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Abstract

In this paper we develop a notion of a completion GA of a group
G by an Abelian group A. The completion GA is an A-operator group
satisfying certain Lyndon’s axioms. We prove that if G is a torsion-free
hyperbolic group then GA is G-discriminated by G. This implies various
model theoretic and algorithmic results concerning GA.

1 Introduction

1.1 A-groups and A-completions

Let A be an additively written abelian group. We term A unitary if it comes
equipped with a distinguished non-zero element, which we denote by 1. Such
unitary abelian groups can be likened to topological spaces with base points.
Distinguishing a non-zero element in an additively written abelian group amounts
simply to the specification of one of its cyclic subgroups, with a specific choice
of generator. A typical example of a unitary abelian group is the additive group
A+ of a unitary ring A with the ring identity as the distinguished element.
Unitary abelian groups form a category where morphisms are the unitary ho-
momorphisms (i.e., homomorphisms which map 1 to 1) and the subobjects are
unitary subgroups (subgroups containing the distinguished element 1). We will
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henceforth adopt the notation A′ ≤ A in order to express the fact that A′ is a
unitary subgroup of the unitary abelian group A.

Now let A be an unitary abelian group. A group H is termed an A-group if
it comes equipped with a function H ×A → H:

(h, α) 7→ hα

satisfying the following conditions for arbitrary g, h ∈ H and α, β ∈ A:

h1 = h, hα+β = hαhβ ,

g−1hαg = (g−1hg)α,

and if g and h commute,
(gh)α = gαhα.

In the event that A is a unitary ring we assume also that

hαβ = (hα)β .

We shall simply refer to such A-groups, in all of their incarnations, as expo-
nential groups. Every group G is a Z-group, where here the set Z of integers
can be viewed either as a unitary abelian group with distinguished element 1
or as a unitary ring, with Z acting on G by exponentiation as usual. More gen-
erally, when A is a torsion–free, unitary abelian group, the assumption that G
be an A-group, means not only that A acts on G so that the natural conditions
involving exponentiation hold, but also that the infinite cyclic subgroup of A
generated by 1 acts on G in precisely the way that Z acts on any group. In
the event that A is a torsion–free, unitary abelian group we shall sometimes,
without explicit mention, denote the subgroup of A generated by 1 by Z.

The most well-known, non-trivial, examples of A-groups are those in which
A is a binomial ring [11], the field Q of rational numbers [3] and the ring Z[x] of
integral polynomials in a single variable x, introduced by R.C. Lyndon in [18].
Lyndon introduced such A-groups in order to describe the solutions of equations
in a single variable with coefficients in a free group - we shall have more to say
about this later. A detailed investigation of A-groups and A-completions (see
the paragraph that follows for the definition) when A is a unitary ring, has
recently been carried out by A. Myasnikov and V. Remeslennikov in [21] and
[22]. As already noted, they termed such groups exponential groups and we
have expanded their terminology to include the case of unitary abelian groups,
as detailed above.

There is a connection between these two types of A-groups. In order to
understand how this comes about, recall that the centroid ([17]) of a group H is
the set Γ(H) of all mappings γ : H −→ H satisfying the following two conditions
(here hγ is the image of h ∈ H under γ ∈ Γ(H)) :

(gh)γ = gγhγ if gh = hg
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and
(g−1hg)γ = g−1hγg .

It is easy to verify that Γ becomes a ring on defining multiplication to be com-
position of mappings and addition by

hγ+κ = hγhκ.

Notice that Γ(H) is an unitary ring and H can be viewed as Γ(H)–group in
the obvious way.

Now suppose that A is an unitary abelian group and that H is an A-group.
There is a canonical homomorphism, say, ρ : A −→ Γ(H), where ρ(α) is simply
the exponentiation in H defined by α ∈ A. Thus, a group H is an A–group if
and only if there exists an unitary homomorphism of A into the centroid of H.
This means that every A–group is also an R-group, where R is a unitary subring
of Γ(H) generated by ρ(A). The structure of such unitary rings R generated by
homomorphic images of A will play an important part in the understanding of
so-called A–completions of various groups (see the remarks that follow).

For a unitary abelian group A, the appropriate class of exponential groups
constitutes a category in which one can define the usual notions of morphism
(A-homomorphism), subobject (A-subgroup) and quotient.

If A′ is a unitary subgroup of a unitary abelian group A, then every A-group
can be viewed also as an A′-group, via restriction. On the other hand, suppose
that A′ ≤ A and G is an A′-group. Then there exists an A-group H and an
A′-homomorphism µ : G −→ H such that for every A-group K and every A′-
morphism θ : G −→ K, there exists a unique A-homomorphism φ : H −→ K
such that φµ = θ, i.e. the following diagram commutes:

G H

K

-

?

¡
¡

¡
¡

¡
¡

¡
¡ª

θ
φ

µ

The A–group H is unique up to isomorphism of A–groups. It is termed the
(A′, A)–completion of G or the A–completion of G if A′ is the subgroup of A
(subring of A) generated by 1. Following [21], we denote the completion in every
instance simply by GA.

Let now A be a unitary abelian group. By general nonsense there exists a
unitary ring, which we denote by fr(A) and a unitary homomorphism α : A −→
fr(A)+, such that for every unitary ring R and every (unitary) homomorphism
β : A −→ R+, there exists a unique unitary ring homomorphism γ : fr(A) −→
R such that γα = β, i.e. the following diagram commutes:
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A fr(A)

R

-

?

¡
¡

¡
¡

¡
¡

¡
¡ª

β γ

α

We term fr(A) the unitary ring freely generated by A. The structure of
fr(A) turns out to be important here. In 2 we shall prove that fr(A) can be
embedded in a free associative algebra over the field Q of rational numbers,
provided A is torsion-free. More precisely, suppose that {1} ∪X is a maximal
Z-linearly independent set of elements of A. Let LX be the subgroup of A
generated by X and let T (LX) be the tensor power of LX over Q :

T (LX) =
∞⊕

n=0

Tn(LX).

Let φX be the canonical, unitary embedding of A into T0(LX) ⊕ T1(LX) (see
2.3). Then the following theorem holds.

Theorem A Let A be a torsion–free, unitary abelian group. Then the canonical
extension of φX to a unitary ring homomorphism from fr(A) into T (LX) is a
monomorphism.

In 3 we shall prove that if G is a group and A is a unitary abelian group
then

GA = Gfr(A).

Thus our A–completions (A is a unitary abelian group) coincide with fr(A)–
completions (fr(A) is a unitary ring), which means that we can avail ourselves
of [22].

It is worth giving some examples here.
If A = gp(1)⊕C, here C is an infinite cyclic group, then fr(A) = Z[x], where

Z[x] is the ring of integral polynomials in a single variable x. Hence, GA = GZ[x];
in particular, the A-completion FA of a free group F is just Lyndon’s completion
FZ[x].

Similarly, if A = Q+⊕C is a unitary abelian group (here Q+ is the additive
group of rational numbers and C is an infinite cyclic group) with the identity of
Q the distinguished element in A, then fr(A) = Q[x] is the ring of polynomials
in the single variable x with coefficients in Q and GA = GQ[x].

Finally, let A be a torsion-free unitary abelian group A of rank one (i.e., {1}
is a maximal linear independent subset of A). Denote by QA the subring of Q
generated by 1 and the rational numbers 1/p, for which the p-Sylow subgroup of
the quotient A/gp(1) is nontrivial. Then fr(A) = QA and GA = GQA . Notice,
that if A = gp(1) then QA = Z, and in this event GA = G.
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In general, completions GA are impossible to understand. However in the
case where A is a torsion–free, unitary abelian group and G is a torsion–free
CSA-group, the structure of both fr(A) and Gfr(A) can be reasonably well
determined.

We recall from [22] that a group G is called a CSA group if every maximal
abelian subgroup M of G is malnormal, i.e., Mg ∩M = 1 for every g ∈ G−M.

The class of CSA-groups is quite substantial. It includes all abelian groups,
all torsion-free hyperbolic groups [21] and all groups acting freely on Λ-trees [1]
as well as many one-relator groups – a complete description of one-relator CSA-
groups was obtained by D. Gildenhuys, O. Kharlampovich and A.G. Myasnikov
in [13].

We shall discuss this, as well as other results, in 2 and 3. In particular, we
shall prove the following theorem.

Theorem B Let G be a torsion-free CSA-group and let A ≤ B be unitary rings
of characteristic zero or torsion-free, unitary abelian groups. Then the canonical
map GA −→ GB is a monomorphism.

We have focused attention here on fr(A), the free unitary ring generated by
A. In fact it turns out that there are a host of different unitary rings ”generated”
by A. We shall discuss this further in 2 and in 3.

