
Discriminating and co-discriminating groups

Gilbert Baumslag Alexei Miasnikov
Vladimir Remeslennikov

1 Introduction

1.1 Separation conditions

This paper is concerned with proving that a number of groups satisfy certain
separation conditions. In order to explain what these conditions are we need
to recall some definitions from [5] (see also [4]).

Definition 1 Let H be a group, S a non-empty set of groups and F a family
of homomorphisms of H into the groups in S. We term F a separating family
if for each h ∈ H, h 6= 1, there exists φ ∈ F such that φ(h) 6= 1. In this
event we also say that S separates H or that H is residually S.

If S consists of the singleton G, then we say that G separates H or that H
is residually G.

Definition 2 Let H be a group, S a non-empty set of groups and F a family
of homomorphisms of H into the groups in S. We term F a discriminating
family if for each finite subset Y of non-trivial elements of H, there exists a
homomorphism φ ∈ F such that φ(h) 6= 1 for every h ∈ Y (we say that φ
discriminates the finite set Y ). In this event we say that S discriminates H.

If S consists of a singleton G we say that G discriminates H, or that H is
fully residually G or that H is ω–residually G.

These notions of separation and discrimination play a role in several ar-
eas of group theory; for example, in the theory of varieties of groups [17], in
algorithmic group theory [14] and in, what we have termed, algebraic geom-
etry over groups [5]. Our concern here is with two related notions. However,
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before we turn our attention to them, it may be worth noting that there is a
distinct difference between the notion of separation and that of discrimina-
tion. The interested reader will find it instructive to reflect on the notion of
a root property discussed in the paper [7], the results in [2], [3], [6] and the
book [17].

Our concern here will be with two notions related to separation and dis-
crimination.

1.2 Discriminating groups

The first of these is that of a discriminating group. We term a group G
discriminating if every group separated by G is discriminated by G. It is not
easy to determine which groups are discriminating, although it is is not hard
to find a characterization of such groups. Indeed a group G is discriminating
if and only if its direct square G × G is discriminated by G (see section 2).
We concentrate here on the task of classifying those abelian groups which
are discriminating. It turns out that every torsion–free abelian group is
discriminating. Our main result here, Theorem A, involves torsion abelian
groups. We refer the reader to the books (see [9], [11]) for a comprehensive
discussion of abelian groups and the notions described below. In order to
formulate Theorem A we need to digress a little. Let then A be a torsion
abelian group. Given an integer n, we define

A[n] = {a ∈ A | an = 1}.

Clearly, A[n] is a subgroup of A. Observe that A[pk−1] ≤ A[pk], for every
prime p and every positive integer k. Moreover A[pk]/A[pk−1] is of exponent
p and can therefore be viewed as a vector space over the field of p elements.
We denote the dimension of a vector space V by dim(V ) and define

α(A, p, k) = dim(A[pk]/A[pk−1]).

Consider next the Sylow p-subgroup τp(A) of A. Its maximal divisible sub-
group δ(τp(A)) is a direct sum of a number of quasi-cyclic groups of type
Zp∞ . The cardinality of the set of summands involved is an invariant of A,
which we denote by β(A, p). These invariants can be traced back to Ulm (see
[9]); they were explicitly introduced in [18]. Finally, we recall that a ∈ A
has infinite p− height if the equation xpk

= a has a solution in A for every
positive integer k. We are now in a position to formulate
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Theorem A Let A be a torsion, abelian group and suppose that τp(A)/δ(τp(A))
has no elements of infinite p-height. Then A is discriminating if and only
if α(A, p, k) is either zero or infinite for every prime p and every positive
integer k and β(A, p) is either zero or infinite for every prime p.

