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1 Introduction

In late 40’s Ralph Fox introduced derivatives over free groups to study invariants of
group presentations (see [9]). That was a beginning of free differential calculus over free
groups. It turns out that Fox’s derivatives can be used to define matrix representations of
free groups of finite rank, so called Magnus representations, and some of their groups of
automorphisms, among which Burau and Gasner representations are the most notorious
ones (see [3]). In 1950 R. Lyndon described cohomological dimensions of one relator
groups [15]. His analysis was based on some non-trivial results from free differential
calculus. Another development in the theory of differentiation over free groups is due
to J. Birman. She proved that the inverse function theorem holds in free groups [4].
This gave rise to a new approach in the study of minimal generating systems (or, more
generally, primitive systems) in various relatively free groups (see [1], [14], [17], [18]).

In this paper we discuss implicit function theorem over free groups and some of its
applications.

2 Free differential calculus

Let F = F (X) be a free group with basis X = {x1, . . . , xn} and ZF be the integral
group ring of F .

A linear map D : ZF → ZF is called a derivation in ZF if it satisfies the following
condition:

D(fg) = D(f) + fD(g) for any f, g ∈ F.

For any i = 1, . . . , n there exists a unique derivation di (it is called the derivative with
respect to xi) such that for any k = 1, . . . , n

di(xk) =

{
1 if i = k
0 if i 6= k

Let Y = {y1, . . . , yn} be a set of n elements of the group F . The matrix

JY = (di(yk))i,k=1,...,n
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is called the Jacobian matrix of Y . In particular, if φ : F → F is an endomorphism of F ,
and Yφ = {xφ

1 , . . . , x
φ
n} then the Jacobian matrix Jφ = JYφ

of Yφ is called the Jacobian
of φ.

The following is an analog of the inverse function theorem for free groups.

Theorem 1 (J.Birman [3]) A homomorphism φ : F → F is an automorphism of F
if and only if the Jacobian Jφ is right invertible over ZF.

3 Elements of algebraic geometry over groups

To formulate implicit function theorem over groups we need to introduce some basic
notions of algebraic geometry over groups. We refer to [2] for details.

Let G be a group, F (X) be a free group with basis X = {x1, x2, . . . xn}, G[X] =
G ∗ F (X) be a free product of G and F (X). If S ⊂ G[X] then S = 1 is called a system
of equations over G. As an element of the free product the left side of every equation
in S = 1 can be written as a product of some elements from X ∪X−1 (which are called
variables) and some elements from G (constants). To emphasize this we sometimes write
S(x1, . . . , xn) = 1 or S(X) = 1.

A solution of the system S(X) = 1 over a group G is a tuple of elements a1, . . . , an ∈
G such that after replacement of each xi by ai the left side of every equation in S = 1
turns into the trivial element of G. Equivalently, a solution of the system S = 1 over G
can be described as a homomorphism φ : G[X] −→ G which is identical on G and such
that φ(S) = 1. By VG(S) we denote the set of all solutions in G of the system S = 1, it
is called the algebraic set defined by S. This algebraic set VG(S) uniquely corresponds
to the normal subgroup

R(S) = {u(x) ∈ G[X] | ∀A ∈ VG(S)u(A) = 1}

of the group G[X]. The subgroup R(S) contains S, and it is called the radical of S. The
quotient group

GR(S) = G[X]/R(S)

is the coordinate group of the variety V (S).
We define a Zariski topology on Gn by taking as a sub-basis for the closed sets of

this topology, the algebraic sets in Gn. If F is a free non-abelian group then the union
of two algebraic sets is again algebraic, therefore the closed sets in the Zariski topology
over F are precisely the algebraic sets. The Zariski topology over F n is noetherian for
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every n, i.e., every proper descending chain of closed sets in F n is finite. This implies
that every algebraic set V in F n is a finite union of irreducible subsets (they are called
irreducible components of V ), and such decomposition of V is unique.

4 Algebraic sets over a free non-abelian group

Let F be a free non-abelian group. In this section, following [11] and [12], we describe
algebraic sets over F . Quadratic equations play the central part in this description.

An equation S = 1 is called quadratic in variables X = {x1, . . . , xn} if every variable
from X occurs in S not more then twice.

Let X1, . . . , Xm be disjoint tuples of variables. A system U(X1, . . . , Xm) = 1 (with
coefficients from F ) of the following type

S1(X1, X2, . . . , Xm) = 1

S2(X2, . . . , Xm) = 1

. . .

Sm(Xm) = 1

is said to be triangular quasi-quadratic if for every i the equation Si(Xi, . . . , Xm) = 1 is
quadratic in the variables from Xi.