1.2 Extension of centralizers

The key to A-completions is a construction termed extension of centralizers
by A. Myasnikov and V. Remeslennikov in [21], [22] and carefully investigated
by them. We recall the definition. Let G be a group and let C(u) denote
the centralizer of an element u ∈ G. Suppose that C(u) is abelian and that
φ : C(u) −→ A is a monomorphism of C(u) into an abelian group A. Then the
amalgamated product

G(u,A) = 〈G ∗A | C(u) = C(u)φ〉

is called an extension of the centralizer C(u) by the group A with respect to φ
or, more briefly, an A-extension of C(u). We shall, for the most part, assume
that φ is simply inclusion, in which case we will omit any mention of it. It turns
out [22], in the event that A is a unitary ring which is additively torsion–free,
that A–completions of a torsion-free CSA group (in particularly, a torsion-free
hyperbolic group) G can be constructed by repeatedly forming extensions of
centralizers. Namely, the A-completion GA is the union of an infinite chain of
groups:

G = G0 ≤ G1 ≤ . . . ≤ Gα ≤ Gα+1 ≤ . . . ≤ Gδ = GA;

here, for each ordinal α < δ (writing C additively for the moment),

Gα+1 = {Gα ∗ (C ⊗Z A) | c = c⊗ 1 (c ∈ C)}

5



is an A-extension of some centralizer C in Gα and, for each limit ordinal λ,
Gλ = ∪β<λGα.

In 5 we carry out a detailed investigation of residual properties of extensions
of centralizers. This then allows us, making use of the construction above,
to deduce some residual properties of A-completions of torsion-free hyperbolic
groups.

1.3 G–groups, separation and discrimination

Let G be a given group. Then a group H is termed a G–group if it comes
equipped with a monomorphism

φ : G −→ H.

It follows that the class of G–groups is simply the class of those groups H which
come equipped with a given embedding of G into H. We shall, for the most
part, assume that φ is the inclusion of G into H. If G is the trivial group, then
a G–group is simply a group. Notice that G is itself a G–group, where here φ
is the identity map. Following usual custom, we term a homomorphism θ of a
G–group H ′ into a G–group H a G–homomorphism if

θ(g) = g (g ∈ G).

We observe, on identifying G with its image in the G–group H, that a G–
homomorphism from H to the G–group G is simply a retraction of H to G, i.e.,
a homomorphism of H to its subgroup G which is the identity on G. We will
make much use of the two definitions that follow.

Definition 1 Let H and K be G-groups and letF be a family of G-homomorphisms
of H into K. We term F a G-separating family if for each h ∈ H, h 6= 1, there
exists φ ∈ F such that φ(h) 6= 1. In this event we also say that K G-separates
H.

If G = 1, then we omit any reference to G and simply say that K separates H or
H is separated by K. In this event, following usual practice, we also sometimes
say that H is residually K.

Definition 2 Let H and K be G–groups and let F a family of G–homomorphisms
of H into K. We term F a G–discriminating family if for each finite subset
H0 of non-trivial elements of H, there exists a homomorphism φ ∈ F such that
φ(h) 6= 1 for every h ∈ H0 (we say that φ discriminates the finite set H0). In
this event we say that K G–discriminates H.

Again, if G = 1 we say that K discriminates H; in this case some authors term
H fully residually K or ω–residually K.

Surprisingly, the property of being discriminated by a group K is, in general,
much stronger then that of being separated by K (see 1.5). In fact it is not
hard to obtain conditions which ensure that a group K which separates a second
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group H also discriminates H. We address this problem in [8]. Here we only
mention the following result from 4. If A is a torsion-free abelian group, then
any group which is separated by A is discriminated by A, i.e., A discriminates
everything it separates. A dual result holds for non-abelian CSA groups: if a
non-abelian CSA group H is separated by a group K, then H is discriminated
by K, i.e., H is discriminated by everything that separates it.

1.4 Residual properties of completions

Our primary objective in this paper is to prove that certain completions of
torsion-free hyperbolic groups enjoy a number of residual properties. All of our
results about residual properties of completions stem from a general technique
(”the big powers method”) involving relations of the form

h1u1
m1h2u2

m2 . . . un
mnhn+1 = 1,

where h1, . . . , hn+1, u1, . . . , un are elements of certain torsion-free groups and
the mi are integers. It turns out, in particular, that if the mi are large enough
in magnitude and if for each i, h−1

i+1uihi+1 does not commute with ui+1, then
such a relation cannot hold in any torsion-free hyperbolic group [24], [9]. This
allows us to prove a number of residual properties of various completions of, in
particular, torsion–free hyperbolic groups.

Theorem C1 Let G be a torsion-free hyperbolic group and let Z[x] be the ring
of integral polynomials in a single variable x. Then GZ[x] is G-discriminated by
G.

The following definition underlines the difference between the completions
GZ[x] and GQ.

Definition 3 Let A be a unitary subring of a unitary ring B of characteristic
zero and let G be an A-group.

1. An (A,B)-completion of G is said to be of type L (after R. C. Lyndon
[18]) if B+/A+ is torsion-free.

2. An (A, B)-completion of G is said to be of type B (after the first author
[3]) if B+/A+ is a torsion group.

This definition allows us to split the A-completion GA of an arbitrary torsion-
free hyperbolic group G by an unitary ring A of characteristic zero into two
parts:

G ≤ GQA ≤ GA, (1)

where QA is the subring of A (and also that of Q) consisting of the pre-images
of the elements of A which are of finite additive order modulo Z, the subgroup
generated by 1. Notice, that the group A+/QA

+ is torsion-free, and QA
+/Z

is a torsion group. Hence GQA is a QA-completion of G of type B, and GA is
an A- completion of GQA of type L. The decomposition (1) is termed the B-L
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decomposition of the completion GA. For example, if A is a unitary algebra over
Q, then QA = Q and therefore

G ≤ GQ ≤ GA

is the the B-L decomposition of GA; in particular, GA, the (Q, A)-completion
of the Q-group GQ, is of type L.

Completions of type L are similar, in many respects, to Z[x]-completions.

Theorem C2 Let G be a torsion-free hyperbolic group and let A be a unitary
ring with free abelian additive group A+. Then any A-completion GA of type L
of the group G (as Z-group) is G-discriminated by G.

Theorems C1 and C2 are based on Theorem 4 from Section 6 which is our main
technical result about completions of hyperbolic groups. We will not formulate
this result here. Instead we give one more of its applications to completions of
hyperbolic groups by unitary abelian groups. Recall, that the subgroup gp(1)
is isolated in the unitary group A if the factor-group A/gp(1) is torsion-free.

Theorem C3 Let G be a torsion-free hyperbolic group and let A be a unitary
abelian group. If A is free abelian and if gp(1) is isolated in A, then GA is
G-discriminated by G.

We shall give the proof of the main theorem, as well as its corollaries, in 6.

1.5 Applications

One of the main applications of the theorems that we prove here is to what one
might term algebraic geometry over groups. We refer the reader to the paper
[7] where the basic theory is developed. In order to explain, let G be a given
group, H a G–group, n a positive integer and An(H) the set of all n-tuples of
elements of H:

An(H) = {(a1, . . . , an) | aj ∈ H } .

We denote the free product of G and the free group freely generated by x1, . . . , xn

by G[X]. If S is a subset of G[X], we define

V (S) = {(a1, . . . , an) ∈ An(H) | f(a1, . . . , an) = 1 for all f ∈ S } .

A subset Y of An(H) is termed algebraic if there exists a subset S of G[X]
such that Y = V (S). We term two subsets S and S0 of G[X] equivalent if they
define the same algebraic set, i.e., if

V (S) = V (S0).

The G–group H is then called equationally noetherian if given any subset S of
G[X] there exists a finite subset S0 of S which is equivalent to S. It turns out
that if H is G-discriminated by G and if G is equationally noetherian, then so
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too is H [7]. This fact together with Theorems C2 and C3 implies the following
result.

Theorem D1 Let G be an equationally noetherian torsion-free hyperbolic group
(in particular, a free group) and let A be a unitary ring (or free abelian unitary
group) with free abelian additive group A+. Then any A-completion GA of type
L of the group G (as Z-group) is equationally noetherian.

Another, perhaps the most important, application of the residual properties of
completions comes out of a description of the irreducible components of algebraic
sets. The discussion that follows will help to illuminate this remark. We refer
the reader to [7] for more details of this and related topics and some appropriate
references. Let G be an equationally noetherian torsion-free hyperbolic group.
If we take the algebraic sets in An(G) as the basis for a topology on An(G), the
so-called Zariski topology, then this topology is noetherian. Hence every closed
set V of An(G) is a finite union of its irreducible components:

V = V1 ∪ . . . ∪ Vn.