1.3 Co-discriminating groups

Dually, we term a group H co-discriminating if an arbitrary family S of
groups separates H if and only if S discriminates H. We will focus here
on a large class of co-discriminating groups, groups without zero divisors,
which were introduced in [5] in a rather different context. We recall that a
group H has no zero divisors if given any non-trivial elements a, b ∈ H there
exists an element x ∈ H such that [a, bx] 6= 1. Groups without zero divisors
are called domains and, as noted above (and easily proved directly from the
definition) every such domain is co-discriminating. These domains include,
in particular, the CSA groups introduced in [5]. We recall that a group G
is a CSA group if every maximal abelian subgroup M of G is malnormal,
i.e., M g ∩ M = 1 for every g ∈ G − M. The class of CSA-groups is quite
substantial. It includes all abelian groups, all torsion-free hyperbolic groups
[16] and all groups acting freely on Λ-trees [1] as well as many one-relator
groups – a complete description of one-relator CSA-groups was obtained by
D. Gildenhuys, O. Kharlampovich and A. Myasnikov in [10]. It turns out
that many free products with amalgamation and many one-relator groups
are domains. In particular, a free product A ∗ B is a domain unless both
the groups A and B are of order 2. This allows one to view a result of B.
Baumslag [2] that a free product A ∗ B is separated by a non-abelian free
group if and only if both the groups A and B are discriminated by a non-
abelian free group in a slightly different light. This theorem of Baumslag
follows immediately from the remarks above. Indeed, more generally, the
corresponding result holds when the non-abelian free group is replaced by an
arbitrary torsion-free group G which separates its own free square G ∗G, for
instance every non-abelian torsion-free hyperbolic group (see [4]).

The main result of the paper is

Theorem B Every one-relator group with more then 2 generators is a do-
main, in particular it is co-discriminating.

It follows, perhaps surprisingly (see Section 4.3, Theorem 6), that every
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one–relator group which is separated by a free group is discriminated by a
free group.

2 Discriminating abelian groups

2.1 Discriminating groups

Recall that a group G is discriminating if every group separated by G is
discriminated by G.

First we record the following well-known lemma, the proof of which is left
to the reader (see [8]).

Lemma 1 A group H is separated by a family of groups S ={Gi | i ∈ I} if
and only if H is a subgroup of a cartesian product of groups from S.

The following criterion is useful.

Proposition 1 A group G is discriminating if and only if G×G is discrim-
inated by G.

Proof. Suppose that the group G×G is discriminated by G and that a group
H is separated by G. Now by Lemma 1, H can be embedded in a cartesian
power P of G. Let h1, . . . , hn be a finite number of non-trivial elements
of H. Then there exists a projection π of P onto a finite direct product
Gk = G× . . .×G of k copies of G such that π(hi) 6= 1 for i = 1, . . . , n. Since
G discriminates G × G it follows readily that G discriminates Gk. Thus 2
implies 1. The reverse implication is immediate.

We make use of this criterion repeatedly in what follows.
We gather together a number of results about discriminating groups.

Throughout this section, p will denote a prime.

Proposition 2 Let D be a discriminating group. Then the following condi-
tions hold.

1. If H is a finite subgroup of D×D, then there is a finite subgroup of D
which is isomorphic to H.

2. If H is a finite subgroup of D × D and H is contained in a divisible
subgroup (i.e., extraction of n-th roots is possible in that subgroup for
every positive integer n) of D×D, then there is a finite subgroup of D
which is contained in a divisible subgroup and is isomorphic to H.
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3. If H is a finite subgroup of a Sylow p–subgroup (i.e., a subgroup in which
every element has order a power of p and which is maximal subject to
this condition) of D × D, then there is a finite subgroup of a Sylow
p–subgroup of D which contains a subgroup isomorphic to H.

4. The number of elements of a given finite order in D is either zero or
infinite.

5. If Di is discriminating for every i ∈ I, then the cartesian product∏
i∈IDi and the restricted direct product

∏
i∈I Di, are discriminating.

Proof. If D is discriminating, then for every finite subgroup K of D × D
there exists a homomorphism φ : D × D −→ D which is monic on K. If a
finite subgroup K of D ×D is contained in a divisible subgroup or a Sylow
p-subgroup of D ×D then it’s image under φ has the same property. These
remarks are enough for the proof of 1, 2, 3 and 4.

We prove next that D =
∏

i∈IDi is discriminating – the proof that
∏

i∈I Di

is discriminating is similar and is left to the reader. For each i ∈ I we choose
a discriminating family of homomorphisms Φi from Di×Di into Di. For any
”I-sequence” of homomorphisms

φ ∈ ∏
i∈I

Φi

we define a homomorphism λφ : D ×D −→ D as follows: if f, h ∈ D then

λφ(f, h)(i) = φi(f(i), h(i)), i ∈ I.

