
AVERAGE-CASE COMPLEXITY AND DECISION
PROBLEMS IN GROUP THEORY

ILYA KAPOVICH, ALEXEI MYASNIKOV, PAUL SCHUPP, AND VLADIMIR
SHPILRAIN

Abstract. We investigate the average-case complexity of decision prob-
lems for finitely generated groups, in particular the word and member-
ship problems. Using our recent results on “generic-case complexity” we
show that if a finitely generated group G has word problem solvable in
subexponential time and has a subgroup of finite index which possesses
a non-elementary word-hyperbolic quotient group, then the average-case
complexity of the word problem of G is linear time, uniformly with re-
spect to the collection of all length-invariant measures on G. This results
applies to many of the groups usually studied in geometric group theory:
for example, all braid groups Bn, all groups of hyperbolic knots, many
Coxeter groups and all Artin groups of extra-large type.

1. Introduction

Formulated by Max Dehn in 1912, the word problem for finitely gen-
erated groups is one of the most classical of all decision problems. If G
is a group with a finite generating set A = {x1, . . . , xk}, then the word
problem WP (G, A) of G relative to A consists of all those words w in the
alphabet X = A ∪ A−1 which represent the identity element 1 ∈ G. Thus
WP (G,A) ⊆ X∗, where X∗ is the set of all words in the alphabet X. For
finitely generated groups the worst-case complexity of the word problem
does not depend on the choice of a finite generating set and for that reason
the reference to a generating set is often suppressed.

In general, group word problems may be very complicated with respect
to worst-case complexity. The basic result of Novikov and of Boone (see
for example [1, 42, 43]) states that there exists a finitely presented group G
such that for any finite generating set A of G the word problem WP (G,A) is
undecidable. However, “most” finitely presented groups are word-hyperbolic
and hence have the word problem solvable in linear time. This fact was
first observed by Gromov [32] and made precise by Ol’shanskii [45, 8] and
Champetier [17]. They defined the notion of a “generic” group-theoretic
property and this notion is currently being successfully explored by many
authors [5, 6, 7, 8, 18, 19, 20, 21, 28, 33, 34, 38, 39, 44, 55].
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In our recent paper [37] we introduced the notion of generic-case com-
plexity for decision problems (see Section 2 below for formal definitions) and
showed that for most of the groups usually studied in combinatorial group
theory, the generic-case complexity of the word problem is linear time in a
very strong sense. This means that there is a partial algorithm which gives
the correct answer for “most” inputs of the problem in linear time. We shall
recall the precise definition of generic-case complexity later in Section 2.
Such a result can hold for groups where the the word problem has very high
worst-case complexity or is even undecidable, because generic-case complex-
ity completely disregards the behavior of the algorithm on a “small” set of
“difficult” inputs. Indeed, the result holds for the groups of Boone and of
Novikov with undecidable word problem.

In the present article we show that our results regarding generic-case
complexity can in fact be used to obtain precise average-case results on
the expected value of complexity over the entire set of inputs, including
the “difficult” ones. The basic idea here is very straightforward and is
often used in practice. If we have a total algorithm Ω1 solving a decision
problem D whose worst-case complexity is not “too high” and we also have
a partial algorithm Ω2 solving the problem with “strongly low” generic-case
complexity, then by running Ω1 and Ω2 in parallel we have a total algorithm
Ω1||Ω2 for which we can hope to prove low average-case complexity.

There are few average-case complexity results about decision problems
for finitely presented groups. We mention here two papers by Wang [50, 52],
whose results are very different from ours both in substance and in the
technique used (for example, in Wang’s approach the set of instances of a
problem involves all finite group presentations, rather than a fixed one).

Definition 1.1 (Subexponential functions). We say that a non-negative
function f(n) is subexponential if for any r > 1 we have

lim
n→∞

f(n)
rn

= 0.

Note that this implies that for every r > 1
∞∑

n=1

f(n)
rn

< ∞.

Definition 1.2. Let X be a finite alphabet with k ≥ 2 elements. A dis-
crete probability measure on X∗ is a function µ : X∗ → [0, 1] such that∑

w∈X∗ µ(w) = 1.
We say that µ is length-invariant if for any words w, w′ ∈ X∗ with |w| =

|w′| we have µ(w) = µ(w′).
We say that a measure µ : X∗ → [0, 1] is tame if there exists a subexpo-

nential function g(n) ≥ 0 such that for any w ∈ X∗ we have µ(w) ≤ g(|w|)
k|w| .

