Discriminating and co-discriminating groups

Gilbert Baumslag Alexei Miasnikov Vladimir Remeslennikov

1 Introduction

1.1 Separation conditions

This paper is concerned with proving that a number of groups satisfy certain separation conditions. In order to explain what these conditions are we need to recall some definitions from [5] (see also [4]).

Definition 1 Let H be a group, S a non-empty set of groups and \mathcal{F} a family of homomorphisms of H into the groups in S. We term \mathcal{F} a separating family if for each $h \in H$, $h \neq 1$, there exists $\phi \in \mathcal{F}$ such that $\phi(h) \neq 1$. In this event we also say that S separates H or that H is residually S.

If \mathcal{S} consists of the singleton G, then we say that G separates H or that H is residually G.

Definition 2 Let H be a group, S a non-empty set of groups and \mathcal{F} a family of homomorphisms of H into the groups in S. We term \mathcal{F} a discriminating family if for each finite subset Y of non-trivial elements of H, there exists a homomorphism $\phi \in \mathcal{F}$ such that $\phi(h) \neq 1$ for every $h \in Y$ (we say that ϕ discriminates the finite set Y). In this event we say that S discriminates H.

If S consists of a singleton G we say that G discriminates H, or that H is fully residually G or that H is ω -residually G.

These notions of separation and discrimination play a role in several areas of group theory; for example, in the theory of varieties of groups [17], in algorithmic group theory [14] and in, what we have termed, algebraic geometry over groups [5]. Our concern here is with two related notions. However, before we turn our attention to them, it may be worth noting that there is a distinct difference between the notion of separation and that of discrimination. The interested reader will find it instructive to reflect on the notion of a root property discussed in the paper [7], the results in [2], [3], [6] and the book [17].

Our concern here will be with two notions related to separation and discrimination.

1.2 Discriminating groups

The first of these is that of a discriminating group. We term a group G discriminating if every group separated by G is discriminated by G. It is not easy to determine which groups are discriminating, although it is is not hard to find a characterization of such groups. Indeed a group G is discriminating if and only if its direct square $G \times G$ is discriminated by G (see section 2). We concentrate here on the task of classifying those abelian groups which are discriminating. It turns out that every torsion-free abelian group is discriminating. Our main result here, Theorem A, involves torsion abelian groups. We refer the reader to the books (see [9], [11]) for a comprehensive discussion of abelian groups and the notions described below. In order to formulate Theorem A we need to digress a little. Let then A be a torsion abelian group. Given an integer n, we define

$$A[n] = \{ a \in A \mid a^n = 1 \}.$$

Clearly, A[n] is a subgroup of A. Observe that $A[p^{k-1}] \leq A[p^k]$, for every prime p and every positive integer k. Moreover $A[p^k]/A[p^{k-1}]$ is of exponent p and can therefore be viewed as a vector space over the field of p elements. We denote the dimension of a vector space V by dim(V) and define

$$\alpha(A, p, k) = \dim(A[p^k]/A[p^{k-1}]).$$

Consider next the Sylow p-subgroup $\tau_p(A)$ of A. Its maximal divisible subgroup $\delta(\tau_p(A))$ is a direct sum of a number of quasi-cyclic groups of type $Z_{p^{\infty}}$. The cardinality of the set of summands involved is an invariant of A, which we denote by $\beta(A, p)$. These invariants can be traced back to Ulm (see [9]); they were explicitly introduced in [18]. Finally, we recall that $a \in A$ has infinite p - height if the equation $x^{p^k} = a$ has a solution in A for every positive integer k. We are now in a position to formulate **Theorem A** Let A be a torsion, abelian group and suppose that $\tau_p(A)/\delta(\tau_p(A))$ has no elements of infinite p-height. Then A is discriminating if and only if $\alpha(A, p, k)$ is either zero or infinite for every prime p and every positive integer k and $\beta(A, p)$ is either zero or infinite for every prime p.

