup of FZ[x] with all centralizers cyclic.

Proof of Corollary 6 The assertion of the corollary follows from Theorem 4 and the results of
([?], part 1), where a length function on FZ[x] with many useful properties has been constructed. The
corollary can be also deduced from Theoren 4 and the results of Bass [?]

11. The proof of Theorem 6

It is enough to prove the theorem in the case when the variety VF (S) is irreducible. By the theorem
we have an embedding

µ : F [X]/Rad(S) −→ FZk
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for some suitable number k. Let ui be the image of the generator xi ∈ X under µ and U = (u1, . . . , un)
be the corresponding tuple of parametric words. Due to [?] the family of specializations

Ξ? = {ξ? | ξ ∈ Hom(Zk,Z)}

is a discriminating family of F -homomorphism s. In particular, U? is a subset of VF (S). Let us prove
that this subset is dense in VF (S) in the Zariski topology on Fn. Choose an arbitrary point v ∈ VF (S)
and an open basic neighborhood Of = {w ∈ F | f(w) 6= 1} (here f ∈ F [X]) of v. Thus f(v) 6= 1
and hence f is not in Rad(S). Therefore, f defines a nontrivial element in the affine coordinate group
F [X]/Rad(S). Now there exists a homomorphism φ ∈ Ξ? such that fφ 6= 1. But this means that the
solution Uφ ∈ U? belongs to the same neighborhood Of . This shows that U? is dense in VG(S) in
Zariski topology. 2

12. An embedding theorem for affine groups

Theorem 9 Suppose we have a generalized equation w(h̄) such that w∗ is irreducible, and a system
v(ȳ, h̄) = 1, w∗(h̄) = 1. Then the following assertion is true: if for any solution ḡ ∈ F of the system w∗

there exists a solution ȳ in F of the system v(ȳ, h̄) = 1, w∗ = 1, then there is an embedding of FR(w∗)

into FR(v(ȳ,h̄),w(h̄))∗ .

Proof Suppose first that for any solution ḡ ∈ F of the system w∗ there exists a solution ȳ in F of
the system v(ȳ, h̄) = 1.

Let H be a subgroup generated in FR(w∗,v) by the elements h̄. Then for any homomorphism α :
FR(w∗) = Fw∗ → F, this α can be extended to a homomorphism α′ : H → F such that the following
diagram is commutative.

FR(w∗,v)HFR(u)

F

- -

@
@

@R ?

�
�

�	

λ µ

α α′ α′′

Here λ is a canonical homomorphism λ(h) = h (the h’s in FR(v,w∗) satisfy w(h̄) = 1), µ is an
inclusion, and v(h̄α, ȳα

′′
) = 1 in F .

FR(w∗) is residually F . If some nontrivial element r ∈ FR(u∗) belongs to the kernel of λ, then there
exists some α such that α(r) 6= 1 in F, but α′ ◦ λ(r) = 1. This implies that λ is an isomorphism. So we
have proved the existence of an embedding.
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