Clearly, λφ is a homomorphism of D×D into D. Now, if we have finitely many
non–trivial elements (f1, h1), . . . , (fn, hn) ∈ D ×D, then we can find a finite
subset I0 of I such that for each of the elements (fk, hk) there exists an index
i ∈ I0 such that (fk(i), hk(i)) 6= 1 in Di×Di. Since Di is discriminating there
exists a homomorphism φi ∈ Φi discriminating all the elements (fk(i), hk(i))
for i ∈ I0. If, for each i 6∈ I0, we choose φi to be any element in Φi, we obtain
an I-sequence φ ∈ ∏

i∈IΦi. Obviously, the homomorphism λφ discriminates
all of the elements (fk, hk), which proves that D discriminates D ×D.

2.2 Abelian groups

Next we focus on the problem as to which abelian groups are discriminating.
We shall use additive notation throughout this subsection.
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If A is an abelian group, then we denote the torsion subgroup of A by
τ(A) and, for each prime p, we denote its unique Sylow p–subgroup by τp(A).
Notice that τ(A) is the direct sum of its Sylow p–subgroups:

τ(A) = ⊕pτp(D).

Finally, let δ(A) be the maximal divisible subgroup of A. A is termed re-
duced if δ(A) = 0. Every divisible subgroup of an abelian group is a direct
summand; so δ(A) is a direct summand of A and therefore we can express A
in the form A = B ⊕ δ(A). It follows that B ∼= A/δ(A) is reduced. Notice
also, that every divisible abelian p–group is a direct sum of groups of type
Z(p∞), i.e., additive copies of the multiplicative group of all pn–th roots of
unity. The following proposition then holds.

Proposition 3 Let A be an abelian group.

1. If A is torsion-free abelian, then A is discriminating.

2. If A is discriminating, then so too is its torsion subgroup τ(A).

3. If A is a torsion group, then A is discriminating if and only if all of
its Sylow p–subgroups τp(A) are discriminating.

4. If A splits over τ(A), then A is discriminating if and only if τ(A) is
discriminating.

5. If A is a non–trivial divisible p–group, then A is discriminating if and
only if it is a direct sum of infinitely many copies of Z(p∞).

6. If A is discriminating then so too is δ(A).

Proof.
1. Let (a1, b1), . . . , (an, bn) be non–trivial elements of A ⊕ A. Since ex-

traction of roots in a torsion–free abelian group is unique, whenever it is
possible, there exists a positive integer k such that the homomorphism from
A⊕ A into A defined by

(a, b) 7→ a + kb (a, b ∈ A)

is monic on the set {(a1, b1), . . . , (an, bn}). This completes the proof.

6



2. It follows immediately from the fact that A⊕A is discriminated by A,
that τ(A⊕A) = τ(A)⊕ τ(A) is discriminated by τ(A) and hence that τ(A)
is discriminating.

3. An analogous argument to the one above suffices to prove the given
assertion.

4. This follows on combining 1 and 2.
5. If A is a finite direct sum of copies of Z(p∞) then it has finitely many

elements of order p, hence by Proposition 2 (4) A is not discriminating. If
A is a direct sum of infinitely many copies of Z(p∞) then A ∼= A ⊕ A and
therefore A is discriminating.

6. The image of a divisible subgroup under a homomorphism is again
divisible. Since A ⊕ A is discriminated by A, it follows that δ(A) ⊕ δ(A) is
discriminated by δ(A). Consequently δ(A) is discriminating.

Now a torsion abelian group of finite exponent is a direct sum of cyclic
groups (see, e.g., I. Kaplansky [11]). The following lemma is an immediate
consequence of this remark and the definition.

Lemma 2 Let A be a torsion abelian group. Then α(A, p, k) is equal to the
cardinality of the set of cyclic summands of order pk in any decomposition of
A[pk] into a direct sum of cyclic groups.

We are now in a position to prove our main theorem about discriminating
abelian groups.