1.3 Co-discriminating groups

Dually, we term a group H co-discriminating if an arbitrary family S of groups separates H if and only if S discriminates H. We will focus here on a large class of co-discriminating groups, groups without zero divisors, which were introduced in [5] in a rather different context. We recall that a group H has no zero divisors if given any non-trivial elements $a, b \in H$ there exists an element $x \in H$ such that $[a, b^x] \neq 1$. Groups without zero divisors are called *domains* and, as noted above (and easily proved directly from the definition) every such domain is co-discriminating. These domains include, in particular, the CSA groups introduced in [5]. We recall that a group G is a CSA group if every maximal abelian subgroup M of G is malnormal, i.e., $M^g \cap M = 1$ for every $q \in G - M$. The class of CSA-groups is quite substantial. It includes all abelian groups, all torsion-free hyperbolic groups [16] and all groups acting freely on Λ -trees [1] as well as many one-relator groups – a complete description of one-relator CSA-groups was obtained by D. Gildenhuys, O. Kharlampovich and A. Myasnikov in [10]. It turns out that many free products with amalgamation and many one-relator groups are domains. In particular, a free product A * B is a domain unless both the groups A and B are of order 2. This allows one to view a result of B. Baumslag [2] that a free product A * B is separated by a non-abelian free group if and only if both the groups A and B are discriminated by a nonabelian free group in a slightly different light. This theorem of Baumslag follows immediately from the remarks above. Indeed, more generally, the corresponding result holds when the non-abelian free group is replaced by an arbitrary torsion-free group G which separates its own free square G * G, for instance every non-abelian torsion-free hyperbolic group (see [4]).

The main result of the paper is

Theorem B Every one-relator group with more then 2 generators is a domain, in particular it is co-discriminating.

It follows, perhaps surprisingly (see Section 4.3, Theorem 6), that every

one–relator group which is separated by a free group is discriminated by a free group.

2 Discriminating abelian groups

2.1 Discriminating groups

Recall that a group G is *discriminating* if every group separated by G is discriminated by G.

First we record the following well-known lemma, the proof of which is left to the reader (see [8]).

Lemma 1 A group H is separated by a family of groups $S = \{G_i \mid i \in I\}$ if and only if H is a subgroup of a cartesian product of groups from S.

The following criterion is useful.

Proposition 1 A group G is discriminating if and only if $G \times G$ is discriminated by G.

Proof. Suppose that the group $G \times G$ is discriminated by G and that a group H is separated by G. Now by Lemma 1, H can be embedded in a cartesian power P of G. Let h_1, \ldots, h_n be a finite number of non-trivial elements of H. Then there exists a projection π of P onto a finite direct product $G^k = G \times \ldots \times G$ of k copies of G such that $\pi(h_i) \neq 1$ for $i = 1, \ldots, n$. Since G discriminates $G \times G$ it follows readily that G discriminates G^k . Thus 2 implies 1. The reverse implication is immediate.

We make use of this criterion repeatedly in what follows.

We gather together a number of results about discriminating groups. Throughout this section, p will denote a prime.

Proposition 2 Let D be a discriminating group. Then the following conditions hold.

- 1. If H is a finite subgroup of $D \times D$, then there is a finite subgroup of D which is isomorphic to H.
- 2. If H is a finite subgroup of $D \times D$ and H is contained in a divisible subgroup (i.e., extraction of n-th roots is possible in that subgroup for every positive integer n) of $D \times D$, then there is a finite subgroup of D which is contained in a divisible subgroup and is isomorphic to H.

- 3. If H is a finite subgroup of a Sylow p-subgroup (i.e., a subgroup in which every element has order a power of p and which is maximal subject to this condition) of $D \times D$, then there is a finite subgroup of a Sylow p-subgroup of D which contains a subgroup isomorphic to H.
- 4. The number of elements of a given finite order in D is either zero or infinite.
- 5. If D_i is discriminating for every $i \in I$, then the cartesian product $\overline{\prod_{i \in I} D_i}$ and the restricted direct product $\prod_{i \in I} D_i$, are discriminating.

Proof. If D is discriminating, then for every finite subgroup K of $D \times D$ there exists a homomorphism $\phi : D \times D \longrightarrow D$ which is monic on K. If a finite subgroup K of $D \times D$ is contained in a divisible subgroup or a Sylow p-subgroup of $D \times D$ then it's image under ϕ has the same property. These remarks are enough for the proof of 1, 2, 3 and 4.

