A Combination Theorem for Affine Tree-Free groups

Shane O Rourke

Cork Institute of Technology

12 May 2016

Shane O Rourke

Cork Institute of Technology

Image: A mathematical states and a mathem

Affine Tree-Free (ATF) groups o ooo ooooooooo oooo

The basics and not-so-basics

Tree $\leftrightarrow \mathbb{Z}$ -tree (via the path metric)

Shane O Rourke

Cork Institute of Technology

The basics and not-so-basics

Tree $\leftrightarrow \mathbb{Z}$ -tree (via the path metric)

 $\rightsquigarrow \mathbb{R}$ -tree — relax the condition that distances are integers

Shane O Rourke

Cork Institute of Technology

 $\rightsquigarrow \mathbb{R}\text{-}\mathsf{tree}$ — relax the condition that distances are integers

 \rightsquigarrow $\Lambda\text{-tree}$ — relax the condition that distances in metric spaces are real numbers

・ロマ・白マ・山マ・山マ・山

 $\rightsquigarrow \mathbb{R}\text{-tree}$ — relax the condition that distances are integers

 \rightsquigarrow $\Lambda\text{-tree}$ — relax the condition that distances in metric spaces are real numbers

Here Λ is an ordered abelian group.

A Combination Theorem for Affine Tree-Free groups

 $\rightsquigarrow \mathbb{R}\text{-}\mathsf{tree}$ — relax the condition that distances are integers

 \rightsquigarrow $\Lambda\text{-tree}$ — relax the condition that distances in metric spaces are real numbers

Here Λ is an ordered abelian group.

E.g. \mathbb{Z} , \mathbb{R} , subgroups, direct products, ultraproducts

Image: A math a math

 $\rightsquigarrow \mathbb{R}\text{-tree}$ — relax the condition that distances are integers

 \rightsquigarrow $\Lambda\text{-tree}$ — relax the condition that distances in metric spaces are real numbers

Here Λ is an ordered abelian group.

E.g. \mathbb{Z} , \mathbb{R} , subgroups, direct products, ultraproducts Important case: $\Lambda = \mathbb{Z} \times \Lambda_0$ with the lexicographic order

Shane O Rourke

Cork Institute of Technology

Image: A math a math

 $\rightsquigarrow \mathbb{R}\text{-}\mathsf{tree}$ — relax the condition that distances are integers

 \rightsquigarrow $\Lambda\text{-tree}$ — relax the condition that distances in metric spaces are real numbers

Here Λ is an ordered abelian group.

E.g. \mathbb{Z} , \mathbb{R} , subgroups, direct products, ultraproducts Important case: $\Lambda = \mathbb{Z} \times \Lambda_0$ with the lexicographic order

Equivalently, a Λ -tree is a geodesic, 0-hyperbolic Λ -metric space such that $(x \cdot y) \in \Lambda$.

A group is $ITF(\Lambda)$ if it admits a free isometric action on a Λ -tree such that no non-trivial group element g stabilises any closed segment [x, y].

Shane O Rourke

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Combination Theorem for Affine Tree-Free groups

A group is ITF if it is $ITF(\Lambda)$ for some Λ .

A group is ITF if it is $ITF(\Lambda)$ for some Λ .

Examples: A group is $ITF(\mathbb{Z})$ if and only if it is free.

A group is ITF if it is $ITF(\Lambda)$ for some Λ .

Examples: A group is $ITF(\mathbb{Z})$ if and only if it is free.

A finitely generated freely indecomposable $ITF(\mathbb{R})$ group is free abelian or a residually free surface group. (Rips Theorem)

< □ > < 同 >

Other examples of ITF groups:

- 1 locally fully residually free groups
- 2 certain 'length-preserving' HNN extensions of other ITF groups. For example, $\langle x, y, z | x^2 y^2 z^2 = 1 \rangle \cong \langle u, z, t | tut^{-1} = z^{-2}u^{-1} \rangle$ is ITF($\mathbb{Z} \times \mathbb{Z}$).

A Combination Theorem for Affine Tree-Free groups

Cork Institute of Technology

Other examples of ITF groups:

- 1 locally fully residually free groups
- 2 certain 'length-preserving' HNN extensions of other ITF groups. For example, $\langle x, y, z | x^2 y^2 z^2 = 1 \rangle \cong \langle u, z, t | tut^{-1} = z^{-2}u^{-1} \rangle$ is ITF($\mathbb{Z} \times \mathbb{Z}$).