Theorem A Let A be a torsion, abelian group and suppose that τp(D)/δ(τp(D))
has no elements of infinite p-height. Then A is discriminating if and only
if α(D, p, k) is either zero or infinite for every prime p and every positive
integer k and β(D, p) is either zero or infinite for every prime p.

Proof. By Proposition 3, (3), we can assume that A is a p–group.
We begin by proving that if α(A, p, k) = α is non–zero, then it must

be infinite. Suppose the contrary, i.e., for some k, α is finite and non–zero.
Then if we decompose A[pk] into a direct sum of cyclic groups, there are
exactly α cyclic summands C(pk) of order pk. It follows that A[pk] and
therefore A itself, does not contain any direct power of C(pk) with more then
α summands. But A⊕A has a subgroup which is a direct power of 2α cyclic
summands of order pk. So, by Proposition 2, (1), A is not discriminating.
Therefore, if α(A, p, k) = α is non–zero, it must be infinite.
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We observe next, that by Proposition 3, (5) and (6), β = β(A, p) is either
0 or infinite. We consider first the case where β = 0. So A is a reduced,
torsion abelian p–group, without any elements of infinite p-height. If A = 0,
there is nothing to prove. So we assume that A 6= 0. It suffices then to prove
that if H is any finite subgroup of A ⊕ A, then there is a homomorphism
of A ⊕ A into A which is monic on H. Now every finite subgroup of a
p–group P without elements of infinite height can be embedded in a finite
direct summand of P (see, e.g., [11]). Therefore we can assume that H is
of the form H = K ⊕K ≤ D ⊕D, where K is a direct summand of A, say
A = K⊕L. Suppose that we decompose K into a direct sum of cyclic groups
and that a cyclic summand of maximal order has order pj. Since α(A, p, j)
is infinite, there are infinitely many elements of order pj in L and hence
subgroups of L which are arbitrarily large direct powers of C(pj). Hence
there is a homomorphism µ of A into itself which is identical on L and which
maps K monomorphically into L. Consider now the homomorphism ρ of
A⊕A into A which maps A⊕{0} identically onto A and maps {0}⊕A into
A according to µ. Then ρ maps H monomorphically into A – indeed it maps
H onto K ⊕K, thought of now as a subgroup of A itself.

We are left with the case where β is infinite. Let H be a finite subgroup of
A⊕A. We can assume, without loss of generality, that H = K⊕K ≤ A⊕A.
If we now decompose A into a direct sum A = B ⊕ δ(A), then again we can
assume that K = K1 ⊕ A1 ≤ E ⊕ δ(A). Since β is infinite, we can find a
monomorphism µ of K into δ(A) such that µ(K) ∩D1 = 0. It follows that
the homomorphism of A⊕A into A which maps A⊕ {0} identically onto A
and maps {0}⊕A into A according to µ, is monic on H. This completes the
proof of the theorem.

The following examples provide answers to some of the natural questions
that might arise in the readers minds.

Example 1 Let A be the direct sum of a countably infinite number of copies
of the groups Zp∞ and a group of order p. Then A is discriminating, but A
modulo its maximal divisible subgroup is not.

Example 2 Let p be a prime and let A be the unrestricted direct sum of
the cyclic groups of order pi (i = 1, 2, . . .). Then A is discriminating and
therefore so too is its torsion subgroup T . Notice that T is not a direct sum
of cyclic groups (see, e.g., [9]).
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Example 3 Let p be a prime. For a positive integer i denote by Di the direct
sum of a countably infinite number of copies of the cyclic group of order pi.
Then Di is discriminating by Theorem A. Now, the unrestricted direct sum
A = ⊕iDi of the groups Di (i = 1, 2, . . .) is discriminating by Proposition
2. Notice again, that the torsion subgroup of A is not a direct sum of cyclic
groups.

3 Co-discriminating groups

3.1 Co-discrimination and n-separation

Recall that a group H is co-discriminating if every group G separating H
discriminates H.

We shall have need here of a new notion.

Definition 3 Let H be a group, let G be a family of groups and let n be a
positive integer. Then we say that G n–separates H if given any n non-trivial
elements h1, . . . , hn of H, there exists a group G ∈ G and a homomorphism
φ of H into G such that φ(hi) 6= 1 for i = 1, . . . , n.