It is easy to see that any length-invariant discrete probability measure is
tame. Indeed, if µ : X∗ → [0, 1] is such a measure then, since there are
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exactly kn words of length n, there is a function d(n) ≥ 0 such that for
any w ∈ X∗ we have µ(w) = d(|w|)

k|w| and such that
∑∞

n=0 d(n) = 1. Hence
d(n) ≤ 1 and so µ(w) ≤ 1

k|w| for any word w.
Requiring that a measure be length-invariant is a very natural assumption,

since most complexity classes are defined in terms of the length of an input
word.

Convention 1.3. We follow Papadimitriou [46] for our conventions on com-
putational complexity. In particular, by an algorithm we shall always mean
a deterministic multi-tape Turing machine. In this paper we restrict our
consideration to deterministic time-complexity classes, although the meth-
ods of this paper can be applied to the analysis of average-case behavior in
more general complexity classes. We also assume that for a time-complexity
class C the collection of functions bounding the time of a computation con-
sists of proper complexity functions f(n) ≥ n and that for any function f(n)
in this collection and for any integer C ≥ 1 the function Cf(Cn + C) + C
also belongs to this collection.

Definition 1.4 (Average-case complexity). Let X be a finite alphabet with
|X| ≥ 2 elements. Let D ⊆ X∗ be a language and let Ω be an algorithm
which for every w ∈ X∗ decides whether or not w ∈ D in time T (w) < ∞.
Let f(n) be a non-decreasing positive function. Let µ : X∗ → [0, 1] be a
discrete probability measure.
(1) We say that Ω solves D with average case time-complexity bounded by
f(n) relative to µ if

∫

X∗

T (w)
f(|w|)µ(w) =

∑

w∈X∗

T (w)
f(|w|)µ(w) < ∞.

If f(n) satisfies the bound constraint of a time-complexity class C we say
that Ω solves D with average case time-complexity in C relative to µ.
(2) Let < be a family of discrete probability measures on X∗. We say that
Ω solves D with average case time-complexity bounded by f(n) uniformly
relative to < if there is 0 < C < ∞ such that for any µ ∈ <

∫

X∗

T (w)
f(|w|)µ(w) =

∑

w∈X∗

T (w)
f(|w|)µ(w) ≤ C.

If f(n) satisfies the constraint of a time-complexity class C we say that Ω
solves D with average case time-complexity in C uniformly relative to <.

Remark 1.5. Suppose Ω solvesD with average case time-complexity bounded
by f(n) relative to µ. Then

∑

w∈X∗

T (w)
f(|w|)µ(w) =

∞∑

n=0

∑

w∈X∗,|w|=n

T (w)µ(w)
f(n)

< ∞.
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Therefore

sup
n≥0

∑

w∈X∗,|w|=n

T (w)µ(w)

f(n)
< ∞,

and ∑

w∈X∗,|w|=n

T (w)µ(w) = o(f(n)).

The above inequality provides additional justification for Definition 1.4.

Convention 1.6. We shall denote by SubExp the class of languages decid-
able in deterministic subexponential time.

We are now ready to state the main results of this paper. Two classes
of groups currently playing a major role in group theory are the class of
word-hyperbolic groups defined by Gromov [32] and the class of automatic
groups [24]. For this article we need only the facts that the word problem
of a word-hyperbolic group is solvable in linear time and the word problem
of an automatic group is solvable in quadratic time. Also, while the concept
of a group being non-amenable plays an important role in our results, the
reader need only have in mind that any group containing a free subgroup of
rank two is non-amenable.

Theorem A. Let G be a finitely presented group where the word problem is
in SubExp. Suppose G has a subgroup of finite index which possesses a non-
amenable quotient group G1 whose word problem is solvable in a complexity
class C, where C ⊆ SubExp.

Then the word problem WP (G,A) of G is solvable with average-case com-
plexity in C, uniformly relative to the family of all length-invariant discrete
probability measures µ : (A ∪A−1)∗ → [0, 1].

Moreover, for any tame discrete probability measure µ on (A∪A−1)∗ the
word problem WP (G, A) of G is solvable with average-case complexity in C
relative to µ.

The idea behind the proof of Theorem A is quite simple (see Proposi-
tion 3.2 below for a more technical statement) but applies to a surprising
range of examples. We run in parallel the total subexponential algorithm
for the word problem of G and the partial generic algorithm provided by
the quotient group G1. If the image of an element of g is nontrivial in G1

then the element g is certainly nontrivial in G. On all but an exponentially
negligible set of inputs this partial algorithm will actually terminate within
the complexity bound C and it turns out that the average-case complexity
of the combined algorithm is in C.