We prove next that $D = \prod_{i \in I} D_i$ is discriminating – the proof that $\prod_{i \in I} D_i$ is discriminating is similar and is left to the reader. For each $i \in I$ we choose a discriminating family of homomorphisms Φ_i from $D_i \times D_i$ into D_i . For any "*I*-sequence" of homomorphisms

$$\phi \in \overline{\prod}_{i \in I} \Phi_i$$

we define a homomorphism $\lambda_{\phi}: D \times D \longrightarrow D$ as follows: if $f, h \in D$ then

$$\lambda_{\phi}(f,h)(i) = \phi_i(f(i),h(i)), \quad i \in I.$$

Clearly, λ_{ϕ} is a homomorphism of $D \times D$ into D. Now, if we have finitely many non-trivial elements $(f_1, h_1), \ldots, (f_n, h_n) \in D \times D$, then we can find a finite subset I_0 of I such that for each of the elements (f_k, h_k) there exists an index $i \in I_0$ such that $(f_k(i), h_k(i)) \neq 1$ in $D_i \times D_i$. Since D_i is discriminating there exists a homomorphism $\phi_i \in \Phi_i$ discriminating all the elements $(f_k(i), h_k(i))$ for $i \in I_0$. If, for each $i \notin I_0$, we choose ϕ_i to be any element in Φ_i , we obtain an I-sequence $\phi \in \prod_{i \in I} \Phi_i$. Obviously, the homomorphism λ_{ϕ} discriminates all of the elements (f_k, h_k) , which proves that D discriminates $D \times D$.

2.2 Abelian groups

Next we focus on the problem as to which abelian groups are discriminating. We shall use additive notation throughout this subsection. If A is an abelian group, then we denote the torsion subgroup of A by $\tau(A)$ and, for each prime p, we denote its unique Sylow *p*-subgroup by $\tau_p(A)$. Notice that $\tau(A)$ is the direct sum of its Sylow p-subgroups:

$$\tau(A) = \bigoplus_p \tau_p(D).$$

Finally, let $\delta(A)$ be the maximal divisible subgroup of A. A is termed reduced if $\delta(A) = 0$. Every divisible subgroup of an abelian group is a direct summand; so $\delta(A)$ is a direct summand of A and therefore we can express Ain the form $A = B \oplus \delta(A)$. It follows that $B \cong A/\delta(A)$ is reduced. Notice also, that every divisible abelian p-group is a direct sum of groups of type $Z(p^{\infty})$, i.e., additive copies of the multiplicative group of all p^n -th roots of unity. The following proposition then holds.

Proposition 3 Let A be an abelian group.

- 1. If A is torsion-free abelian, then A is discriminating.
- 2. If A is discriminating, then so too is its torsion subgroup $\tau(A)$.
- 3. If A is a torsion group, then A is discriminating if and only if all of its Sylow p-subgroups $\tau_p(A)$ are discriminating.
- 4. If A splits over $\tau(A)$, then A is discriminating if and only if $\tau(A)$ is discriminating.
- 5. If A is a non-trivial divisible p-group, then A is discriminating if and only if it is a direct sum of infinitely many copies of $Z(p^{\infty})$.
- 6. If A is discriminating then so too is $\delta(A)$.

Proof.

1. Let $(a_1, b_1), \ldots, (a_n, b_n)$ be non-trivial elements of $A \oplus A$. Since extraction of roots in a torsion-free abelian group is unique, whenever it is possible, there exists a positive integer k such that the homomorphism from $A \oplus A$ into A defined by

$$(a,b) \mapsto a + kb \ (a,b \in A)$$

is monic on the set $\{(a_1, b_1), \ldots, (a_n, b_n\})$. This completes the proof.

2. It follows immediately from the fact that $A \oplus A$ is discriminated by A, that $\tau(A \oplus A) = \tau(A) \oplus \tau(A)$ is discriminated by $\tau(A)$ and hence that $\tau(A)$ is discriminating.

3. An analogous argument to the one above suffices to prove the given assertion.

4. This follows on combining 1 and 2.

5. If A is a finite direct sum of copies of $Z(p^{\infty})$ then it has finitely many elements of order p, hence by Proposition 2 (4) A is not discriminating. If A is a direct sum of infinitely many copies of $Z(p^{\infty})$ then $A \cong A \oplus A$ and therefore A is discriminating.