However

$$\langle x, y, t | t[x, y]t^{-1} = [x^2, y^2] \rangle$$

Image: A math a math

is not ITF: $\ell[x, y]$ is always less than $\ell[x^2, y^2]$ if x and y are hyperbolic and $xy \neq yx$.

Shane O Rourke

The basics and not-so-basics

Finitely presented ITF groups

- are $ITF(\mathbb{R}^n)$ for some n
- are right orderable (Chiswell)
- are biautomatic
- are hyperbolic relative to non-cyclic abelian subgroups (using Dahmani's Combination Theorem)
- admit a quasi-convex hierarchy
- are virtually special (using Wise's results)
- are virtually orderable (but not necessarily orderable OR)
- are linear, and hence residually finite
- have solvable Word, Conjugacy and Isomorphism Problems.

See Kharlampovich, Myasnikov, Serbin Actions, length functions, and non-archimedean words IJAC, 2013.

The case $\Lambda = \mathbb{Z} \times \Lambda_0$

Theorem (Bass 1991)

An isometric action on a Λ -tree gives rise to

- a graph of groups decomposition;
- isometric actions of the vertex groups on Λ₀-trees.

These satisfy compatibility conditions

- **1** edge stabilisers $\mathcal{G}(e)$ match up with end stabilisers $(\mathcal{G}(x^*))_{\epsilon_e}$ where $x^* = \partial_0 e$. Also ends ϵ_e are of full Λ_0 -type.
- 2 if $x^* = \partial_0 e = \partial_0 f$ with $e \neq f$ then ϵ_e and ϵ_f lie in distinct $\mathcal{G}(x^*)$ -orbits.
- 3 $\tau_e \ \alpha_e(s) + \tau_{\bar{e}} \ \alpha_{\bar{e}}(s) = 0$ for $s \in \mathcal{G}(e)$ [compatibility of directions and translation lengths of elements of $\mathcal{G}(e)$.]

The case $\Lambda = \mathbb{Z} \times \Lambda_0$

Theorem (Bass 1991)

An isometric action on a Λ -tree gives rise to

- a graph of groups decomposition;
- isometric actions of the vertex groups on Λ₀-trees.

These satisfy compatibility conditions

- **1** edge stabilisers $\mathcal{G}(e)$ match up with end stabilisers $(\mathcal{G}(x^*))_{\epsilon_e}$ where $x^* = \partial_0 e$. Also ends ϵ_e are of full Λ_0 -type.
- 2 if $x^* = \partial_0 e = \partial_0 f$ with $e \neq f$ then ϵ_e and ϵ_f lie in distinct $\mathcal{G}(x^*)$ -orbits.
- 3 $\tau_e \ \alpha_e(s) + \tau_{\bar{e}} \ \alpha_{\bar{e}}(s) = 0$ for $s \in \mathcal{G}(e)$ [compatibility of directions and translation lengths of elements of $\mathcal{G}(e)$.]

And conversely.

Shane O Rourke

Affine actions: actions by dilations rather than isometries.

Shane O Rourke

Cork Institute of Technology

Affine actions: actions by dilations rather than isometries.

An affine automorphism g of an \mathbb{R} -tree X satisfies $d(gx, gy) = \beta_g d(x, y)$ where β_g is a positive scalar.

< □ > < 同 >

A Combination Theorem for Affine Tree-Free groups

Affine actions: actions by dilations rather than isometries.

An affine automorphism g of an \mathbb{R} -tree X satisfies $d(gx, gy) = \beta_g d(x, y)$ where β_g is a positive scalar. Equivalently, β_g is an *o*-automorphism of \mathbb{R} ...

< □ > < 同 >

Cork Institute of Technology

Affine actions: actions by dilations rather than isometries.

An affine automorphism g of an \mathbb{R} -tree X satisfies $d(gx, gy) = \beta_g d(x, y)$ where β_g is a positive scalar. Equivalently, β_g is an o-automorphism of \mathbb{R} ...

Liousse (2001): Examples of groups that admit free affine actions on \mathbb{R} -trees, but that have no free isometric action on any \mathbb{R} -tree. E.g.

$$\langle x_1, x_2, x_3, y_1, y_2, y_3 \mid [x_1, y_1] = [x_2, y_2] = [x_3, y_3] \rangle$$

Shane O Rourke

An affine automorphism of a Λ -tree X satisfies

$$d(gx,gy) = \beta_g d(x,y)$$

where β_g is a positive scalar. Equivalently, β_g is an *o*-automorphism of Λ .