Denote by Gi the coordinate group of the subsystem Si = 1, . . . , Sm = 1 of the
system U = 1:

Gi = F [Xi, . . . Xm]/R(Si(Xi, . . . , Xm), . . . , Sm(Xm)) (i = 1, . . . , m + 1),

in particular, Gm+1 = F and G1 = FR(U). The system U = 1 is said to be non-degenerate
if for each i the equation Si(Xi, . . . , Xm) = 1 has a solution in Gi+1 (with elements from
Xi considered as variables and elements from Xi+1, . . . , Xm as coefficients from Gi+1).

Observe, that if the system U = 1 is non-degenerate then the coordinate group Gi+1

is embedable into Gi (i = 1, . . . , m) ([13]), i.e., we have a chain of groups

F = Gm+1 ≤ Gm ≤ . . . ≤ G1 = FR(U).

To solve the system U = 1 over F one needs to solve the last quadratic equation
Sm(Xm) = 1 over Gm+1 = F , then the previous one (which is again quadratic!)
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Sm−1(Xm−1, Xm) = 1 over the coordinate group Gm, and continue the process going
up along the triangular system until the first equation S1(X1, . . . , Xm) = 1 has been
solved in the group G2. Now, to get solutions of this system in the initial free group
F , one needs to specialize the solutions obtained in G2 into F (in this case to specialize
means to take an arbitrary homomorphism from G2 into F , that fixes elements from F ,
and apply it to the obtained set of solutions in G2).

Now, the following crucial result from [12] describes the solution set in F of an
arbitrary system S(X) = 1 with coefficients from F : for any such S(X) = 1 one
can effectively find a finite family of non-degenerate triangular quasi-quadratic systems
U1(Y1) = 1, . . . , Un(Yn) = 1 (here Yi’s are disjoint tuples of variables of, possibly, different
length) and word mappings p1(Y1), . . . , pn(Yn) such that

VF (S) = p1(VF (U1)) ∪ . . . ∪ pn(VF (Un)).

The discussion above shows that algebraic sets defined by quadratic equations are
building blocks for construction of arbitrary algebraic sets over F . This allows us to
focus now just on quadratic equations.

A standard quadratic equation over a group G is an equation of the one of the following
forms:

n∏

i=1

[xi, yi] = 1, n > 0; (1)

n∏

i=1

[xi, yi]
m∏

i=1

z−1
i cizid

−1 = 1, n, m ≥ 0, m + n ≥ 1; (2)

n∏

i=1

x2
i = 1, n > 0; (3)

n∏

i=1

x2
i

m∏

i=1

z−1
i cizid

−1 = 1, n,m ≥ 0, n + m ≥ 1; (4)

where d, ci are nontrivial elements from G.
The equation S = 1 is strictly quadratic in variables X = {x1, . . . , xn} if every letter

from X occurs in S exactly twice. A quadratic, not strictly quadratic, equation is easy
to solve over a group G (it has the form x = W (Y ), where the variable x does not occur
in W (Y )).

In the case when G is a free non-abelian group a strictly quadratic equation over
G is equivalent to a standard one in the following way. Let S(X, Y ) = 1 be a strictly
quadratic equation in variables X over G. Then there is an automorphism φ of the free
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group G ∗ F (X ∪ Y ) such that φ fixes all the letters from Y and all the elements from
G and such that φ(S) = 1 is a standard quadratic equation over G.

Thus the standard quadratic equations play a key part in constructing algebraic sets
over free groups. This explains the following definition.

Definition 1 Let S = 1 be a standard quadratic equation over a free group F . Then
the algebraic set VF (S) is called an elementary neighborhood over F .

5 Implicit function theorem

In this section we formulate the implicit function theorem over free groups in its basic
simplest form. We refer to [13] for the proofs and generalizations.

Let F be a free non-abelian group. Recall that by an elementary neighborhood over
F we understand an algebraic set VF (S) defined by a standard quadratic equation S = 1
over F. In general these neighborhoods are ”rich” enough, but there are few exceptions.
To define them we need the following definitions.

Strictly quadratic words of the type

[x, y], x2, z−1cz

where c ∈ F , are called atoms. It follows that any standard quadratic equation S = 1
over F can be written as a product of atoms ri:

r1 r2 . . . rk = g (for some g ∈ F ).

The minimal such number k is called the atomic rank of S = 1.

Definition 2 A solution φ of a quadratic equation r1r2 . . . rk = g of the atomic rank
k ≥ 2 is called commutative if [rφ

i , rφ
i+1] = 1 for all i = 1, . . . , k − 1.

The following standard quadratic equations have non-commutative solutions (see
[11]:

1. S = 1 is of type 1, n > 2,

2. S = 1 is of type 2, n > 0, n + m > 1,

3. S = 1 is of type 3, n > 3,
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4. S = 1 is of type 4, n > 2.

Now we can describe equations which define ”rich” neighborhoods. A standard
quadratic equation S = 1 over F is called regular if its atomic rank is not less then 3 and
it has a non-commutative solution. Elementary neighborhoods defined by such equations
are called regular neighborhoods. Notice, that regular neighborhoods are irreducible in
the Zariski topology [11].