6. The image of a divisible subgroup under a homomorphism is again divisible. Since $A \oplus A$ is discriminated by A, it follows that $\delta(A) \oplus \delta(A)$ is discriminated by $\delta(A)$. Consequently $\delta(A)$ is discriminating.

Now a torsion abelian group of finite exponent is a direct sum of cyclic groups (see, e.g., I. Kaplansky [11]). The following lemma is an immediate consequence of this remark and the definition.

Lemma 2 Let A be a torsion abelian group. Then $\alpha(A, p, k)$ is equal to the cardinality of the set of cyclic summands of order p^k in any decomposition of $A[p^k]$ into a direct sum of cyclic groups.

We are now in a position to prove our main theorem about discriminating abelian groups.

Theorem A Let A be a torsion, abelian group and suppose that $\tau_p(D)/\delta(\tau_p(D))$ has no elements of infinite p-height. Then A is discriminating if and only if $\alpha(D, p, k)$ is either zero or infinite for every prime p and every positive integer k and $\beta(D, p)$ is either zero or infinite for every prime p.

Proof. By Proposition 3, (3), we can assume that A is a p-group.

We begin by proving that if $\alpha(A, p, k) = \alpha$ is non-zero, then it must be infinite. Suppose the contrary, i.e., for some k, α is finite and non-zero. Then if we decompose $A[p^k]$ into a direct sum of cyclic groups, there are exactly α cyclic summands $C(p^k)$ of order p^k . It follows that $A[p^k]$ and therefore A itself, does not contain any direct power of $C(p^k)$ with more then α summands. But $A \oplus A$ has a subgroup which is a direct power of 2α cyclic summands of order p^k . So, by Proposition 2, (1), A is not discriminating. Therefore, if $\alpha(A, p, k) = \alpha$ is non-zero, it must be infinite.

We observe next, that by Proposition 3, (5) and (6), $\beta = \beta(A, p)$ is either 0 or infinite. We consider first the case where $\beta = 0$. So A is a reduced, torsion abelian p-group, without any elements of infinite p-height. If A = 0, there is nothing to prove. So we assume that $A \neq 0$. It suffices then to prove that if H is any finite subgroup of $A \oplus A$, then there is a homomorphism of $A \oplus A$ into A which is monic on H. Now every finite subgroup of a p-group P without elements of infinite height can be embedded in a finite direct summand of P (see, e.g., [11]). Therefore we can assume that H is of the form $H = K \oplus K \leq D \oplus D$, where K is a direct summand of A, say $A = K \oplus L$. Suppose that we decompose K into a direct sum of cyclic groups and that a cyclic summand of maximal order has order p^{j} . Since $\alpha(A, p, j)$ is infinite, there are infinitely many elements of order p^{j} in L and hence subgroups of L which are arbitrarily large direct powers of $C(p^{j})$. Hence there is a homomorphism μ of A into itself which is identical on L and which maps K monomorphically into L. Consider now the homomorphism ρ of $A \oplus A$ into A which maps $A \oplus \{0\}$ identically onto A and maps $\{0\} \oplus A$ into A according to μ . Then ρ maps H monomorphically into A – indeed it maps H onto $K \oplus K$, thought of now as a subgroup of A itself.

We are left with the case where β is infinite. Let H be a finite subgroup of $A \oplus A$. We can assume, without loss of generality, that $H = K \oplus K \leq A \oplus A$. If we now decompose A into a direct sum $A = B \oplus \delta(A)$, then again we can assume that $K = K_1 \oplus A_1 \leq E \oplus \delta(A)$. Since β is infinite, we can find a monomorphism μ of K into $\delta(A)$ such that $\mu(K) \cap D_1 = 0$. It follows that the homomorphism of $A \oplus A$ into A which maps $A \oplus \{0\}$ identically onto A and maps $\{0\} \oplus A$ into A according to μ , is monic on H. This completes the proof of the theorem.

The following examples provide answers to some of the natural questions that might arise in the readers minds.

Example 1 Let A be the direct sum of a countably infinite number of copies of the groups $Z_{p^{\infty}}$ and a group of order p. Then A is discriminating, but A modulo its maximal divisible subgroup is not.

Example 2 Let p be a prime and let A be the unrestricted direct sum of the cyclic groups of order p^i (i = 1, 2, ...). Then A is discriminating and therefore so too is its torsion subgroup T. Notice that T is not a direct sum of cyclic groups (see, e.g., [9]).