Notice, in particular, that if G n–separates H, then G certainly separates H.
It turns out that, under the right circumstances, if G 2-separates H, then G
actually discriminates H.

Some of the results that we will prove here are straightforward gener-
alizations of some analogous results of B. Baumslag concerned with groups
discriminated by free groups [2].

We recall first the

Definition 4 A group G is called commutative transitive if commutation is
a transitive relation on the set of all non-trivial elements of G, i.e., if a
commutes with b and b commutes with c, then a commutes with c, provided
a, b, c are non-trivial.

It is not hard to see that CSA-groups are commutative transitive [16].
The following proposition is useful.

Proposition 4 Let H be a group and let G be a family of CSA-groups. Then
the following hold:
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1. Suppose that G 2-separates H. Then H is a CSA-group.

2. If H is commutative transitive and separated by G, then H is a CSA-
group.

Proof. 1. Suppose that H is not a CSA-group. Then there exists a maximal
abelian subgroup M of H which is not malnormal. Hence there is a non-
trivial element a ∈ M and an element x /∈ M such that ax 6= a with ax =
b ∈ M . Put c = [a, x]. Notice that c 6= 1 and that c ∈ M . Now there exists a
homomorphism φ of H into a group G ∈ G such that φ(a) and φ(c) are again
non-trivial. Let M ′ be a maximal abelian subgroup of G containing φ(M).
Since G is a CSA-group, φ(x) ∈ M ′. But then [φ(a), φ(x)] = 1 and therefore
φ(c) = 1, a contradiction. This completes the proof of 1.

2. If H is abelian, then H is a CSA-group. Assume then that H is non-
abelian. It follows from the assumption that H is commutative transitive,
that H has a trivial center. We will prove that G 2-separates H and then
invoke 1. Suppose then that a and b are a pair of non-trivial elements of H.
If there exists an element x ∈ H such that [a, bx] 6= 1, then there exists a
homomorphism of H into a group in G such that the image of [a, bx] is not
equal to 1. Consequently neither the image of a nor that of b is 1, as desired.
On the other hand, suppose that a commutes with all of the conjugates of b in
H. Then it follows from commutative transitivity that the normal closure of
b in H is abelian, i.e., that H contains a non-trivial normal abelian subgroup.
Hence we can find a homomorphism of H onto a non-abelian subgroup H ′

of a group G ∈ G which contains a non-trivial abelian normal subgroup M ′.
Let M be a maximal abelian subgroup of G containing M ′. Then M is not
malnormal in G, which is impossible since G is a CSA-group. This completes
the proof.

Corollary 1 Let G be a non-abelian CSA-group. Then G × G is separated
by G but not discriminated by G.

Proof. G×G is obviously separated by G. If G is non-abelian, then commu-
tation in G×G is not transitive on the set of all non-trivial elements. Hence,
G × G is not a CSA-group. Thence, by Proposition 4, G × G can not be
discriminated by the CSA-group G. In particular, non-abelian CSA groups
are not discriminating.

We remark, in passing, that during the course of the proof of Proposition
4, we have also proved that a non-abelian CSA-group G satisfies the following

10



property: if a and b are non-trivial elements of G, where we allow for the
possibility that a = b, then there exists an element x ∈ G such that [a, bx] 6=
1. Such groups are called groups without zero divisors or, more frequently,
domains.

Theorem 1 Every group without zero divisors is co-discriminating.

Proof. Let H be a group without zero divisors and let h1, . . . , hn be finitely
many, non-trivial elements in H. There exists an element x1 ∈ H such that
[h1, h

x1
2 ] 6= 1. Hence there exists an element x2 ∈ H such that [[h1, h

x1
2 ], hx2

3 ] 6=
1 and so on. It follows that we can find elements x1, x2, . . . , xn−1 ∈ H such
that

c = [. . . [[h1, h
x1
2 ], hx2

3 ], . . . , hxn−1
n ] 6= 1.

Now suppose that H is separated by a family of groups G. Let φ be a
homomorphism of H into a group G ∈ G such that cφ 6= 1. Then φ maps
each of the elements h1, . . . , hn non-trivially into G, as desired.