We can now formulate some more concrete corollaries of the above theo-
rem.

Corollary B. Let G be a finitely presented group where the word problem
is solvable in subexponential time. Let A be a generating set of G and let
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X = A∪A−1. Let < be the family of all length-invariant discrete probability
measures µ : X∗ → [0, 1].

(1) Suppose that G has a subgroup of finite index that possesses a non-
elementary word-hyperbolic quotient group. Then the word problem
WP (G,A) ⊆ X∗ is solvable with linear average-case time-complexity
uniformly relative to <.

Moreover, for any tame discrete probability measure µ on X∗ the
word problem WP (G,A) for G is solvable with linear average-case
time complexity relative to µ.

(2) Suppose that G has a subgroup of finite index that possesses a non-
amenable automatic quotient group. Then the word problem

WP (G,A) ⊆ X∗

is solvable with quadratic average-case time-complexity uniformly rel-
ative to <.

Moreover, for any tame discrete probability measure µ on X∗ the
word problem WP (G,A) of G is solvable with quadratic average-case
time complexity relative to µ.

We have observed before that assuming the measure to be length-invariant
is very natural from the point of view of complexity theory. Therefore, when
informally talking about average-case complexity of the word problem (or
the membership problem) being linear (quadratic, polynomial, etc) for a
group G, we will mean that for any finite generating set X = A ∪ A−1 of
G the average-case complexity is of that type uniformly with respect to the
family of all length-invariant measures on X∗.

From the point of view of group theory, one weakness of average-case com-
plexity is that it says nothing about the complexity of the word problem for
finitely generated subgroups of the group being considered. If G is a finitely
presented group whose word problem is solvable in subexponential time,
then an easy argument shows that the word problem for the direct product
G1 = G × F (a, b) is also solvable in subexponential time. The free group
F (a, b) is non-elementary word-hyperbolic and G1 admits a homomorphism
onto F (a, b). Thus Corollary B implies that any finitely presented group
whose word problem is solvable in subexponential time can be embedded
into a finitely presented group whose word problem is solvable with linear
time average-case complexity.

Example 1.7. Let Bn be the n-strand braid group where n ≥ 3. We
observed in [37] that the generic-case complexity of the word problem of the
group Bn is strongly linear time. The reason for this is that the pure-braid
group Pn, which has finite index in Bn, admits a homomorphism onto the
group P3

∼= F (a, b)×Z (by pulling out all but the first three strands of a pure
braid). The group P3 in turn maps onto the the free group F (a, b) which
is a non-elementary word-hyperbolic group. Since Bn is automatic [24], the
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word problem for Bn is solvable in quadratic time. Hence by Corollary B
the word problem in Bn is solvable with linear time average-case complexity.

Example 1.8. Let G be a finitely generated linear group over a field of
characteristic zero. Then the result of Lipton and Zalcstein log-space and
thus in polynomial time. If G has a finite index subgroup with a non-
elementary word-hyperbolic quotient, then by Corollary B the word problem
in G is solvable with linear time average-case complexity.

Example 1.9. Let K ⊆ S3 be a hyperbolic knot, that is, such that the
complement M = S3 − K admits a complete hyperbolic metric of finite
volume. (A basic example of such a K is the figure-eight knot, and, as
we note below, most prime knots are hyperbolic.) The group of K is the
fundamental group, G = π1(M), of the knot complement.

A theorem of Thurston (see, for example, [13]) shows that all but finitely
many Dehn fillings on the compactification M ′ of M (that is gluing a
solid torus along the torus boundary of M ′) produce a closed hyperbolic
3-manifold M1. Then G1 = π1(M1) is a quotient of G (obtained, in fact,
by adding a single extra relator) and G1 is non-elementary word-hyperbolic.
The group G has polynomial time word problem, as can be seen for two
different reasons. First, G is linear over R since it embeds into O(3, 1) and
hence has word problem solvable in log-space by the previous example. Sec-
ond, G is automatic (see [24]) and hence the word problem in G is solvable
in quadratic time. Therefore by Corollary B the word problem in G has
linear time average-case complexity.