Every algebraic set V ⊂ An(G) is uniquely determined by the following normal
subgroup of G[X]:

I(V ) = {f(x1, . . . , xn) ∈ G[X] | f(a1, . . . , an) = 1 for all (a1, . . . , an) ∈ V } .

The factor-group G[X]/I(V ) = GV is called the coordinate group of V . It
turns out [7], that a finitely generated G-group H is the coordinate group of
some irreducible algebraic set if and only if H is G-discriminated by G. This
observation, together with Theorem C1 shows that all finitely generated G-
subgroups of GZ[x] are coordinate groups of irreducible algebraic sets. As far
as we have been able to ascertain, given a torsion-free hyperbolic group G, all
known examples of finitely generated G-groups which are G-discriminated by
G, are G-embeddable in GZ[x]. It seems likely that GZ[x] is the source of all
examples of coordinate groups of irreducible algebraic sets over G.

For the next application of the main theorem we need some definitions from
logic. A universal sentence in the language of group theory, with constants from
G, is a formula of the type

∀x1 . . . ∀xn(
s∨

j=1

t∧

i=1

(uji(x̄, ḡij) = 1 & wij(x̄, f̄ij) 6= 1)

where x̄ = (x1, . . . , xn) are variables, ḡij and f̄ij are arbitrary tuples of elements
(constants) from G. We say that the G-groups H1 and H2 are universally
equivalent if they satisfy exactly the same universal sentences with constants
from G and we express this by writing H1 ≡∀ H2.

A subgroup G is called existentially closed in a group H, if any existential
sentence with constants from G holds in the whole group H if and only if it
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holds in the subgroup G. Notice, that if G is existentially closed subgroup of a
G-group H, then G ≡∀ H. It follows immediately from the definition that if a
G-group H is G-discriminated by G, then G is existentially closed in H. Now it
follows from Theorem C2 that

Theorem D2 Let G be a torsion-free hyperbolic group. If A is a unitary ring
of characteristic zero and GA is an A-completion of G of type L, then G is
existentially closed in GA and GA ≡∀ G.

Finally, we want to mention one result on decidability of universal theories.

Theorem D3 Let F be a non-abelian free group and let A be a unitary ring
of characteristic zero. Then every A-completion FA of type L has decidable
universal theory.

Indeed, by Theorem D2 FA has the same universal theory as the free group F ,
which is decidable (G. Makanin [20]).

In conclusion, we would like to mention that this paper is a partially ex-
panded version of the preprint [6].

2 Rings generated by unitary abelian groups

2.1 The free ring generated by a unitary abelian group

Let A be a unitary abelian group with distinguished element 1. We choose
a presentation of A, qua abelian group, which includes a specific generator ξ0

representing 1:
A =< Ξ;R >ab .

We have elected to add the subscript ab in the presentation symbol to emphasise
the fact that this is a presentation in the category of abelian groups. We now
define a ring rg(A) by generators and defining relations as follows:

rg(A) =< Ξ;R∪ {ξ0ξ − ξ, ξξ0 − ξ | ξ ∈ Ξ} > rg,

where now we use the subscript rg to emphasize the fact that we are working
in the category of (associative) rings.

The following lemma is an easy consequence of the definition of rg(A).

Lemma 1 Let A be a unitary abelian group and let R be a unitary ring. Then
every unitary homomorphism

φ : A −→ R+

can be continued to a unique unitary ring homomorphism

φ∗ : rg(A) −→ R

.
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Proof. Consider the image A′ of A under φ in R. Then A′ can be presented,
qua abelian group, in the form

A′ =< Ξ;R′ >ab,

where R′ is a set of relators containing R. Notice that the image of ξ0 under
φ is the unit element of R and that the subring of R generated by A′ has a
presentation on the generating set Ξ together with a system of relations which
includes the defining relations of rg(A). Hence φ can be continued to a unitary
ring homomorphism of rg(A) into R, as claimed.

It follows immediately from Lemma 1 and the very definition of fr(A) that
we have the

Corollary 1 The ring rg(A) generated by A coincides with fr(A).

We can think of rg(A) as being defined in terms of a universal mapping
property and therefore its definition is independent of the choice of generators
Ξ and its presentation in terms of these generators. Notice that fr(Z+) = Z
and fr(Q+) = Q.

Lemma 2 fr can be viewed as a covariant functor from the category of unitary
abelian groups to the category of unitary rings.

Proof. We observe to begin with, that if α : A −→ A′ is a homomorphism
of unitary abelian groups, then this gives rise, first to a unitary abelian group
homomorphism of A into the additive group of the ring fr(A′) and thence, by
Lemma 1, to a ring homomorphism fr(α) : fr(A) −→ fr(A′). Since fr is
clearly covariant, this completes the proof of the lemma.

Corollary 2 If α is an isomorphism from A to A′, then fr(α) is an isomor-
phism from fr(A) to fr(A′).

Corollary 2 follows immediately from Lemma 2.

2.2 Free associative algebras

Let A be an unitary abelian group and let α be the canonical homomorphism
of A into fr(A). Then it may well be the case that α is not a monomorphism.
In the event that A is torsion–free, α is always a monomorphism. The proof, in
the torsion–free case, that α is a monomorphism, carries with it some additional
information about fr(A), which will be needed in the sequel. In this subsection
we prepare the way for a deeper understanding of fr(A) by introducing some
needed notation and proving some simple facts about free associative algebras.

To this end, let S be an unitary ring, let X a be a non–empty set and let
R = S < X > denote the free unitary ring over S freely generated by X. So

R =
∞⊕

i=0

Ri,
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where R0 = S and Rn is the free left S–module freely generated by all of the
monomials in X of degree n. Two special cases will be of special interest to us
- that in which S = Z, the ring of integers, and the case where S = Q, the field
of rational numbers.

The following proposition is presumably well known, but we give a proof for
completeness.

Proposition 1 Let R = Q < X > be the free associative algebra over Q in
the variables X and let {1} ∪ Y be a Q-linearly independent subset of R0 ⊕R1.
Then the unitary Q–subalgebra of R generated by Y is a free associative unitary
algebra over Q freely generated by Y .

The proof of Proposition 1 requires a number of steps, which we record here
as lemmas. The first of these is

Lemma 3 Let R = Q < X > and let φ be a surjective unitary Q–algebra
homomorphism of R onto itself. If X is finite, then φ is an automorphism.

Proof. Let

R(n) =
∞⊕

i=n

Ri.

Then R(n) is an ideal of R which is invariant under every endomorphism of R.
Hence φ induces a homomorphism φn of the finite dimensional algebra R/R(n)
onto itself for every n. So φn is an automorphism. Since

∞⋂
n=1

R(n) = 0

it follows that φ is an automorphism.

Corollary 3 Let R = Q[X] and let {1} ∪ Y be a finite, linearly independent
subset of R0 ⊕R1. If X is finite, then the unitary Q–subalgebra of R generated
by Y is a free Q–algebra, freely generated by Y .

Proof. We enlarge {1} ∪ Y to a basis {1} ∪ Y ′ of R0 ⊕ R1. Then there
is a map φ from X to Y ′ which induces an unitary Q–algebra epimorphism,
which we again denote by φ, from R to R. By Lemma 3, φ is an automorphism.
Hence the unitary Q–subalgebra of R generated by Y is a free Q–algebra, freely
generated by Y .

We are now in position to prove Proposition 1. To this end, let Y ′ be a finite
subset of Y . We prove first that the unitary Q–algebra S generated by Y ′ is free
on Y ′. To this end, observe that every element of Y ′ is a linear combination of
elements in X. It follows that Y ′ is contained in the subspace spanned by X ′,
where X ′ is a finite subset of X. Since the unitary Q–subalgebra of R generated
by X ′ is freely generated by X ′, it follows immediately from Corollary 3 that
the unitary Q–subalgebra of R generated by Y ′ is freely generated by Y ′. It
follows that the monomials in Y are linearly independent over Q and therefore
that Y freely generates a free associative algebra over Q, as required.
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2.3 The ring fr(A)

We concern ourselves now with the case of a unitary abelian group A, where A
is torsion–free. Let {1}∪X be a maximal Z-linearly independent set of elements
of A. Let LX be the subgroup of A generated by X and let T (LX) be the tensor
power of LX over the field Q of rational numbers. So

T (LX) =
∞⊕

n=0

Tn(LX)

is a graded algebra over Q which can be identified with the free associative
unitary algebra with coefficients in Q generated by X. Here T0(LX) = Q and
T1(LX) is the subspace of T (LX) spanned by X. In particular, it follows that
LX is embedded in T1(LX). We now identify the subgroup gp(1) in A with
the additive group of integers in Q by identifying 1, qua element of A, with
1, qua element of Q. The embeddings of gp(1) and LX in T (LX) give rise
to an unitary embedding φX of A into the additive abelian group of T (LX),
viewed as a unitary abelian group; observe that the image of A is contained
in T0(LX) ⊕ T1(LX). We denote by frX(A) the unitary subring of T (LX)
generated by φX(A). We will identify frX(A) with fr(A), which allows us to
better understand the structure of fr(A).