Example 3 Let p be a prime. For a positive integer i denote by D_i the direct sum of a countably infinite number of copies of the cyclic group of order p^i . Then D_i is discriminating by Theorem A. Now, the unrestricted direct sum $A = \overline{\bigoplus}_i D_i$ of the groups D_i (i = 1, 2, ...) is discriminating by Proposition 2. Notice again, that the torsion subgroup of A is not a direct sum of cyclic groups.

3 Co-discriminating groups

3.1 Co-discrimination and n-separation

Recall that a group H is *co-discriminating* if every group G separating H discriminates H.

We shall have need here of a new notion.

Definition 3 Let H be a group, let \mathcal{G} be a family of groups and let n be a positive integer. Then we say that \mathcal{G} n-separates H if given any n non-trivial elements h_1, \ldots, h_n of H, there exists a group $G \in \mathcal{G}$ and a homomorphism ϕ of H into G such that $\phi(h_i) \neq 1$ for $i = 1, \ldots, n$.

Notice, in particular, that if \mathcal{G} *n*-separates H, then \mathcal{G} certainly separates H. It turns out that, under the right circumstances, if \mathcal{G} 2-separates H, then \mathcal{G} actually discriminates H.

Some of the results that we will prove here are straightforward generalizations of some analogous results of B. Baumslag concerned with groups discriminated by free groups [2].

We recall first the

Definition 4 A group G is called commutative transitive if commutation is a transitive relation on the set of all non-trivial elements of G, i.e., if a commutes with b and b commutes with c, then a commutes with c, provided a, b, c are non-trivial.

It is not hard to see that CSA-groups are commutative transitive [16]. The following proposition is useful.

Proposition 4 Let H be a group and let \mathcal{G} be a family of CSA-groups. Then the following hold:

- 1. Suppose that \mathcal{G} 2-separates H. Then H is a CSA-group.
- 2. If H is commutative transitive and separated by \mathcal{G} , then H is a CSAgroup.

Proof. 1. Suppose that H is not a CSA-group. Then there exists a maximal abelian subgroup M of H which is not malnormal. Hence there is a non-trivial element $a \in M$ and an element $x \notin M$ such that $a^x \neq a$ with $a^x = b \in M$. Put c = [a, x]. Notice that $c \neq 1$ and that $c \in M$. Now there exists a homomorphism ϕ of H into a group $G \in \mathcal{G}$ such that $\phi(a)$ and $\phi(c)$ are again non-trivial. Let M' be a maximal abelian subgroup of G containing $\phi(M)$. Since G is a CSA-group, $\phi(x) \in M'$. But then $[\phi(a), \phi(x)] = 1$ and therefore $\phi(c) = 1$, a contradiction. This completes the proof of 1.

2. If H is abelian, then H is a CSA-group. Assume then that H is nonabelian. It follows from the assumption that H is commutative transitive, that H has a trivial center. We will prove that \mathcal{G} 2-separates H and then invoke 1. Suppose then that a and b are a pair of non-trivial elements of H. If there exists an element $x \in H$ such that $[a, b^x] \neq 1$, then there exists a homomorphism of H into a group in \mathcal{G} such that the image of $[a, b^x]$ is not equal to 1. Consequently neither the image of a nor that of b is 1, as desired. On the other hand, suppose that a commutes with all of the conjugates of b in H. Then it follows from commutative transitivity that the normal closure of b in H is abelian, i.e., that H contains a non-trivial normal abelian subgroup H'of a group $G \in \mathcal{G}$ which contains a non-trivial abelian normal subgroup M'. Let M be a maximal abelian subgroup of G containing M'. Then M is not malnormal in G, which is impossible since G is a CSA-group. This completes the proof.

Corollary 1 Let G be a non-abelian CSA-group. Then $G \times G$ is separated by G but not discriminated by G.

Proof. $G \times G$ is obviously separated by G. If G is non-abelian, then commutation in $G \times G$ is not transitive on the set of all non-trivial elements. Hence, $G \times G$ is not a CSA-group. Thence, by Proposition 4, $G \times G$ can not be discriminated by the CSA-group G. In particular, non-abelian CSA groups are not discriminating.