All prime alternating knots except the (2, q) torus knots are hyperbolic
([13]). The group of the (2, q) torus knot has a presentation G〈x, y|x2 = yq〉
where q ≥ 2 is a positive integer. That these groups have word problem
solvable in linear time is an easy consequence of their structure as a free
product with amalgamation. Thus the word problem of the group of any
prime alternating knot has linear average-case complexity.

Example 1.10. Let G be a Coxeter group, that is, a finitely generated
group admitting a presentation

G = 〈a1, . . . , at | a2
i = 1, i = 1, . . . , t; (aiaj)mij = 1, 1 ≤ i < j ≤ t〉

where 2 ≤ mij ≤ ∞. (That mij = ∞ means that there is no defining
relation involving ai and aj .)

Since a Coxeter group is realizable as a linear group over R, it follows from
the result of Lipton and Zalstein that any Coxter group G has word problem
solvable in polynomial time. Moreover, Brink and Howlett [15] have shown
that all Coxeter groups are automatic and thus have quadratic time word
problem. If the Coxeter group G is of extra-large type, that is, t ≥ 3 and all
mij ≥ 4, then G itself is a nonelementary word-hyperbolic group.

Let G be a Coxeter group with a presentation as above, let I = {1, . . . , t}.
We say that G has a hyperbolic core if there is a subset C ⊆ I with |C| ≥ 3
with mij ≥ 4 for all i, j ∈ C and with mij even if i ∈ I − C and j ∈ C. (Of
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course, ∞ is even.) In this case let G(C) be the subgroup of G generated
by the generators in C. There is a natural retraction homomorphism from
G onto G(C) which sends all ai, i /∈ C, to 1 and fixes all aj where j ∈ C.
The group G(C) is itself a Coxeter group with a presentation

G(C) = 〈ai, i ∈ C|a2
i = 1, (aiaj)mij = 1, i, j ∈ C〉

by the general theory of Coxeter groups and is thus a nonelementary word-
hypberbolic group by the discussion above.

Hence by Corollary B the word problem for any Coxeter group with a
hyperbolic core has word problem solvable with linear time average-case
complexity.

Example 1.11. Let G be an Artin group, that is, G has a presentation

G = 〈a1, . . . , at |uij = uji, for 1 ≤ i < j ≤ t〉
where for i 6= j

uij := aiajai . . .︸ ︷︷ ︸
mij terms

and where mij = mji for each i < j. We allow mij = ∞ in which case the
relation uij = uji is omitted from the above presentation. Suppose also that
G is of extra large type, that is t ≥ 3 and all mij ≥ 4. Appel and Schupp [4]
solved the word problem for Artin groups of extra-large type. Peifer [47]
proved that all such groups are automatic and hence have quadratic time
word problem. An Artin group G has an associated Coxeter group G1 which
is the quotient group obtained by setting the squares of the generators ai

equal to the identity. If G is of extra-large type then so its its Coxeter
quotient

G1 = G/nclG(a2
1, . . . , a

2
t ).

Hence G1 is a nonelementary (since t > 2) word-hyperbolic group. Thus
by Corollary B the word problem of any Artin group G of extra-large type
is solvable in linear time on average.

It is worth pointing out that if the Artin group G is not necessarily of
extra-large type but is such that the associated Coxeter group G1 has a
hyperbolic core, then the results of [37] show that the word problem of G is
strongly generically linear time. However, it is an important open problem to
show that the word problem for arbitrary Artin groups (as opposed to those
of extra-large type) is solvable, so that we cannot yet draw any conclusions
regarding the average-case complexity of the word problem in such G.

Example 1.12. Although Magnus proved that the word problem for any
one-relator group is solvable in the 1930’s (see, for example, [42]), there are
no bounds on complexity of the word problem over the class of one-relator
groups. Indeed, we do not know whether the word problem for every one-
relator group is solvable in polynomial time or whether for every m there is
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a one-relator group whose word problem has time complexity greater than
a tower of m exponentials.

Suppose G is a group which can be given by a finite presentation involving
at least two more generators than defining relators. A beautiful theorem of
Baumslag and Pride [10] shows that G has a subgroup of finite index that
maps homomorphically onto the free group of rank two. In particular, the
theorem applies to all one-relator groups with at least three generators.

Thus if G is any one-relator group on at least three generators whose word
problem is solvable in subexponential time then by Corollary B the word
problem of G is solvable in linear time on average.

Results similar to the conclusion of Theorem A also hold for the subgroup
membership problem.