We denote below the isolator of a subgroup N of an abelian group A by
√

N ;
so by definition,

√
N is the pre-image in A of the torsion subgroup of A/N.

When A is free abelian, A/
√

gp(1) is also free abelian and hence we can
express A as a direct sum A =

√
gp(1) ⊕ C, where C is free abelian. Under

these circumstances we choose X to be a free set of generators of C. Notice that√
gp(1) is infinite cyclic, generated by b, say; hence mb = 1, for a suitable choice

of the integer m. We will make use of these remarks as well as the accompanying
notation in the sequel.

Notice that it follows from the fact that A is embedded in frX(A) that A is
embedded in fr(A). The following lemma then holds.

Lemma 4 Suppose that A is free abelian and that X is chosen in the manner
described above. Furthermore, suppose that φ is the extension of φX to a uni-
tary ring homomorphism of fr(A) onto frX(A) and that Λ is the subring of Q
generated by 1/m. Then

1. φ is an isomorphism;

2. fr(A) ∼= Λ < X > .

Proof. Observe, that A =
√

gp(1) ⊕ LX . It follows, that frX(A) = Λ < X >.
Now φ maps the subring Λ′ of fr(A) generated by

√
gp(1) onto Λ. It follows then

from the fact that
√

gp(1) is embedded by φ in Λ, that φ maps Λ′ isomorphically
onto Λ. So, identifying Λ′ with Λ, it follows that fr(A) can be thought of as
a unitary Λ–algebra generated by X. Since the image of fr(A) under φ is
Λ < X >, φ is an isomorphism from fr(A) to frX(A). We have therefore
proved both of the assertions (1) and (2).

The following corollary is an immediate consequence of Lemma 4.
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Corollary 4 If A is a finitely generated unitary, free abelian group and if gp(1)
is isolated in A, then fr(A) is a free associative unitary algebra over the ring Z
of integers:

fr(A) ∼= Z < X > .

We are now in a position to prove the following theorem, where we again
adopt the notation developed above.

Theorem A Let A be a torsion–free, unitary abelian group. Then the canonical
extension of φX to a unitary ring homomorphism φ from fr(A) onto frX(A)
is an isomorphism and hence fr(A) is, additively, torsion–free.

Proof. Let A′ be a finitely generated, unitary subgroup of A. Let θ be the
extension of the inclusion of A′ into A to a unitary ring homomorphism of the
unitary ring fr(A′) into fr(A). Consider the composition ψ = φθ of fr(A′)
into frX(A). Now φ, restricted to A, is a monomorphism and ψ, restricted to
A′, is simply φ, restricted to A′. Let B′ be the isolator of gp(1) in A′. Then B′

is cyclic, generated by, say b, and there exists an integer m such that mb = 1.
Let {b} ∪X ′ be a free set of generators of A′. Since ψ embeds A′ into frX(A),
it follows that {b} ∪X ′ is a linearly independent subset of R0 ⊕R1. Hence the
unitary Q-subalgebra of R = Q < X > generated by X ′ is, by Proposition 1,
a free Q–algebra, freely generated by X ′. So if Λ is the subring of Q generated
by B′, it follows that the unitary subring of frX(A) generated by ψ(A′) is
isomorphic to Λ < X ′ > and thence that ψ is an isomorphism. Since A′ is an
arbitrarily chosen unitary subgroup of A, it follows that φ is an isomorphism,
as claimed.

The following corollaries are immediate consequences of Theorem A.

Corollary 5 If A = Q+ ⊕ C is a unitary abelian group (here Q+ is again the
additive group of rational numbers and C is an infinite cyclic group) with the
identity of Q the distinguished element in A, then fr(A) = Q[x] is the ring of
polynomials in the single variable x with coefficients in Q.

Corollary 6 Let A be a torsion-free unitary abelian group A of rank one (i.e.,
{1} is a maximal linearly independent subset of A). Denote by QA the subring of
Q generated by 1 and the rational numbers 1/p, for which the p-Sylow subgroup
of the quotient A/gp(1) is nontrivial. Then fr(A) = QA.

Corollary 7 Let A be a torsion–free, unitary abelian group. If A is divisible,
then fr(A) is a free, unitary algebra over Q, freely generated by X, where {1}∪X
is a maximal linearly independent set in A.

Corollary 8 Let A be a torsion–free, unitary abelian group. Then fr(A)⊗Z Q
is a free Q-algebra, freely generated by X, where {1} ∪X is a maximal linearly
independent set in A. In particular, fr(A)⊗Z Q ' fr(A⊗Z Q).

Corollary 9 Let A ≤ B be torsion-free, unitary abelian groups. Then the
inclusion A −→ B gives rise to the canonical embedding fr(A) −→ fr(B).
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We need to extract some additional information from the proof of Theorem
A.

Proposition 2 Let A ≤ B, where B is a torsion–free, unitary abelian group.
Then the following hold.

1. If B is free abelian and B is A-discriminated by A, then fr(B)+ is fr(A)+-
discriminated by fr(A)+.

2. If A is divisible, then fr(B)+ is fr(A)+-discriminated by fr(A)+.

3. If B is divisible, then fr(B)+ is fr(
√

A)+-discriminated by fr(
√

A)+.

4. If B is finitely generated and A is isolated in B, then fr(B)+ is fr(A)+-
discriminated by fr(A)+.

5. If B is free abelian and gp(1) is isolated in B, then fr(B)+ is gp(1)-
discriminated by gp(1), i.e., fr(B)+ is discriminated by Z.

Proof. We simply follow the steps in the proof of Theorem A in each of the
situations described above.

1. To begin with we note that since B is A-discriminated by A, there is an
A-homomorphism of the unitary abelian group B onto A, i.e., a retraction
of B onto its subgroup A. It follows that A is a direct summand of B:
B = A⊕A′. Since A′ is a subgroup of the free abelian group B, it too is
free abelian and hence has a free basis Y ′, say. Choose a basis {b}∪Y for
A, where here b ∈ A is a generator of

√
gp(1) in A. It follows that mb = 1

for some choice of the integer m. Put X = Y ∪ Y ′. It follows then from
the proof of Theorem A, that if Λ is the subring of Q generated by 1/m,
then

fr(A) = Λ < Y > and fr(B) = Λ < X > .

Thus the additive group fr(B)+ is a direct sum of fr(A)+ and some
abelian group C which is a free Λ- module. Obviously, C is separated
by Λ+ and hence C is separated by fr(A)+. Now, by Lemma 7 (see
Section 4.1) the group C is discriminated by fr(A)+, and consequently,
fr(B)+ = fr(A)+ ⊕ C is fr(A)+-discriminated by fr(A)+.

2. Now a divisible subgroup of an abelian group is a direct summand. So,
as in the proof of (1), we find that B = A ⊕ C. In this case, however,√

gp(1) is an additive copy of Q. So if {1} ∪ X is a maximal linearly
independent set in A and Y a maximal linearly independent set in C,
then fr(A) = Q < X > and fr(B) = Q < X ∪ Y >. An analogous
argument to that given in (1), yields then the desired conclusion.

3. In order to prove (3), notice that
√

A is a divisible subgroup of the divisible
group B. Now the desired conclusion follows from (2).

4. Since here A is a direct summand of B, B is A–discriminated by A. So
(4) is now an immediate consequence of (1).
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5. Since gp(1) is isolated in B, it is a direct summand. The desired conclusion
follows readily either from (4) or (1).

There is an analogous ring abr(A) to fr(A), defined by adding to the re-
lations of fr(A) the extra relations xy − yx where x and y range over Ξ (see
2.1). There are then analogues of the results that we have proved for fr(A).
Indeed, all of these results carry over to abr(A) where they take on a similar
form with the various free algebras replaced by free commutative algebras, i.e.,
the usual polynomial algebras in the appropriate sets of variables. In fact if V
is any variety of unitary (associative) algebras over Q, then we can add to the
defining relations of fr(A) the relations that define the free algebras in V.

We note here that it follows in much the same way as above, that if A is free
abelian and unitary and if gp(1) is isolated in A, then abr(A) = Z[X] is the ring
of integral polynomials in an appropriately chosen set of indeterminates X. In
general, abr(A)⊗Z Q = Q[X].