Shane O Rourke

Cork Institute of Technology

Cork Institute of Technology

An affine automorphism of a Λ -tree X satisfies

$$d(gx,gy) = \beta_g d(x,y)$$

where β_g is *o*-automorphism of Λ .

an

Image: A mathematical states and a mathem

Shane O Rourke

Let $\operatorname{Aut}^+(\Lambda_0)$ denote the group of *o*-automorphisms of Λ_0 .

- ペロト 《聞 と 《臣 と 《臣 と 三臣 … のべ)

Shane O Rourke

Cork Institute of Technology

Let $\operatorname{Aut}^+(\Lambda_0)$ denote the group of o-automorphisms of $\Lambda_0.$ If

 $\beta: \Gamma \to \operatorname{Aut}^+(\Lambda)$

 $(g \mapsto \beta_g)$ is a homomorphism and

$$d(gx,gy) = \beta_g d(x,y)$$

for $g \in \Gamma$, we speak of a β -affine action of Γ .

Cork Institute of Technology

Image: A math a math

A Combination Theorem for Affine Tree-Free groups

Let $\operatorname{Aut}^+(\Lambda_0)$ denote the group of o-automorphisms of $\Lambda_0.$ If

 $\beta: \Gamma \to \operatorname{Aut}^+(\Lambda)$

 $(g \mapsto \beta_g)$ is a homomorphism and

$$d(gx,gy) = \beta_g d(x,y)$$

for $g \in \Gamma$, we speak of a β -affine action of Γ .

Can now develop basic theory of affine actions much as in the isometric case.

Let $\operatorname{Aut}^+(\Lambda_0)$ denote the group of *o*-automorphisms of Λ_0 . If

 $\beta: \Gamma \to \operatorname{Aut}^+(\Lambda)$

 $(g \mapsto \beta_g)$ is a homomorphism and

$$d(gx,gy) = \beta_g d(x,y)$$

for $g \in \Gamma$, we speak of a β -affine action of Γ .

Can now develop basic theory of affine actions much as in the isometric case.

Note that if $\Lambda = \mathbb{Z} \times \Lambda_0$ then β_g is determined by its effect on $(1, \lambda_0)$ ($\lambda_0 \in \Lambda_0$), and $\beta_g(1, \lambda_0) = (1, \theta_g \lambda_0 + \mu_g)$ for some $\theta_g \in \operatorname{Aut}^+(\Lambda_0)$

A group is $ATF(\Lambda)$ if it admits a free affine action on a Λ -tree such that no non-trivial group element stabilises any closed segment [x, y]. In particular no point is fixed.

<□> <四> <四> <百> <百> <百> <百> <百> <百</p>

Shane O Rourke

Cork Institute of Technology

A group is $ATF(\Lambda)$ if it admits a free affine action on a Λ -tree such that no non-trivial group element stabilises any closed segment [x, y]. In particular no point is fixed.

A group is ATF if it is $ATF(\Lambda)$ for some Λ .

Shane O Rourke

Cork Institute of Technology

< □ > < 同 >

A group is ATF if it is $ATF(\Lambda)$ for some Λ . Examples:

1 Baumslag-Solitar groups BS(1, a)

< □ > < 同 >

A Combination Theorem for Affine Tree-Free groups

A group is ATF if it is $ATF(\Lambda)$ for some Λ . Examples:

- **1** Baumslag-Solitar groups BS(1, a)
- 2 wreath products $\Lambda_1 \wr \Lambda_2$

< □ > < 同 >

A group is ATF if it is $ATF(\Lambda)$ for some Λ . Examples:

- **1** Baumslag-Solitar groups BS(1, a)
- **2** wreath products $\Lambda_1 \wr \Lambda_2$
- **3** the Heisenberg group $UT(3,\mathbb{Z})$

A group is ATF if it is $ATF(\Lambda)$ for some Λ . Examples:

- **1** Baumslag-Solitar groups BS(1, a)
- 2 wreath products $\Lambda_1 \wr \Lambda_2$
- **3** the Heisenberg group $UT(3, \mathbb{Z})$
- 4 more generally the groups $T^*(n, \mathbb{R})$ of upper triangular matrices with positive diagonal entries.

Image: A math a math

Combining ATF groups

Affine Tree-Free (ATF) groups

(When) can we combine ATF groups to form an ATF group?