Theorem 2 (Implicit function theorem) Let T (X, Y ) = 1 be an equation over a
free group F , |X| = m, |Y | = n. Suppose that for any A from a regular neighborhood
VF (S) ⊂ Fm there exists a tuple of elements B ∈ F n such that T (A, B) = 1. Then
there exists a tuple of words P = (p1(X), . . . , pn(X)), with constants from F , such that
T (A,P (A)) = 1 for any A ∈ VF (S).

6 Genus problem

In this section we apply the implicit function theorem for genus problem. We refer
to [5], [6], [7] and [8] for some results and a general discussion of the genus problem.
Here we focus only on the genus problem for non-orientable quadratic equations without
coefficients.

Let F be a non-abelian free group.

Definition 3 Let f be a non-trivial element from the derived subgroup [F, F ] of F .
Genus of f is the minimal number of commutators, say n, such that f can be expressed
as a product of n commutators.

Let us consider the quadratic equation

Sn = x2
1 . . . x2

n = 1, n ≥ 4, (5)

where x1, . . . , xn are variables. For a solution u = (u1, . . . , un) of the equation (5)
denote by p(u) the product p(u) = u1 . . . un. Notice, that p(u)2 = 1 modulo [F, F ].
Since F/[F, F ] is torsion free, then p(u) ∈ [F, F ]. By the genus of the solution u we
understand the genus of the element p(u). Notice that p(u) = 1 for every solution u of
the equation Sn = 1 for n = 1, 2, 3, hence the restriction n ≥ 4.

Now we define the genus of the equation (5) as the supremum of the genus of all its so-
lutions in the group F. The following problem was posed by A.Gaglione and D.Spellman.
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Problem 1 What is the genus of the equation x2
1 . . . x2

n = 1 (n ≥ 4)?

Even for the case n = 4 it is difficult to find solutions of genus ≥ 2 (all “easy”
solutions have genus 1, see [16]). In [8] J. Comerford and Y. Lee gave the first example
of a such solution with genus 2. D. Spellman recently came up with another solution of
genus 2 of the equation S4 = 1 (see [16]).

Using implicit function theorem we prove the following result.

Theorem 3 For each n ≥ 4 the genus of the equation Sn = 1 over a non-abelian
free group F is infinite.

Proof. Suppose the equation Sn = 1 is of a finite genus, say m, over a non-abelian free
group F . Then the following formula is true in F :

Φn,m = ∀x1 . . . xn∃y1z1 . . . ymzm(x2
1 . . . x2

n = 1 → x1 . . . xn = [y1, z1] . . . [ym, zm]). (6)

According to the implicit function theorem the equation

x1 . . . xn = [y1, z1] . . . [ym, zm] (7)

in variables y1, z1, . . . , ym, zm and constants x1, . . . , xn has a solution in the non-orientable
surface group

GSn = 〈x1, . . . , xn | x2
1 . . . x2

n = 1〉.
But it is easy to see that the product x1 . . . xn does not belong to the derived subgroup

of GSn . This contradiction shows that the genus of the equation Sn = 1 is infinite.

7 Abelianization of cartesian powers of a free non-

abelian groups

Let F be a free non-abelian group and λ an infinite cardinal. Denote by Fλ the unre-
stricted cartesian product of λ copies of the group F .

Below, for a group G by Ab(G) we denote the abelianization G/[G,G] of G. The
following result is an answer to the question posed by A.Gaglione and D.Spellman (see
[10] and [16]), whether the abelianization of the group Fλ is torsion-free.

Theorem 4 For any non-abelian free group F and any infinite cardinal λ the abelian-
ization Ab(Fλ) of the cartesian power Fλ has non-trivial elements of order 2.
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Proof. Notice, that if λ > ω, where ω is the first infinite cardinal, then λ = ω + λ and
therefore

Fλ ' Fω × Fλ.

Hence
Ab(Fλ) ' Ab(Fλ)× Ab(Fω),

which shows that it suffices to prove the theorem just for λ = ω.
Consider the equation

x2
1x

2
2x

2
3x

2
4 = 1

over the free group F . By Theorem 3 for each positive n there exists a solution, say

u(n) = (u(n)1, u(n)2, u(n)3, u(n)4)

such that the element
p(u(n)) = u(n)1u(n)2u(n)3u(n)4

can not be presented as a product of fewer then n commutators in F . Denote by Ui

(i = 1, . . . , 4) the following element of the cartesian power Fω:

Ui = (u(1)i, u(2)i, u(3)i, . . . , u(n)i, . . .),

and put
U = U1U2U3U4.

Then U is not a product of finitely many commutators in Fω. Hence the image U of U
in the abelianization Ab(Fω) is not trivial. But (U)2 = 1. So the abelianization Ab(Fω),
as well as Ab(Fλ), has non-trivial 2-torsion, as desired.
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