We remark, in passing, that during the course of the proof of Proposition 4, we have also proved that a non-abelian CSA-group G satisfies the following

property: if a and b are non-trivial elements of G, where we allow for the possibility that a = b, then there exists an element $x \in G$ such that $[a, b^x] \neq 1$. Such groups are called *groups without zero divisors* or, more frequently, *domains*.

Theorem 1 Every group without zero divisors is co-discriminating.

Proof. Let H be a group without zero divisors and let h_1, \ldots, h_n be finitely many, non-trivial elements in H. There exists an element $x_1 \in H$ such that $[h_1, h_2^{x_1}] \neq 1$. Hence there exists an element $x_2 \in H$ such that $[[h_1, h_2^{x_1}], h_3^{x_2}] \neq 1$ and so on. It follows that we can find elements $x_1, x_2, \ldots, x_{n-1} \in H$ such that

 $c = [\dots [[h_1, h_2^{x_1}], h_3^{x_2}], \dots, h_n^{x_{n-1}}] \neq 1.$

Now suppose that H is separated by a family of groups \mathcal{G} . Let ϕ be a homomorphism of H into a group $G \in \mathcal{G}$ such that $c^{\phi} \neq 1$. Then ϕ maps each of the elements h_1, \ldots, h_n non-trivially into G, as desired.

Corollary 2 Every non-abelian CSA group is co-discriminating.

4 Domains

4.1 Domains and products

Proposition 5 Let A and B be non-trivial groups. Then A * B is a domain unless both A and B are of order 2.

Proof. Suppose that the order of B is at least 3. Let x and y be non-trivial elements of A * B. We claim that there are elements $g, h \in A * B$ such that $[x^g, y^h] \neq 1$. We can assume that x and y are cyclically reduced.

If |x| = |y| = 1 (here |x| is the syllable length of x), then $[x, y] \neq 1$ provided x and y lie in different factors, and if they both lie in the same factor, say A, then $[x, y^b] \neq 1$ for any non-trivial $b \in B$.

Suppose now that $|x| \ge 2$. Then we can assume (conjugating if necessary) that $x = a_1b_1 \dots a_nb_n$ $(1 \ne a_i \in A, 1 \ne b_i \in B)$. Again, conjugating if necessary, we can assume that y is a strictly alternating product of elements from A and B with the first and last elements coming out of B. In this event, the products xy and yx have different syllable length - so x and y do not commute, as desired.

If |A| = |B| = 2, then A * B has a non-trivial normal abelian subgroup (the derived subgroup). In this event A * B is not a domain.

Notice, that we do not require that the factors A and B in the lemma above be domains. Under the assumptions that A and B are domains, one can prove the following result (see [5] for details).

Theorem 2 Let A and B be domains. Suppose that C is a subgroup of both A and B satisfying the following condition:

if $c \in C, c \neq 1$, either $[c, A] \not\subseteq C$ or $[c, B] \not\subseteq C$.

Then the amalgamated free product $H = A *_C B$ is a domain.

Now we are in the position to prove the following generalization of the result of B. Baumslag [2] referred to in the introduction.

Theorem 3 Let A and B be non-trivial groups not both of order 2. Let G be a group which separates its own free square G * G (in particular a non-abelian torsion-free hyperbolic group). Then the following conditions are equivalent:

- 1. G separates A * B;
- 2. G discriminates A * B;
- 3. G discriminates each of A and B.

Proof. By Proposition 5 the group A * B is a domain. So, by Theorem 1, 1 and 2 are equivalent.

3 immediately follows from 2 since A and B are subgroups of A * B.

Suppose now that both the groups A and B are discriminated by G. Then in the natural way A * B is discriminated by G * G. It is then easy to see that if G separates G * G, then, by transitivity of separation, G separates A * B.

4.2 One-relator groups

The main theorem of this paper is the following

Theorem B Let $G = \langle X | r = 1 \rangle$ be a one-relator group with | X | > 2. Then G is a domain.

We shall make use of the following lemma.

Lemma 3 Let N be a domain and let G be a semi-direct product of N and an abelian group. Then G is a domain if and only if G has trivial center.

Proof. Clearly, if G is a domain then the center of G is trivial.