3 Completions

3.1 A-completions

We begin with the following lemma.

Lemma 5 Let G be a group and let A be an unitary abelian group. Then Gfr(A)

is the A-completion of G.

Proof. Let µ be the canonical homomorphism of G into Gfr(A) and let θ be a
homomorphism of G into an A-group H (see the diagram below). Consider the
centroid Γ(H) of H. Since H is an A-group, there is a unitary homomorphism
ρ of A into the additive group of Γ(H)+. So, by Lemma 1, ρ can be extended
to an unique unitary homomorphism of fr(A) into Γ(H). So H can be viewed
as an fr(A)-group. Therefore there is an unique fr(A)-homomorphism φ from
Gfr(A) into H such that φµ = θ.

G Gfr(A)

H

-

?

¡
¡

¡
¡

¡
¡

¡
¡ª

θ φ

µ

We can view φ as an A-homomorphism from the A-group Gfr(A) into the
A-group H. It follows that Gfr(A) is the A-completion of G.

There is a relative version of the above lemma, which can be proved in
exactly the same way. This is the content of the next lemma.
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Lemma 6 Let G be a group and let A be an unitary abelian group. Suppose that
H is an A-group and that B is the unitary subring generated by the canonical
image of A in the centroid Γ(H). If B is commutative, then there is a unique
A-homomorphism of Gabr(A) into H.

Given the hypothesis of Lemma 6, we will refer to Gabr(A) as the commutative
A–completion of G.

In the case where A is a torsion-free, unitary abelian group we have proved
that fr(A) is a subring of Q < X >, the free unitary associative algebra, freely
generated by an appropriately chosen set X (see 2.3). As noted already in 2.3,
there is an analogous result for abr(A), i.e., abr(A) is a subring of Q[X], the free
unitary commutative algebra, freely generated by an appropriately chosen set
X, which is simply the algebra of polynomials over Q in the variables x ∈ X.
These results are an important ingredient in determining the structure of the
A–completions of a variety of different groups.

We remark, that there are a host of other rings in between fr(A) and abr(A),
generated by a unitary abelian group A, as we noted at the end of 2.3. We leave
the obvious extensions of the present discussion to the interested reader.

3.2 Completions of CSA-groups

We have mentioned in 1.1 that, in general, completions GA are impossible to
understand. In the case where G is a torsion-free CSA-group and S is a unitary
ring of characteristic zero a concrete description of GS is obtained in [22].

By Lemma 5, the A-completion GA of a group G by an unitary abelian
group A is simply the fr(A)–completion Gfr(A). In view of Theorem A, in the
event that A is a torsion–free, unitary abelian group, fr(A) is a unitary ring of
characteristic zero. So the results obtained in [22] carry over in this case.

Combining results from [22] and 2 yields the following theorem.

Theorem B Let G be a torsion-free CSA-group and let A ≤ B be unitary rings
of characteristic zero (torsion-free, unitary abelian groups). Then the canonical
map GA −→ GB is a monomorphism.

Proof. Assume that A ≤ B are unitary rings of characteristic zero. Let GA be
the A-completion of G. The group GA can be viewed as a partial B-group (i.e.,
exponentiation by B is not always defined, but when it is, the usual axioms hold
(see [22] for details). In this event, we can consider the B-completion (GA)B

of the partial B-group GA which extends the given exponentiation by A (again
see [22] for details). Since G is a torsion-free CSA group and A is a ring of
characteristic zero the canonical homomorphism G → GA is monic, and the
completion GA is again a torsion-free CSA group (see [22]). Now, it follows
again from [22] that GA canonically embeds into (GA)B . To finish the proof of
the theorem we need to show that GB is canonically B-isomorphic to (GA)B .

Let θ : G −→ H be a homomorphism of G into an arbitrary B-group H.
The group H also can be viewed as an A-group, and, consequently, there exists
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a canonical A-homomorphism from GA into H, This then can be extended to a
B–homomorphism from the completion (GA)B into the B–group H. So every
homomorphism from G into H can be extended to a unique B–homomorphism
from (GA)B into H, i.e., (GA)B is the B–completion of G, as desired.

Now, suppose that A ≤ B are torsion-free, unitary abelian groups. By
Theorem A the rings fr(A) and fr(B) are unitary rings of characteristic zero.
By Corollary 7 from 2.3 the inclusion A −→ B extends to a monomorphism
of unitary rings fr(A) −→ fr(B). Finally, by Lemma 5, GA = Gfr(A) and
GB = Gfr(B). The desired result is an immediate consequence of the discussion
above.

Theorem B allows us to formulate the following result.

Proposition 3 Let G be a non–abelian CSA-group and let A be a torsion–free,
unitary abelian group. If H is a finitely generated subgroup of GA then H is
contained in a subgroup of the form GA0 , where A0 is a finitely generated unitary
subgroup of A.

Proof. The group GA = Gfr(A) is fr(A)-generated by G. If Y is a finite set
of generators of H ≤ GA, then one needs just finitely many exponents from
fr(A) to be able to express all elements from Y in terms of A-generators from
G. Denote this finite set of exponents by E. The group A generates the ring
fr(A); therefore there is a finitely generated subgroup A0 ≤ A such that the
subring rg(A0) ≤ fr(A) contains the set E. By Corollary 2 of 2.1, rg(A0) is
isomorphic to fr(A0). It follows that H is contained in the fr(A0)-subgroup of
GA, viewed as a fr(A0)-group, generated by G; by Theorem B, this subgroup
is fr(A0)-isomorphic to Gfr(A0).

4 Separation, discrimination and CSA-groups.

We gather together in this section some simple results which will be of use in
the sequel.

Recall that a group G is a CSA group if its maximal abelian subgroups are
malnormal. As noted in the introduction, every abelian group is a CSA group;
so too is every torsion-free hyperbolic group.

Lemma 7 Let G be a torsion-free abelian group. If G separates a group H then
G discriminates H.

Proof. Suppose that the group G separates a group H. Then H can be em-
bedded in a cartesian power P of G (see, for example [12]). Let h1, . . . , hn be
non-trivial elements of H. Then there exists a projection π of P onto a finite
direct product G× . . .×G such that π(hi) 6= 1 for i = 1, . . . , n. So, it suffices to
prove that G discriminates a finite direct product G×. . .×G. The result will fol-
low if we prove that G discriminates G×G. To this end let (a1, b1), . . . , (an, bn)
be non–trivial elements of G × G. Since extraction of roots in a torsion–free
abelian group is unique, whenever it is possible, there exists a positive integer
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k such that the homomorphism from G×G into G defined by (note that we are
using additive notation here)

(a, b) 7→ a + kb (a, b ∈ G)

is monic on the set {(a1, b1), . . . , (an, bn)}. This completes the proof.

Lemma 8 Let H be a non-abelian CSA group. If H is separated by a group G
then H is discriminated by G.

Proof. Let H be a non-abelian CSA group. We claim that for any non-trivial
a, b ∈ H there exists x ∈ H such that [a, bx] 6= 1. Indeed, suppose that a non-
trivial element a commutes with all of the conjugates of a non-trivial b in H.
Then it follows from the commutative transitivity of CSA groups (see [22]), that
the normal closure B of b in H is abelian, i.e., H contains a non-trivial normal
abelian subgroup B. Let M be a maximal abelian subgroup of H containing B
(notice that B 6= H). Then M is not malnormal in H, which is impossible since
H is a CSA-group.

Suppose now that H is separated by a group G and suppose that h1, . . . , hn

are arbitrary non-trivial elements in H. There exists an element x1 ∈ H
such that [h1, h

x1
2 ] 6= 1. Hence there exists an element x2 ∈ H such that

[[h1, h
x1
2 ], hx2

3 ] 6= 1 and so on. It follows that we can find elements x1, x2, . . . , xn−1 ∈
H such that

c = [. . . [[h1, h
x1
2 ], hx2

3 ], . . . , hxn−1
n ] 6= 1.

Therefore if φ is a homomorphism of H into G such that φ(c) 6= 1. Then φ
maps each of the elements h1, . . . , hn non-trivially into G, as desired.

5 Separation and extension of centralizers of hy-
perbolic groups

5.1 Direct extensions of centralizers and condition (S)

Let G be a group. In this subsection and the two subsequent ones, we will be
concerned with various G-groups H obtained from G by means of extending
centralizers. Our primary objective is to prove that many of these groups are
often G–discriminated by G or some related supergroups of G.

Let G be a group. The centralizer of an element u ∈ G is denoted by CG(u)
or C(u) or C, if the group G and the element u can be determined from the
context.

We recall the definition introduced in the introduction in 1.2.