Recall that if G is a group with a finite generating set A = {x1, . . . , xk}
and H ≤ G is a subgroup, then the membership problem MP (G,H,A) for H
in G relative to A consists of all those words w in the alphabet X = A∪A−1

which represent elements of H. Thus MP (G,H, A) ⊆ X∗. As in the case
of the word problem, the complexity of the membership problem does not
depend on the choice of A.

Our main result regarding the membership problem is:

Theorem C. Let G be a finitely presented group and let H ≤ G be a
subgroup where the membership problem for H in G is in SubExp. Let
G1 ≤ G be a subgroup of finite index in G such that H ≤ G1 and let
φ : G → G be an epimorphism.

Suppose there is a subgroup φ(H) ≤ K ≤ G such that the Schreier coset
graph for G over K is non-amenable and such that the membership problem
for K in G is solvable in complexity class C ⊆ SubExp.

Then for any finite generating set A of G the membership problem

MP (G,H, A)

for H in G is solvable with average-case complexity in C uniformly relative
to the family of all length-invariant discrete probability measures µ : (A ∪
A−1)∗ → [0, 1].

Moreover, for any tame discrete probability measure µ on (A∪A−1)∗ the
membership problem MP (G,H, A) is solvable with average-case complexity
in C relative to µ.

Corollary D. Let G be a finitely presented group and let H ≤ G be a sub-
group where the membership problem for H in G is solvable in subexponential
time. Let G1 ≤ G be a subgroup of finite index in G such that H ≤ G1. Let
φ : G1 → G be an epimorphism and let φ(H) ≤ K ≤ G.

(1) Suppose G is a non-elementary word-hyperbolic group and that K ≤
G is a rational subgroup of infinite index.

Then for any finite generating set A of the group G the member-
ship problem MP (G,H, A) for H in G is solvable with linear time
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average-case complexity uniformly relative to the family of all length-
invariant discrete probability measures µ : (A ∪A−1)∗ → [0, 1].

Moreover, for any tame discrete probability measure µ on (A ∪
A−1)∗ the membership problem MP (G,H,A) is solvable with linear
time average-case complexity relative to µ.

(2) Suppose G is automatic and that K ≤ G is a rational subgroup such
that the Schreier coset graph for G over K is non-amenable (and
hence K has infinite index in G. Then for any finite generating
set A of G and for any length-invariant discrete probability mea-
sure µ : (A ∪ A−1)∗ → [0, 1] the membership problem MP (G,H,A)
for H in G is solvable with quadratic time average-case complex-
ity uniformly relative to the family of all length-invariant discrete
probability measures µ : (A ∪A−1)∗ → [0, 1].

Moreover, for any tame discrete probability measure µ on (A ∪
A−1)∗ the membership problem MP (G,H, A) is solvable with qua-
dratic time average-case complexity relative to µ.

We should make an important disclaimer. The notion of average-case
complexity used in this paper does not have many of the robustness proper-
ties that are desirable at finer levels of the complexity theory. For example,
while our results are independent of the choice of a finite generating set for
a group, more delicate issues such as model independence still have to be
addressed (see [40, 52] for a more detailed discussion).

Nevertheless, we believe that our results constitute a valuable step in
studying the largely unexplored field of the average-case complexity of algo-
rithmic problems in group theory.

2. Generic-case complexity

We need to recall some definitions from our earlier paper [37].

Definition 2.1 (Asymptotic density). Let X be a finite alphabet with at
least two elements and let X∗ denote the set of all words in X. Let S be a
subset of X∗. For every n ≥ 0 let Bn be the set all words in A∗ of length at
most n.

The asymptotic density ρ(S) for S in X∗ is defined as

ρ(S) := lim sup
n→∞

ρn(S)

where

ρn(S) :=
|S ∩Bn|
|Bn| ,

If the actual limit lim
n→∞ ρn(S) exists, we write ρ̂(S) := ρ(S).

The above notion was first suggested in the paper of Borovik, Myasnikov
and Shpilrain [14].
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If lim
n→∞ an = a, where an, a ∈ R, we say that the convergence is exponen-

tially fast provided there exist 0 ≤ σ < 1 and C > 0 such that for every
n ≥ 1 we have |an − a| ≤ Cσn.

Definition 2.2 (Generic performance of a partial algorithm). Let X be a
finite alphabet with at least two letters and let D ⊆ X∗ be a language in X.

Let Ω be a correct partial algorithm for D which accepts as inputs words
from X∗. That is, whenever Ω reaches a decision (either positive or negative)
on whether a word w belongs to D, that decision is correct. Let C be a
complexity class (e.g. linear time, quadratic time, linear space, etc).