(*ロ) (部) (注) (注) (注) (3000)

Shane O Rourke

Cork Institute of Technology

(When) can we combine ATF groups to form an ATF group? If Γ_{x^*} is ATF for all vertices x^* in a graph (of groups) \mathcal{G} , when is the fundamental group $\pi_1(\mathcal{G})$ ATF?

Shane O Rourke

Cork Institute of Technology

< □ > < 同 >
Isometric case: to extend isometric actions of Γ_{x^*} on Λ_{x^*} -trees $X(x^*)$ to an isometric action of $\Gamma = \pi_1(\mathcal{G}, Y^*)$, we need:

1 a common Λ_0 for all vertices x^*

Image: Image:

Isometric case: to extend isometric actions of Γ_{x^*} on Λ_{x^*} -trees $X(x^*)$ to an isometric action of $\Gamma = \pi_1(\mathcal{G}, Y^*)$, we need:

- **1** a common Λ_0 for all vertices x^*
- **2** the ends ϵ_e of the 0 × Λ_0 -balls to be of full Λ_0 -type

Isometric case: to extend isometric actions of Γ_{x^*} on Λ_{x^*} -trees $X(x^*)$ to an isometric action of $\Gamma = \pi_1(\mathcal{G}, Y^*)$, we need:

- **1** a common Λ_0 for all vertices x^*
- 2 the ends ϵ_e of the 0 × Λ_0 -balls to be of full Λ_0 -type
- 3 matching hyperbolic lengths of edge group elements

Isometric case: to extend isometric actions of Γ_{x^*} on Λ_{x^*} -trees $X(x^*)$ to an isometric action of $\Gamma = \pi_1(\mathcal{G}, Y^*)$, we need:

- **1** a common Λ_0 for all vertices x^*
- **2** the ends ϵ_e of the 0 × Λ_0 -balls to be of full Λ_0 -type
- 3 matching hyperbolic lengths of edge group elements that is, $\ell(\alpha_e(g)) = \ell(\alpha_{\bar{e}}(g))$ for $g \in \Gamma_e$.

Combining ATF groups

Affine Tree-Free (ATF) groups

Theorem (OR)

Bass's Theorem goes through with 'isometric' replaced by 'affine' if we modify the compatibility conditions appropriately.

Shane O Rourke

Cork Institute of Technology

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Combining ATF groups

Key compatibility condition in affine case:

$$\theta_{g_e} \left[\theta_{\alpha_e(s)} \delta_e^{Y^*}(x) - \delta_e^{Y^*} \cdot \alpha_e(s)(x) \right] \\ + \theta_{g_{\bar{e}}} \left[\theta_{\alpha_{\bar{e}}(s)} \delta_{\bar{e}}^{Y^*}(y) - \delta_{\bar{e}}^{Y^*} \cdot \alpha_{\bar{e}}(s)(y) \right] \\ = \mu_{\alpha_{|e|}(s)}$$

Cork Institute of Technology

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Shane O Rourke

So suppose a graph Y^* is given, together with ATF groups $\mathcal{G}(x^*)$ for each vertex $x^* \in Y^*$. Assume that edge groups act isometrically, and are cyclic. What obstacles are there to producing a free affine action on some Λ -tree?

1 Need a common Λ_0 for all x^* . Solution: Embed all given Λ_{x^*} in, say, $\Lambda_0 = \bigoplus_{x^* \in Y^*} \Lambda_{x^*}$. We can then replace the given homomorphisms into $\operatorname{Aut}^+(\Lambda_{x^*})$ by homomorphisms into $\operatorname{Aut}^+(\Lambda_0)$ in an obvious way.

• • • • • • • • • • •

Image: A math a math

Snag: The base change functor may not preserve freeness of the action.

Snag: The base change functor may not preserve freeness of the action.

If e is the edge joining x* to y*, we need the ends ε_e and ε_ē joining the balls X(x*) and X(y*) of radius (0×)Λ₀ to be of full 0×Λ₀-type.
Solution: Use the Λ₀-fulfilment, and extend the action in a natural way, as in the isometric case.

Snag: The base change functor may not preserve freeness of the action.

If e is the edge joining x* to y*, we need the ends ε_e and ε_ē joining the balls X(x*) and X(y*) of radius (0×)Λ₀ to be of full 0 × Λ₀-type.
Solution: Use the Λ₀-fulfilment, and extend the action in a natural way, as in the isometric case.

Snag: The natural extension of a free action may not be free.

Snag: The base change functor may not preserve freeness of the action.