Definition 4 Let G be a group, C(u) the centralizer of an element u ∈ G.
Suppose that C(u) is abelian and that φ : C(u) −→ A is a monomorphism of
C(u) into an abelian group A. Then the group

G(u,A) = 〈G ∗A | C(u) = C(u)φ〉
is called an extension of the centralizer C(u) by the group A with respect to φ.
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We will, for the most part, regard such groups G(u, A) as G-groups, with G
here embedded in G(u,A) by inclusion.

Some special instances of these G(u,A) are of special interest. They depend
on the nature of the embedding φ of C(u) in A. We say that the extension is:

1) direct if A = C(u)φ ×B;
2) free (of rank n) if A = C(u)φ ×B and B is a free abelian group (of rank

n).
Free extensions of centralizers of rank 1 play an important role in this theory.

Suppose then that G = 〈X | R〉 is a presentation of G. It is easy to see that a
free rank 1 extension, which we denote by G(u, t), of the centralizer C(u) of the
element u in the group G has the following presentation:

G(u, t) = 〈G, t | [y, t] = 1(y ∈ C(u))〉.
So here A = C(u)× < t >. We will also sometimes use the following abbreviated
description for G(u, t):

G(u, t) = 〈G, t | [C(u), t] = 1〉.
Of course, G(u, t) is an HNN-extension of G, with a single stable letter t, with
associated subgroups C(u) and C(u) and associating isomorphism the identity.

Let C be a subgroup of the abelian group A and let G(u,A) be an extension
of the centralizer C(u) = C of the group G by the group A. We say that an
element g ∈ G(u,A) is in reduced form if

g = g1a1 . . . gnangn+1 (2)

where ai ∈ A− C, i = 1, . . . , n and gj ∈ G− C, j = 2, . . . , n.
In the case of a direct extension of the centralizer C by a group B, i.e., when

A = C ×B, it is more convenient to use semi-canonical forms. Here a reduced
form

g = g1b1 · · · bngn+1

is termed semi-canonical if 1 6= bi ∈ B for all i. It is not difficult to see that one
semi-canonical form of g can be transformed into another by a finite sequence
of commuting relations which take the form bc = cb, where c ∈ C, b ∈ B.

In our treatment of extension of centralizers we will make use of some special
G-homomorphisms of the kind described in the following lemma.

Lemma 9 Let G(u,A) be an extension of the centralizer C = C(u) by an
abelian group A. Let ψ : A −→ C be a retraction of A onto its subgroup
C. Then the homomorphism λψ : G(u,A) −→ G, which is defined as the si-
multaneous extension to G(u,A) of the identity homomorphism on G and the
homomorphism ψ on A, is a G-homomorphism of the G-group G(u,A) to the
G-group G.

The verification that λψ has the stated properties is an immediate consequence
of its definition.

The following lemma shows the importance of direct extensions of central-
izers.
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Lemma 10 Let C be a subgroup of the torsion-free abelian group A. Then the
following statements are equivalent:

1. A is C-discriminated by C;

2. A = C ×B and B is discriminated by C.

Proof. Suppose that 2) holds. Since B is discriminated by C, there is an
associated family of discriminating homomorphisms Ψ from B to C. If we now
denote by idC the identity automorphism of C, then {idC +mψ | m ∈ Z, ψ ∈ Ψ}
is a C-discriminating family of C-homomorphisms from C × B to C (see the
proof of Lemma 7). This proves that 2) implies 1).

To prove that 1) implies 2) observe first that any C-homomorphism from A
to C is a retract of A onto C. Since A is abelian, it follows that C is a direct
summand of A and therefore we can express C in the form C = A×B. Now A
is C-discriminated by C. The associated family of C-homomorphisms of A onto
C, restricted to B immediately show that B is discriminated by C, as required.
This completes the proof of the lemma.

Our objective now is to obtain some conditions which ensure that certain
extensions of centralizers G(u,A) are G-discriminated by G. We will focus our
attention first on the case where the extension is direct. With this in mind, let
u1, . . . , un be elements of infinite order in a group G and let w1, . . . , wn+1 be
arbitrary elements in G satisfying the following condition, which we term the
(CS) condition:

[uwi+1
i , ui+1] 6= 1, i = 1, . . . , n− 1.

We associate with such U = (u1, . . . , un) and W = (w1, . . . , wn, wn+1) the sets

S(W,U,m) = {w1u1
m1w2u2

m2 . . . un
mnwn+1 | |mi| ≥ m}.

The following definition plays an important role in the rest of our development.

Definition 5 We say that a group G satisfies the condition (S) if for every
choice of elements u1, . . . , un and w1, . . . , wn+1 in G satisfying the condition
(CS) there exists a constant m such that the set S(W,U,m) does not contain
the identity element.

This approach goes back to [4], where it was proved that if G is a free group
and if u1 = u2 = . . . = un = u, u 6= 1, then G satisfies the condition (S).

Notice that if G is a non-abelian CSA-group and if u1 = . . . = un = u, the
(CS) condition is equivalent to [u,wi] 6= 1 for i = 2, . . . n. We observe also,
for later use, that every torsion-free hyperbolic group satisfies the condition (S)
([24], [9]).

Now we return to the group G(u, A), where A = C × B. We observe that
condition (S) in G allows us to approximate elements in B by large powers of
elements in C, which in turn allows us to prove, under the right circumstances,
that G(u,A) satisfies a number of discrimination properties. In order to explain,
we switch to additive notation, which makes sense because all of the groups
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involved are, for now, abelian. Thus, if B and C are abelian groups, then
the set Hom(B, C) can be turned into an abelian group under coordinatewise
addition. So if F is a discriminating family of homomorphisms of B into C it
makes sense to consider the subgroup gp(F) of Hom(B, C) generated by F . We
shall adopt this point of view and this notation throughout.

5.2 Discriminating direct extensions of centralizers

We are now in a position to formulate the main result about the discrimination
of direct extensions of centralizers. As already stated, we will make use of the
notation introduced above as well as that used in Lemma 9.

Theorem 1 Let G be a CSA-group satisfying the condition (S), G(u,A) a di-
rect extension of the centralizer C(u) = C of an element u ∈ G of infinite order
by an abelian group A = C × B. If B is discriminated by C then G(u,A) is
G-discriminated by G. Moreover, G(u,A) is again a CSA-group which satisfies
the condition (S). Furthermore, if F is a C-discriminating family of homomor-
phisms of B into C, then {λφ | φ ∈ gp(F)} is a G-discriminating family of
homomorphisms of G(u, A) into G.

The proof of the theorem rests on the following two lemmas.

Lemma 11 Let G be a group satisfying the condition (S). Then any group H
which is discriminated by G also satisfies (S).

Proof. Let tuples W ′ = (w′1, . . . , w
′
n, w′n+1) and U ′ = (u′1, . . . , u

′
n) of elements

in H satisfy the condition (CS). We will prove that there exists an integer
m such that all elements in the set S(W,U,m) are non–trivial. By the (CS)
condition, w′i+1

−1
u′iw

′
i+1 does not belong to the centralizer C(u′i+1) of u′i+1

and hence the commutator zi = [w′i+1
−1

u′iw
′
i+1, u

′
i+1] is non–trivial for each

i = 1, . . . , n − 1. By hypothesis, H is G-discriminated by G. Hence there
exists a G-homomorphism ψ : H −→ G which maps all of the commutators
zi (i = 1, . . . , n − 1) onto non-trivial elements of G. This implies that the
images ψ(W ′), ψ(U ′) of W ′ and U ′, satisfy the condition (CS) in the group G.
Observe that ψ maps S(W ′, U ′,m) onto S(ψ(W ′), ψ(U ′),m). Now G satisfies
condition (S). Therefore there exists an integer m such that S(ψ(W ′), ψ(U ′),m)
does not contain the identity. Consequently, it’s preimage S(W ′, U ′,m) does not
contain the identity. Thus the condition (S) holds in the group H.

The following lemma is the key step in the proof of Theorem 1.

Lemma 12 Let G be a group satisfying the conditions of Theorem 1. Then
{λφ | φ ∈ gp(F)} G-discriminates the extension of the centralizer G(u,A) by G.

Proof. Let g be a non-trivial element in G(u,A). One can write it in semi-
canonical form

g = w1b1w2 · · · bnwn+1,

where 1 6= bi ∈ B, and wi ∈ G for all i and wi 6∈ CG(u) for i = 2, . . . , n.
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Let ψ ∈ F separate the elements b1, . . . , bn in C. Put ui = ψ(bi) for
i = 1, . . . , n. Let, as before, but using multiplicative notation now, λmψ be
the homomorphism of G(u,A) into G defined as the identity on G and the
composition of ψ and the m− th power map on B. Thus

λmψ(bi) = um
i ∈ C.