Corollary 2 Every non–abelian CSA group is co-discriminating.

4 Domains

4.1 Domains and products

Proposition 5 Let A and B be non-trivial groups. Then A ∗B is a domain
unless both A and B are of order 2.

Proof. Suppose that the order of B is at least 3. Let x and y be non–trivial
elements of A ∗ B. We claim that there are elements g, h ∈ A ∗ B such that
[xg, yh] 6= 1. We can assume that x and y are cyclically reduced.

If | x |=| y |= 1 (here | x | is the syllable length of x), then [x, y] 6= 1
provided x and y lie in different factors, and if they both lie in the same
factor, say A, then [x, yb] 6= 1 for any non- trivial b ∈ B.

Suppose now that | x |≥ 2. Then we can assume (conjugating if neces-
sary) that x = a1b1 . . . anbn (1 6= ai ∈ A, 1 6= bi ∈ B). Again, conjugating if
necessary, we can assume that y is a strictly alternating product of elements
from A and B with the first and last elements coming out of B. In this event,
the products xy and yx have different syllable length - so x and y do not
commute, as desired.
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If | A |=| B |= 2, then A ∗ B has a non-trivial normal abelian subgroup
(the derived subgroup). In this event A ∗B is not a domain.

Notice, that we do not require that the factors A and B in the lemma
above be domains. Under the assumptions that A and B are domains, one
can prove the following result (see [5] for details).

Theorem 2 Let A and B be domains. Suppose that C is a subgroup of both
A and B satisfying the following condition:

if c ∈ C, c 6= 1, either [c, A] 6⊆ C or [c, B] 6⊆ C.

Then the amalgamated free product H = A ∗C B is a domain.

Now we are in the position to prove the following generalization of the
result of B. Baumslag [2] referred to in the introduction.

Theorem 3 Let A and B be non-trivial groups not both of order 2. Let G be
a group which separates its own free square G∗G (in particular a non–abelian
torsion-free hyperbolic group). Then the following conditions are equivalent:

1. G separates A ∗B;

2. G discriminates A ∗B;

3. G discriminates each of A and B.

Proof. By Proposition 5 the group A ∗ B is a domain. So, by Theorem 1, 1
and 2 are equivalent.

3 immediately follows from 2 since A and B are subgroups of A ∗B.
Suppose now that both the groups A and B are discriminated by G. Then

in the natural way A∗B is discriminated by G∗G. It is then easy to see that
if G separates G ∗G, then, by transitivity of separation, G separates A ∗B.

4.2 One–relator groups

The main theorem of this paper is the following

Theorem B Let G = 〈X | r = 1〉 be a one-relator group with | X |> 2.
Then G is a domain.

We shall make use of the following lemma.
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Lemma 3 Let N be a domain and let G be a semi–direct product of N and
an abelian group. Then G is a domain if and only if G has trivial center.

Proof. Clearly, if G is a domain then the center of G is trivial.
Suppose now that the center of G is trivial. Observe, that if x and y are

a pair of zero divisors in G, then their normal closures gpG(x) and gpG(y) in
G, commute:

[gpG(x), gpG(y)] = 1.

If u, v ∈ G, then
[x, u] ∈ gpG(x), [y, v] ∈ gpG(y)

and hence
[gpG([x, u]), gpG([y, v])] = 1,

Now the center of G is trivial. Therefore there exist elements u and v in G
such that [x, u] and [y, v] are non–trivial. But this implies that both [x, u]
and [y, v] are zero-divisors in G. Since G/N is abellian, both [x, u] and [y, v]
are contained in N . It follows that, in particular, [x, u] is a zero-divisor in
N , which contradicts the assumption that N is a domain.

We are now in a position to prove our main theorem. Suppose then that
X = {t, b, c, . . .} and that

G = 〈X; r = 1〉, (1)

where r is a cyclically reduced word in X. Let σx(r) denote the sum of the
exponents of all of the occurrences of x in r. We divide the proof into two
cases.