We say that Ω solves D with generic-case complexity C if there is a subset
S ⊆ X∗ with ρ̂(S) = 1 such that for every w ∈ S the partial algorithm Ω
decides whether or not w is an element of D within the complexity bound C
(in terms of w). If in addition limn→∞ ρn(S) = 1 converges exponentially
fast, we say that Ω solves D with generic-case complexity strongly C.

We again stress that, unlike the average-case complexity, generic-case
complexity totally disregards the complexity of the algorithm on the “small”
set of inputs X∗ − S.

3. Proofs of the main results

Convention 3.1. Let G be a group and let A be a finite alphabet equipped
with a map π : A → G such that π(A) generates G. In this case we say
that (A, π) (or, by abuse of notation, just A) is a finite generating set for
G. (Different letters of A may represent the same element of G and some
letters of A may represent the identity 1 ∈ G.) Every word w in the alphabet
A ∪A−1 represents an element of G which we will still denote by π(w).

If H ≤ G is a subgroup, we define the Schreier coset graph Γ(G,H,A)
as follows. The vertices of Γ are the cosets {Hg | g ∈ G}. The graph Γ is
oriented. The edge-set of Γ is partitioned as E(Γ) = E+ t E−, where the
set E+ is in one-to-one correspondence with V (Γ) × A. Namely for each
coset Hg and each a ∈ A there is an edge e from Hg to Hga with label a
in E+. The set E− consists of formal inverses of the edges from E+, where
the inverse of an the edge e above is the edge e−1 from Hga to Hg with
label a−1. Thus the edges of Γ are labeled by letters of A ∪A−1. Note that
if k = |A| then Γ is connected and 2k-regular.

Intuitively, a regular connected graph Γ is non-amenable if the graph
“grows rapidly in all directions”. We refer the reader to [9, 16, 22, 31, 36,
49, 53, 54] for a detailed discussion of non-amenability for groups and graphs,
including the many equivalent definitions (such as the Følner condition, the
growth-rate criterion for regular graphs, the doubling condition etc). A
finitely generated group G is non-amenable if for some (and therefore for
any) finite generating set A of G the Cayley graph Γ(G,A) is non-amenable.
This is equivalent to the standard definition of non-amenability for finitely
generated groups. (A finitely generated group G is amenable if and only if
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for any action of G by homeomorphisms on a compact space Q there exists
a G-invariant probability measure on Q.)

Recall that a subgroup H of an automatic group G is said to be rational
if for some automatic language L for G the pre-image LH of H in L is itself
a regular language. If G is word-hyperbolic then rational subgroups are
also often called quasiconvex. We refer the reader to [2, 11, 23, 25, 26, 27,
30, 32, 29, 24, 48] for background information on hyperbolic and automatic
groups and their rational subgroups. For the moment we need only recall
that the word problem is solvable in quadratic time for any automatic group
and in linear time for any hyperbolic group [2, 3, 24, 26, 35]. Also, if H is a
rational subgroup of a hyperbolic ( automatic) group G then the membership
problem for H in G is solvable in linear (quadratic) time.

Our main technical tool is:

Proposition 3.2. Let X be a finite alphabet with at least two elements
and let D ⊆ X∗. Suppose that D is decidable in time f(n) and strongly
generically decidable in time f1(n) ≤ f(n) where the function f(n)/f1(n) is
subexponential. Then the language D is decidable with average-case time-
complexity bounded by f1(n) uniformly relative to the family of all length-
invariant discrete probability measures µ : (A ∪A−1)∗ → [0, 1].

Proof. Let Ω′ be an algorithm solving D in time f(n). Let Ω′′ be a partial
algorithm which solves D strongly generically in time f1(n). Define Ω to be
the algorithm consisting of running Ω′ and Ω′′ concurrently. Let µ : X∗ →
[0, 1] be a length-invariant discrete probability measure.

Denote k := |X| ≥ 2. Let Bn be the set of all words in X∗ of length at
most n. Thus |Bn| = 1+k+k2+· · ·+kn = kn+1−1

k−1 . Let S ⊆ X∗ be the set of
inputs such that for each w ∈ S the algorithm Ω′′ terminates in time f1(|w|)
and limn→∞

|S∩Bn|
|Bn| = 1 exponentially fast. Let K = X∗ − S. Then there is

C > 0 and 1 ≤ q < k such that for every n ≥ 1 we have |K ∩ Bn| ≤ Cqn.
For each w ∈ X∗ denote by T (w) the time required for algorithm Ω to reach
a decision on input w. Thus for every w ∈ S we have T (w) ≤ f1(|w|) and
for every w ∈ X∗ we have T (w) ≤ f(|w|).