Since the centralizer of a non-trivial element in a non-abelian CSA-group is
malnormal, the sets W = (w1, . . . , wn +1) and U = (u1, . . . , un) satisfy the sep-
aration condition (CS). So, by the (S)-condition, the set S(W,λmψ(b1, . . . , bn)
does not contain any trivial elements for some large enough m. Therefore λmψ

maps g non–trivially into G. Thus, we can separate any given non–trivial ele-
ment g ∈ G(u,A) by λmψ if m is large enough, say m ≥ m(g). Consequently,
if we have a finite number of elements g1, . . . , gk ∈ G(u,A), then λmψ will sep-
arate them all if m ≥ max{m(g1), . . . , m(gk)}. This means that G(u,A) is
G–discriminated by G.

It follows now that in order to complete the proof of Theorem 1, we need
only note that G(u, A) is a CSA-group, which was proved in [22].

5.3 General extensions of centralizers

Extensions of centralizers are not always direct. We need some terminology to
deal with arbitrary extensions.

Recall that if C is a subgroup of an abelian group A then we denote by
√

C
the isolator of C in A, i.e., the preimage in A of the torsion subgroup of A/C.
If
√

C = C, then C is isolated in A.
We will adopt this notation throughout, as well as the notation that we

introduced earlier. In keeping with the definitions recorded in the introduction,
we make also the following

Definition 6 G(u,A) is said to be of type L if C = C(u) is an isolated subgroup
of A; G(u,A) is said to be of type B if

√
C = A.

Notice that G(u,
√

C) is an extension of the centralizer C of type B and,
assuming that CG(u,

√
C)(u) =

√
C in G(u,

√
C), G(u,A) = G(u,

√
C)(u,A) can

be viewed as an extension of the centralizer CG(u,
√

C)(u) of type L. Under these
circumstances, we introduce the following definition.

Definition 7 The sequence of extensions

G ≤ G(u,
√

C) ≤ G(u,A)

is called the canonical B-L decomposition.

The next lemma details a number of simple situations where
√

C is a direct
factor of A.

Lemma 13 Let C be a subgroup of the torsion-free abelian group A. Then the
following hold:
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1. If A/C is a free abelian group then A = C ×B and C =
√

C;

2. If A is finitely generated, then A =
√

C ×B and B is free of finite rank;

3. If C is divisible, then A = C ×B and C =
√

C;

4. If
√

C is finitely generated and A is free, then A =
√

C ×B.

The proof of Lemma 13 is straightforward and is left to the reader.
We have then the following corollary of Theorem 1 and Lemma 13 concerning

extensions of centralizers of type L.

Corollary 10 Let G be a CSA-group satisfying condition (S), let A be a torsion-
free abelian group and let G(u,A) be an extension of type L of the centralizer
CG(u) of an element u ∈ G of infinite order in G. Then the following hold:

1. (Global approximation) If A is free abelian and C(u) is finitely generated,
then G(u,A) is G-discriminated by G;

2. (Local approximation) Every finitely G-generated G-subgroup of G(u,A)
is G-discriminated by G.

Proof. In order to prove 1), notice that, by Lemma 13, the given extension is
free. The conclusion follows immediately from Theorem 1.

In order to prove 2), observe that any finitely G-generated G-subgroup H
of G(u,A) is contained in a subgroup G(u,B), where B is a finitely generated
subgroup of A. In this case B is a free abelian group and, by 1) above, G(u,B)
is G-discriminated by G. Hence so too is its G-subgroup H.

Under certain circumstances, the condition (S) persists under extensions of
centralizers, as the following theorem shows.

Theorem 2 Let G be a torsion-free hyperbolic group and let A be a torsion-free
abelian group. Then G(u,A) satisfies the condition (S).

Proof. Notice that in a torsion-free hyperbolic group, centralizers of non-trivial
elements are infinite cyclic. Therefore C = C(u) is generated by v, say, and
G(u,A) is the amalgamated product of G and A with the element v identified
with an element a ∈ A. Now the condition (S) is a local condition, i.e., it is
satisfied if and only if it is satisfied in every finitely generated subgroup. It
suffices therefore to prove that G(u,B) satisfies the condition (S), where B is a
finitely generated subgroup of A containing C, i.e., the element a. Let D =

√
C

be the isolator of C in A. Then D is again cyclic, generated say by b and
a = bn for some integer n 6= 0. Thus G(u,

√
C) is simply the amalgamated

product of the hyperbolic group G and the infinite cyclic group generated by
b with v identified with bn. Consequently, by a theorem of [15], G(u,

√
C) is

hyperbolic and so, as we mentioned in 5.1, satisfies (S). The canonical B-L-
decomposition allows us to view G(u,B) as G(u,

√
C)(u,B) which is of type

L, indeed a free extension of centralizers. Consequently, by Corollary 10, (1),
the G(u,

√
C)-group G(u,B) is G(u,

√
C)-discriminated by G(u,

√
C). Since,
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as noted, G(u,
√

C) satisfies (S), so too does G(u,B), by Lemma 11. This
completes the proof.

We now put Theorem 1, Theorem 2 and Lemma 7 together in order to prove
the following

Theorem 3 (Global approximations for arbitrary extensions) Let G be a torsion-
free hyperbolic group, let A be a torsion-free abelian group and let B = A⊗Z Q.
Then for every non-trivial element u of G the extension of centralizer G(u,A)
is G-discriminated by the G-group G(u,Q).

Proof. We note that since A is torsion-free abelian, the mapping a 7→ a⊗1 (a ∈
A) is an embedding of A in B. The embedding of the cyclic centralizer CG(u) in
A can be extended to an embedding of the additive group Q of the rationals into
B which in turn gives rise to an embedding of G(u,Q) into G(u,B). It suffices
then to prove that the G-group G(u,B) is G(u,Q)-discriminated by G(u,Q).

Now Q is a divisible subgroup of the abelian group B. Hence, it is a direct
factor of B. Moreover, the divisible torsion-free abelian group B is isomorphic
to a direct sum of copies of Q; hence B is separated by Q and by Lemma 7
B is discriminated by Q. It follows then from Theorem 2 and Theorem 1 that
G(u,B) is G(u,Q)-discriminated by G(u,Q), as required.

It follows from the proof of Theorem 3 that the following corollary also holds.

Corollary 11 (Global approximations for divisible extensions) Let G be a torsion-
free hyperbolic group and let A be a torsion-free, divisible abelian group. Then
G(u,Q) can be viewed as a subgroup of G(u,A) and G(u,A) is G(u,Q)-discriminated
by G(u,Q).

Finally we observe the further corollary.

Corollary 12 (Local approximations) Let G be a torsion-free hyperbolic group
and let G(u,A) be an arbitrary A-extension of a centralizer C(u) by a torsion-
free abelian group A. Then every finitely generated G(u,

√
C)-subgroup of G(u,A)

is G(u,
√

C)-discriminated by G(u,
√

C).

Proof. A finitely generated G(u,
√

C)-subgroup H of G(u,A) is contained in
some subgroup G(u, A0), where A0 is a finitely generated subgroup of A con-
taining

√
C. Now G(u,

√
C) is simply the result of adjoining to G an n-th root

of the generator of the infinite cyclic group C and so it is hyperbolic [15]. It fol-
lows that G(u, A0) is an extension of type L of the hyperbolic group G(u,

√
C).

Hence by the local approximation theorem for type L extensions, we find that
G(u,A0) is G(u,

√
C)-discriminated by G(u,

√
C).

6 Discriminating exponential groups

The objective of this section is to prove our main result, which takes the follow-
ing form:

25



Theorem 4 Let G be a torsion-free hyperbolic group and let A ≤ B be unitary
rings of characteristic zero. Suppose that gp(1) is a direct summand of A+ and
that the additive group B+ is A+-discriminated by its subgroup A+. Then GB

is GA-discriminated by GA.

We begin the preparations for the proof of Theorem 4 with the following

Proposition 4 Let G be a torsion-free hyperbolic group and let A be an uni-
tary ring of characteristic zero. Then GA is a CSA group which satisfies the
separation condition (S).

Proof. It was proved in [22] that any completion of a torsion-free CSA group
by a ring of characteristic zero is CSA. Hence GA is a CSA group. Since GA

is a union of a sequence of extension of centralizers, GA satisfies the separation
condition (S), by Theorem 2, as required.