Suppose now that the center of G is trivial. Observe, that if x and y are a pair of zero divisors in G, then their normal closures $gp_G(x)$ and $gp_G(y)$ in G, commute:

$$[gp_G(x), gp_G(y)] = 1.$$

If $u, v \in G$, then

$$[x, u] \in gp_G(x), \quad [y, v] \in gp_G(y)$$

and hence

$$[gp_G([x, u]), gp_G([y, v])] = 1,$$

Now the center of G is trivial. Therefore there exist elements u and v in G such that [x, u] and [y, v] are non-trivial. But this implies that both [x, u] and [y, v] are zero-divisors in G. Since G/N is abellian, both [x, u] and [y, v] are contained in N. It follows that, in particular, [x, u] is a zero-divisor in N, which contradicts the assumption that N is a domain.

We are now in a position to prove our main theorem. Suppose then that $X = \{t, b, c, ...\}$ and that

$$G = \langle X; r = 1 \rangle, \tag{1}$$

where r is a cyclically reduced word in X. Let $\sigma_x(r)$ denote the sum of the exponents of all of the occurrences of x in r. We divide the proof into two cases.

Case 1: $\sigma_t(r) = 0$. Denote by N the normal closure in G of X - t. Put

$$b_i = t^i b t^{-i}, \ c_i = t^i c t^{-i}, \dots,$$

Then N is generated by $Y = \{b_i, c_i, \ldots\}$. Since $\sigma_t(r) = 0$, r can be reexpressed as a word $s = s(\ldots, b_j, \ldots, c_k, \ldots)$ in the generators Y, where each of the generators x occuring in r is replaced by x_i , where the subscript i is the sum of the t-exponents of the subword of r preceding x. It follows then, that

$$t^{i}rt^{-i} = t^{i}s(\dots, b_{j}, \dots, c_{k}, \dots)t^{-i} = s(\dots, b_{j+i}, \dots, c_{k+i}, \dots), \quad (i \in \mathbb{Z}).$$

Put

$$s_i = s(\ldots, b_{j+i}, \ldots, c_{k+i}, \ldots), \quad (i \in \mathbb{Z}).$$

Using the Reidemeister-Schreier method (see, for example [13]) it is not hard to prove that N has the following presentation:

$$N = \langle b_i, c_i, \dots \ (i \in Z) ; \ s_i = 1 \ (i \in Z) \rangle.$$

Let α and β be correspondingly the minimal and the maximal index of b that occurs in the word s. Now, for arbitrary non-negative integers i, j put

 $N_{-i,j} = \langle c_k, \dots, (k \in Z), b_{\alpha-i}, b_{\alpha-i+1}, \dots, b_{\beta+j} \mid s_{-i} = 1, s_{-i+1} = 1, \dots, s_j = 1 \rangle.$ It follows (see [13]) that N is the union of the following ascending chain of subgroups

$$N_{0,0} \le N_{0,1} \le N_{-1,1} \le N_{-1,2} \dots \le N_{-i+1,i} \le N_{-i,i} \le N_{-i,i+1} \le \dots$$

Notice that in the presentation for $N_{-i,j}$ above, there are infinitely many generators and finitely many relators, so each $N_{-i,j}$ is a free product of two infinite groups. Hence, by Proposition 5, for each $i, j \ge 0$, the group $N_{-i,j}$ is a domain. Since the union of an ascending chain of domains is again a domain, we conclude that N is a domain. Observe that the group G is the semidirect product of N and the infinite cyclic group generated by t. K. Murasugi [15] has proved that every one-relator presentation with more than two generators, defines a group with trivial center. So by Lemma 3, G is a domain.

Case 2: $\sigma_x(r) \neq 0$, for every $x \in X$.

Denote by F = F(X) a free group on X. Observe, that $r \notin [F, F]$. Consequently there exists a free basis $Y = \{y_1, y_2, \ldots\}$ of F (see [13] Theorem 3.5), such that

$$r = y_1^e y_1^e$$

where here e is a positive integer and y' is an element in the derived group of F, expressed in terms of the new basis Y of F. Clearly, $\sigma_y(s) = 0$ for every $y \in Y - \{y_1\}$. So if we present G on the generators Y, we find that

$$G = < Y; y_1^e y' > .$$

So we are back to Case 1 and G is a domain, as before.