Since µ is length-invariant, there is a function d(n) ≥ 0 such that
∞∑

n=0

d(n) = 1

and such that for every w ∈ X∗ with |w| = n we have µ(w) = d(n)
kn where

kn is the number of all words of length n in X∗. In particular, d(n) ≤ 1 for
each n. We have:

∫

X∗

T (w)
f1(|w|)µ(w) =

∫

S

T (w)
f1(|w|)µ(w) +

∫

K

T (w)
f1(|w|)µ(w).

Since for all w ∈ S we have T (w) ≤ f1(|w|), then
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∫

S

T (w)
f1(|w|)µ(w) ≤

∫

S

f1(|w|)
f1(|w|)µ(w) = µ(S) ≤ 1 < ∞.

On the other hand for w ∈ K with |w| = n we have T (w) ≤ f(n)
and µ(w) = d(n)

kn . Hence f(|w|)
f1(|w|)d(|w|) ≤ f(n)

f1(n) where the function f(n)
f1(n) is

subexponential. Let Kn be the set of all w ∈ K with |w| = n. Then
|Kn| ≤ |K ∩Bn| ≤ Cqn.

Hence

∫

K

T (w)
f1(|w|)µ(w) =

∞∑

n=0

∑

w∈Kn

T (w)
f1(|w|)µ(w) =

∞∑

n=0

∑

w∈Kn

f(n)
f1(n)

d(n)
1
kn

≤

≤ C

∞∑

n=0

f(n)
f1(n)

d(n)
qn

kn
≤ C

∞∑

n=0

f(n)
f1(n)

qn

kn
= C0 < ∞

since k > q and the function f(n)
f1(n) is subexponential. Therefore

∫

X∗

T (w)
f1(|w|)µ(w) =

∫

S

T (w)
f1(|w|)µ(w) +

∫

K

T (w)
f1(|w|)µ(w) ≤ 1 + C0 < ∞.

Since C0 does not depend on the choice of µ, the statement of Proposition 3.2
follows. ¤

Remark 3.3. The proof of Proposition 3.2 is sufficiently robust to accom-
modate some other notions of average-case complexity. One of such defini-
tions uses the Cauchy density d(n) = 1

n2 to define the notion of average-case
complexity being at most polynomial of degree p. Namely, we say that,
using the notations of Definition 1.4, the algorithm Ω solves D with Cauchy
average-case time-complexity bounded by polynomial of degree p if for any
ε > 0 ∫

X∗

T (w)
|w|p−1+ε

µ(w) =
∑

w∈X∗

T (w)
|w|p−1+ε

µ(w) < ∞,

where µ(w) = 1
|w|2k|w| .

The proof of Proposition 3.2 easily goes through to show that if D is
decidable in subexponential time and strongly generically decidable in poly-
nomial of degree p time, then D is decidable with Cauchy average-case time-
complexity bounded by polynomial of degree p.

Indeed, we have to analyze the same integral with f1(n) = np−1+ε. As
before, we decompose this integral into two parts corresponding to K and
S accordingly. For the K-part the functions T (w) and T (w)/|w|p−1+ε are
subexponential and hence the K-integral is finite by the same argument as
in the proof of Proposition 3.2. For the S-part we have T (w) ≤ C|w|p for
any w ∈ S. Let sn be the number of words of length n in S. Hence sn ≤ kn

and
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∫

S

T (w)
|w|p−1+ε

µ(w) ≤ C

∫

S

|w|p
|w|p−1+ε

1
|w|2k|w| =

= C
∞∑

n=1

1
n1+ε

sn

kn
≤ C

∞∑

n=1

1
n1+ε

< ∞.

This implies that the whole integral over X∗ is finite, as required.

The requirement that measures in Proposition 3.2 be length-invariant can
be considerably weakened at the cost of sacrificing the “uniform” conclusion
of Proposition 3.2.

Proposition 3.4. Let X be a finite alphabet with k ≥ 2 elements and let
D ⊆ X∗. Suppose that D is decidable in time f(n) and strongly generically
decidable in time f1(n) ≤ f(n) where the function f(n)/f1(n) is subexpo-
nential. Then for any tame measure µ on X∗ the language D is decidable
with µ-average-case time-complexity bounded by f1(n).