The proof of Theorem 4 depends not only on Proposition 4, but on two
additional lemmas. We need to introduce some additional notation. To this
end, suppose that B is a unitary ring and that x is an element not in any of the
subgroups or rings under consideration. Then we define

xB = {xβ | β ∈ B},
which we turn into a B-group by defining

x1 = x, xβxβ′ = xβ+β′ , (xβ)β′ = xββ′ , β, β′ ∈ B.

xB is simply a multiplicative copy of B+ and so is a unitary abelian group with
x its distinguished element. If A is a unitary subring of the unitary ring B,
then we can think of xA is a unitary subgroup of the unitary abelian group xB .
Notice that the B-subgroup of the B-group xB generated by x is xB . More
generally, if H is a B-group, then the B-subgroup G of H generated by an
element h ∈ H consists of all elements of the form hβ , where β ranges over B;
we denote this subgroup by hB .

We are now in a position to prove the following lemma (see the proof of
Lemma 11).

Lemma 14 Let A be a unitary ring of characteristic 0 and let H be a torsion-
free CSA A-group satisfying the condition (S). Suppose that H is a subgroup of
a group J and that J is H-discriminated by H. Furthermore, suppose that A is
the direct sum of Z = gp(1) and A1, and the centralizer of a ∈ J is generated
by a. Then for any x the generalized free product

I =< J ∗ xA; a = x >

is H-discriminated by H.

A few words of explanation might be helpful here. The main point is that I is
obtained from J by extending the centralizer of a by xA. Notice that xA is the
direct product of an infinite cyclic group and xA1 :

xA = xZ × xA1 .
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Notice also that the infinite cyclic subgroup gp(a) is identified with the subgroup
xZ by identifying a with x.

Proof. Let F be a discriminating family of H-homomorphisms from J onto
H. For each positive integer n and each homomorphism φ ∈ F , let φn be the
H-homomorphism from I to H defined as follows:

φn(j) = φ(j), φn(xm+α1) = φ(a)m+nα1 (j ∈ J, m ∈ Z, α1 ∈ A1).

Notice that φn(a) = φ(a) and φn(x) = φ(a) and therefore the definition of φn

makes sense. Notice also that if α1 ∈ A1 and α = m1 + α1 ∈ A then

φn(xα) = φ(am)(φ(a)α1)n.

Observe, in particular, that if b ∈ xA1 , then φn(b) is an n-th power of a power
of φ(a). We claim that the family

Fn = {φn | φ ∈ F , n = 1, 2, . . .}
is a discriminating family of H-homomorphisms of I onto H. With this in mind,
let c ∈ I, c 6= 1. If c ∈ J ∪ xA, there exists an element in Fn which maps c into
a non-trivial element of H. In all other cases, c can be written in the form

c = a1b1a2 . . . akbkak+1,

where
ai ∈ J, bi ∈ xA1 , [ai, a] 6= 1 (2 ≤ i ≤ k), bi 6= 1.

Since F is an H-discriminating family of H-homomorphisms of J onto H, we
can find an element φ ∈ F such that

[φ(a), φ(ai)] 6= 1 (2 ≤ i ≤ k).

Expressing each bi in the form bi = xαi , where αi is a non-zero element of A1,
it follows from the transitivity of commutation in H, that

[φ(a)αi , φ(ai)] 6= 1 (2 ≤ i ≤ k).

Since H is a CSA-group, it follows (see the proof of Lemma 11) that

[φ(ai+1)−1φ(a)αiφ(ai+1), φ(a)αi+1 ] 6= 1 (1 ≤ i ≤ k − 1).

Hence the tuples φ(a1), . . . , φ(ak+1) and φ(a)α1 , . . . , φ(a)αk satisfy the condition
(CS). Since H satisfies the separation condition (S),

φn(c) = φ(a1)(φ(a)α1)nφ(a2) . . . φ(ak)(φ(a)αk)nφ(ak+1) 6= 1

for all sufficiently large values of n. It follows then, in the same way, that for
any finite set of non-trivial elements of I, there exists an element ψ ∈ F and an
integer n such that ψn separates these elements in H, as required.

It is worth emphasizing here that every φ ∈ F extends to an H-homomorphism
φ+ of I onto H; we say that φ+ continues φ.

Finally we prove one more lemma before embarking on the proof of Theorem
4.
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Lemma 15 Let δ be a limit ordinal and let

G = G0 ≤ G1 ≤ . . . ≤ Gα ≤ Gα+1 ≤ . . . ≤ Gδ

be a chain of groups such that for every limit ordinal α ≤ δ,
⋃

β<α

Gβ = Gα.

Suppose that for every ordinal α < δ, every G-homomorphism from Gα onto G
can be continued to a G-homomorphism from Gα+1 onto G. Then the following
hold:

1. for every α < δ, every G-homomorphism φ : Gα −→ G can be continued
to a G-homomorphism from Gδ onto G;

2. if Gα is G-separated by G for every α < δ then Gδ is G-separated by G;

3. if Gα is G-discriminated by G for every α < δ then Gδ is G-discriminated
by G.

Proof. 1. Let φ : Gα −→ G be a G-homomorphism from Gα onto G. Put
φα = φ. Suppose now that α < β < δ and that we have defined for every
choice of α < γ < β, a family of G-homomorphisms φγ : Gγ −→ G such that
if α < γ′ < γ < β, then φγ agrees with φγ′ on Gγ′ . If β is a limit ordinal,
then de define φβ to be the “union” of the φγ for γ < β, i.e., if u ∈ Gβ , then
u ∈ Gγ for some γ < β. Define φβ(u) = φγ(u), which makes sense because
of our assumptions. If β is not a limit ordinal, it can be written in the form
β = β′ + 1. Define φβ to be any extension of φβ′ to Gβ . We then define φδ to
be the union of the φβ with β < δ. This completes the proof.

The proofs of 2 and 3 follow immediately from the proof of 1.
We are now in a position to prove Theorem 4. We can assume that G 6=

1. Put H = GA. By Proposition 4, GA = H is a CSA-group satisfying the
condition (S). It follows from [21] that GB can be obtained as the union of a
chain of groups

H = H0 < H1 < . . . < Hα < . . . < Hδ = GB

satisfying the following conditions:

1. δ is a limit ordinal;

2. if α ≤ δ is a limit ordinal, then

Hα =
⋃

α′<α

Gα′ ;

3. if α = α′+1, then Hα is obtained from Hα′ by an extension of a centralizer
C of an element h ∈ Hα′ and C takes on one of the following two forms:
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3(i). C = hA;

3(ii). C = hZ.

Now suppose that for each α′ < α we have proved

(a) Hα′ is H-discriminated by H

(b) if α′′ < α′ < α, then every H-homomorphism from Hα′′ onto H can be
extended to an H-homomorphism from Hα′ onto H.

If α is a limit ordinal, it follows from Lemma 15 that Hα is H-discriminated
by H.

If α = α′ + 1, then there are the two cases 3(i) and 3(ii) to consider. In case
3(i), Hα is Hα′-discriminated by Hα′ and since Hα′ is H-discriminated by H,
Hα is H-discriminated by H. Moreover, it follows from the proof of Theorem 1
(or directly) that every H-homomorphism from Hα′ to H can be continued to
an H-homomorphism from Hα to H.

In case 3(ii) it follows from Lemma 14, that Hα is H-discriminated by H
and again every H-homomorphism from Hα′ to H can be continued to an H-
homomorphism from Hα to H. This completes the proof of Theorem 4 on
applying Lemma 15.

The theorems discussed in the introduction are all consequences of Theorem
4.

Theorem C1 Let G be a torsion-free hyperbolic group and let Z[x] be the ring
of integral polynomials in a single variable x. Then GZ[x] is G- discriminated
by G.

Proof. Put A = Z and B = Z[x]. Then B is discriminated by A and gp(1) = A
(in particular, gp(1) is a direct summand of A). Now the result follows from
Theorem 4.

Theorem C2 Let G be a torsion-free hyperbolic group and let A be a unitary
ring with free abelian additive group A+. Then any A-completion GA of type L
of the group G (as Z-group) is G-discriminated by G.

Proof. Notice, that since A+ is a free abelian group and A+/gp(1) is torsion-free,
gp(1) is a direct summand of A+. Hence the rings Z ≤ A satisfy the conditions
of Theorem 4. Consequently, GA is G-discriminated by G.

One more application of Theorem 4 comes from completions of hyperbolic
groups by unitary abelian groups. Suppose A ≤ B are torsion-free , unitary
abelian groups, that gp(1) is a direct summand of A+ that B is A-discriminated
by A. Now GA = Gfr(A) and GB = Gfr(B). It follows from the conditions laid
down in 2 that fr(B)+ is fr(A)+- discriminated by fr(A)+. Hence Theorem
4 applies and so we have proved the following theorem.
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Theorem C3 Let G be a torsion-free hyperbolic group and let A be a torsion-
free unitary abelian group. If A is free abelian and if gp(1) is isolated in A, then
GA is G-discriminated by G.
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