The condition $|X| \ge 3$ is essential, since, for example the following one-relator groups are not domains (they contain non-trivial abelian normal subgroups):

$$\langle x, y \mid x^k = y^\ell \rangle, \ \langle x, y \mid y^{-1}xy = x^\ell \rangle, \ ((k, \ell \ge 2).$$

It is unclear whether the only one-relator groups which are not domains are those which contain abelian normal subgroups, as in the examples above.

4.3 One-relator groups which are separated by free groups are discriminated by them

The object of this subsection is to prove the

Theorem 6 Every one-relator group separated by a free group F is discriminated by the free group F.

Since every one-relator group with at least three generators is, by Theorem B, a domain and hence, by Theorem 1, co-discriminating, it suffices to prove the following lemma.

Lemma 4 Let G be a group generated by two elements. Then the following conditions are equivalent:

- 1. G is separated by a free group F;
- 2. G is discriminated by a free group F;
- 3. G is either free or free abelian.

Proof. Notice, that 3 implies 2 (in the case when G is free abelian, it follows from Section 2 that G is discriminated by Z, hence by F). It is obvious that 2 implies 1. So it is enough to prove that 1 implies 33. Observe that every group separated by a torsion-free group is torsion-free; hence G is torsionfree. If G is abelian, then G is free abelian. Suppose now that G is generated by a and b and that $[a, b] \neq 1$. Then there exists a homomorphism $\phi : G \to F$ such that $[\phi(a), \phi(b)] \neq 1$. Therefore the subgroup generated by $\phi(a)$ and $\phi(b)$ is a free group of rank 2; hence ϕ is an isomorphism.

References

- Bass H., Groups acting on non-archimedian trees. Arboreal group theory, 1991, pp. 69–130.
- Baumslag B., Residually free groups. Proc. London Math. Soc., 1967, 17 (3), pp. 402–418.
- [3] Baumslag G., On generalized free products. Math. Zeit., 1962, 7, 8, pp. 423-438.

- [4] Baumslag G., Myasnikov A., Remeslennikov V., *Residually hyperbolic groups*. Proc. Inst. Appl. Math. Russian Acad. Sci., 1995, 24, pp. 3–37.
- [5] Baumslag G., Myasnikov A., Remeslennikov V., Algebraic geometry over groups I: Algebraic sets and ideal theory. To appear in J. Algebra.
- [6] Baumslag, G. and Roseblade, J.E., Subgroups of direct products of free groups. J. London Math. Soc., 1984, (2), pp. 44–52.
- [7] Gruenberg. K.W., Residual properties of infinite soluble groups. Proc. London Math. Soc. (1957) (3) 7, pp. 29–62.
- [8] Hall, P., Finiteness conditions for soluble groups. Proc. London Math. Soc. (3), 4 (1954), pp. 419-436.
- [9] Fuchs, L., Infinite abelian groups, Academic Press, New York, 1970 (volume 1), 1973(volume 2).
- [10] Gildenhuys D., Kharlampovich O., and Myasnikov A., CSA groups and separated free constructions. Bull. Austr. Math. Soc., 1995, 52, 1, pp. 63–84.
- [11] Kaplansky I., Infinite abelian groups. Ann Arbor: Univ. of Michigan Press, 1954.
- [12] Lyndon, R.C., and Schupp, P.E., Combinatorial group theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [13] Magnus W., Karrass A., Solitar D., Combinatorial group theory: presentations of groups in terms of generators and relators. Dover Publications, New York, 1976.
- [14] Miller III C.F., Decision problems for groups survey and reflections. In Algorithms and Classification in Combinatorial Group Theory, ed. G.Baumslag and C.F.Miller III, MSRI Publications 23, Springer-Verlag, 1992, pp. 1-59.
- [15] Murasugi K., The center of a group with a single defining relation. Math. Ann., 1964, 155, p. 246-251.

- [16] Myasnikov A.G., Remeslennikov V.N., Exponential groups II: extensions of centralizers and tensor completion of CSA-groups. International Journal of Algebra and Computation, 1996, 6(6), p. 687–711.
- [17] Newmann H., Varieties of groups. Springer, 1967.
- [18] Szmielew W., Elementary properties of Abelian groups. Fund.Math., 1955, 41, pp.203–271.