Proof. Recall that since µ is tame, there exists a subexponential function
g(n) ≥ 0 such that for any w ∈ X∗ we have µ(w) = g(|w|)

k|w| .
The argument is almost exactly the same as in the proof of Proposition 3.2

and the only change required is in the estimate of the integral over the
strongly negligible set K with |K ∩ Bn| ≤ Cqn, 0 < q < k, and with
Kn = {w ∈ K : |w| = n}:

∫

K

T (w)
f1(|w|)µ(w) =

∞∑

n=0

∑

w∈Kn

T (w)
f1(|w|)µ(w) ≤

∞∑

n=0

∑

w∈Kn

f(n)
f1(n)

g(n)
kn

≤

≤ C

∞∑

n=0

f(n)
f1(n)

g(n)
qn

kn
< ∞.

The last inequality holds since f(n)
f1(n) and g(n) are subexponential functions

and hence so is their product. ¤

Proposition 3.2 together with the results of our previous paper [37] im-
mediately implies the main results stated in the Introduction.

Proof of Theorem A and Theorem C. Suppose the assumptions of Theorem A
are satisfied. By the results of [37] since G is non-amenable, for any finite
generating set A of G the word problem WP (G,A) for G is solvable strongly
generically with complexity C. Together with Proposition 3.2 and Proposi-
tion 3.4 this implies the statement of Theorem A.

Any non-elementary hyperbolic group contains a free subgroup of rank
two and thus is non-amenable. Moreover, by [3, 2, 35] the word problem in a
hyperbolic group is solvable in linear time. Additionally, the word problem
in an automatic group is solvable in quadratic time [24]. The statement of
Corollary B now follows from Theorem A.
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Suppose now that the assumptions of Theorem C hold. Since the Schreier
graph of G over H is non-amenable, the result of [37] implies that for any
finite generating set A of G the membership problem MP (G,H,A) is solv-
able strongly generically with complexity C. The statement of Theorem C
now follows from Proposition 3.2 and Proposition 3.4.

Recall that the membership problem for a rational subgroup of a hy-
perbolic group is solvable in linear time. Also, the membership problem
for a rational subgroup of an automatic group is solvable in quadratic time.
Since non-elementary hyperbolic groups are non-amenable, Corollary D now
follows from Theorem C. ¤
Remark 3.5. One may argue that the natural set of inputs for the word
problem of a group G = 〈A〉 is the set of elements of the free group F (A)
rather than the set of all words (including those which are not freely reduced)
in the alphabet A∪A−1. Then one would need to talk about the average-case
complexity of the word or the membership problem with respect to a length-
invariant discrete probability measure µ : F (A) → [0, 1]. For an element
w ∈ F (A), let |w| be the length of the unique freely reduced word in A∪A−1

representing w. Here a “length-invariant measure” would mean a measure
such that for any w1, w2 ∈ F (A) with |w1| = |w2| we have µ(w1) = µ(w2).
Then the definition of average-case complexity would need to be modified
so that the summation occurs over all elements of F (A) rather than over all
words in the language (A ∪A−1)∗.

Since spheres and balls of radius n in F (A) grow as (2k − 1)n (where k
is the number of letters in A), the definition of a tame discrete probability
measure µ on F (A) needs to be adjusted by requiring that for any w ∈ F (A)
we have µ(w) ≤ g(|w|)

(2k−1)|w| , where g(n) ≥ 0 is some subexponential function.
One can also define asymptotic density for a subset S ⊆ F (A) similarly

to Definition 2.1. The only difference is that the denominator in the fraction
ρn(S) would be the total number of elements f ∈ F with |w| ≤ n. All the
results of [37] regarding the generic-case complexity of the word and the
membership problem are proved in parallel for both approaches.

Thus all the results (together with exactly the same proofs) of this paper
remain true in this alternative approach.

We give here a sample version of such an alternatively stated result:

Theorem E. Let G be a finitely presented group where the word problem
is in deterministic time-complexity class C. Suppose G has a subgroup of
finite index that possesses a non-amenable quotient group G where the word
problem belongs to a time-complexity class C ⊆ SubExp.

Then for any finite generating set A of G the word problem for G is
solvable with average-case time-complexity in C uniformly relative to the
family of all length-invariant discrete probability measures µ : F (A) → [0, 1].

Moreover, for any tame discrete probability measure µ on F (A) the word
problem for G is solvable with average-case complexity in C relative to µ.
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