Case 1: σt(r) = 0. Denote by N the normal closure in G of X − t. Put

bi = tibt−i, ci = tict−i, . . . ,

Then N is generated by Y = {bi, ci, . . .}. Since σt(r) = 0, r can be re-
expressed as a word s = s(. . . , bj, . . . , ck, . . .) in the generators Y , where each
of the generators x occuring in r is replaced by xi, where the subscript i is
the sum of the t-exponents of the subword of r preceding x. It follows then,
that

tirt−i = tis(. . . , bj, . . . , ck, . . .)t
−i = s(. . . , bj+i, . . . , ck+i, . . .), (i ∈ Z).

Put
si = s(. . . , bj+i, . . . , ck+i, . . .), (i ∈ Z).
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Using the Reidemeister-Schreier method (see, for example [13]) it is not hard
to prove that N has the following presentation:

N = 〈bi, ci, . . . (i ∈ Z) ; si = 1 (i ∈ Z)〉.
Let α and β be correspondingly the minimal and the maximal index of b that
occurs in the word s. Now, for arbitrary non-negative integers i, j put

N−i,j = 〈ck, . . . (k ∈ Z), bα−i, bα−i+1 . . . , bβ+j | s−i = 1, s−i+1 = 1, . . . , sj = 1〉.
It follows (see [13]) that N is the union of the following ascending chain of
subgroups

N0,0 ≤ N0,1 ≤ N−1,1 ≤ N−1,2 . . . ≤ N−i+1,i ≤ N−i,i ≤ N−i,i+1 ≤ . . . .

Notice that in the presentation for N−i,j above, there are infinitely many
generators and finitely many relators, so each N−i,j is a free product of two
infinite groups. Hence, by Proposition 5, for each i, j ≥ 0, the group N−i,j

is a domain. Since the union of an ascending chain of domains is again a
domain, we conclude that N is a domain. Observe that the group G is the
semidirect product of N and the infinite cyclic group generated by t. K.
Murasugi [15] has proved that every one-relator presentation with more than
two generators, defines a group with trivial center. So by Lemma 3, G is a
domain.

Case 2: σx(r) 6= 0, for every x ∈ X.
Denote by F = F (X) a free group on X. Observe, that r 6∈ [F, F ].

Consequently there exists a free basis Y = {y1, y2, . . .} of F (see [13] Theorem
3.5), such that

r = ye
1y
′

where here e is a positive integer and y′ is an element in the derived group of
F , expressed in terms of the new basis Y of F . Clearly, σy(s) = 0 for every
y ∈ Y − {y1}. So if we present G on the generators Y , we find that

G =< Y ; ye
1y
′ > .

So we are back to Case 1 and G is a domain, as before.
The condition | X | ≥ 3 is essential, since, for example the following

one-relator groups are not domains (they contain non-trivial abelian normal
subgroups):

〈x, y | xk = y`〉, 〈x, y | y−1xy = x`〉, ((k, ` ≥ 2).

It is unclear whether the only one-relator groups which are not domains
are those which contain abelian normal subgroups, as in the examples above.
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4.3 One-relator groups which are separated by free
groups are discriminated by them

The object of this subsection is to prove the

Theorem 6 Every one-relator group separated by a free group F is discrim-
inated by the free group F .

Since every one-relator group with at least three generators is, by Theo-
rem B, a domain and hence, by Theorem 1, co-discriminating, it suffices to
prove the following lemma.

Lemma 4 Let G be a group generated by two elements. Then the following
conditions are equivalent:

1. G is separated by a free group F ;

2. G is discriminated by a free group F ;

3. G is either free or free abelian.

Proof. Notice, that 3 implies 2 (in the case when G is free abelian, it follows
from Section 2 that G is discriminated by Z, hence by F ). It is obvious that
2 implies 1. So it is enough to prove that 1 implies 33. Observe that every
group separated by a torsion-free group is torsion-free; hence G is torsion-
free. If G is abelian, then G is free abelian. Suppose now that G is generated
by a and b and that [a, b] 6= 1. Then there exists a homomorphism φ : G → F
such that [φ(a), φ(b)] 6= 1. Therefore the subgroup generated by φ(a) and φ(b)
is a free group of rank 2; hence φ is an isomorphism.
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