If e is the edge joining x* to y*, we need the ends ε_e and ε_ē joining the balls X(x*) and X(y*) of radius (0×)Λ₀ to be of full 0 × Λ₀-type.
Solution: Use the Λ₀-fulfilment, and extend the action in a natural way, as in the isometric case.

Snag: The natural extension of a free action may not be free. Solution: Restrict attention to essentially free actions...

Now $\iota(gx) = \beta_g \iota(x) + \nu_g$ for some constant ν_g (independent of x, but not of ι).

Image: A math a math

Now $\iota(gx) = \beta_g \iota(x) + \nu_g$ for some constant ν_g (independent of x, but not of ι).

A hyperbolic element is essentially hyperbolic if $(1 - \beta_g)(\lambda) \ll \nu_g$ for all $\lambda \in \Lambda$.

Image: A math a math

A Combination Theorem for Affine Tree-Free groups

Shane O Rourke

Now $\iota(gx) = \beta_g \iota(x) + \nu_g$ for some constant ν_g (independent of x, but not of ι).

A hyperbolic element is essentially hyperbolic if $(1 - \beta_g)(\lambda) \ll \nu_g$ for all $\lambda \in \Lambda$. An affine action is essentially free if every $g \neq 1$ is essentially hyperbolic.

Now $\iota(gx) = \beta_g \iota(x) + \nu_g$ for some constant ν_g (independent of x, but not of ι).

A hyperbolic element is essentially hyperbolic if $(1 - \beta_g)(\lambda) \ll \nu_g$ for all $\lambda \in \Lambda$. An affine action is essentially free if every $g \neq 1$ is essentially hyperbolic.

Free isometric actions are automatically essentially free: $1 - \beta_g = 0$ for all isometries g.

Combining ATF groups

Affine Tree-Free (ATF) groups

4 What if the hyperbolic lengths of the edge group elements do not match up?

▲口 ▶ ▲□ ▶ ▲目 ▶ ▲目 ▶ ▲□ ▶ ▲□ ▶

Shane O Rourke

Cork Institute of Technology

4 What if the hyperbolic lengths of the edge group elements do not match up?

Solution: If the edge *e* belongs to the maximal subtree T^* , then we can adjust the given metric $d_{\partial_0 e}$ on $X(\partial_0 e)$: replace $d_{\partial_0 e}$ by $\eta d_{\partial_0 e}$. If the original action on $(X(\partial_0 e), d_{\partial_0 e})$ was $\theta^{\partial_0 e}$ -affine, the

action on $(X(\partial_0 e), \eta d_{\partial_0 e})$ will now be $\eta \theta^{\partial_0 e} \eta^{-1}$ -affine.

Shane O Rourke

4 What if the hyperbolic lengths of the edge group elements do not match up?

Solution: If the edge *e* belongs to the maximal subtree T^* , then we can adjust the given metric $d_{\partial_0 e}$ on $X(\partial_0 e)$: replace $d_{\partial_0 e}$ by $\eta d_{\partial_0 e}$. If the original action on $(X(\partial_0 e), d_{\partial_0 e})$ was $\theta^{\partial_0 e}$ -affine, the action on $(X(\partial_0 e), \eta d_{\partial_0 e})$ will now be $\eta \theta^{\partial_0 e} \eta^{-1}$ -affine.

If e does not belong to T^* , then the edge element $g_e \in \pi_1(\mathcal{G})$ is non-trivial.

Image: A math a math

Shane O Rourke

What if the hyperbolic lengths of the edge group elements do not match up?

Solution: If the edge *e* belongs to the maximal subtree T^* , then we can adjust the given metric $d_{\partial_0 e}$ on $X(\partial_0 e)$: replace $d_{\partial_0 e}$ by $\eta d_{\partial_0 e}$. If the original action on $(X(\partial_0 e), d_{\partial_0 e})$ was $\theta^{\partial_0 e}$ -affine, the

action on $(X(\partial_0 e), \eta d_{\partial_0 e})$ will now be $\eta \theta^{\partial_0 e} \eta^{-1}$ -affine.

If e does not belong to T^* , then the edge element $g_e \in \pi_1(\mathcal{G})$ is non-trivial.

Now choose η or θ_{g_e} so that $\eta \ell(u) = \ell(v)$ or $\theta_{g_e}\ell(u) = \ell(v)$.

What if the hyperbolic lengths of the edge group elements do not match up?

Solution: If the edge *e* belongs to the maximal subtree T^* , then we can adjust the given metric $d_{\partial_0 e}$ on $X(\partial_0 e)$: replace $d_{\partial_0 e}$ by $\eta d_{\partial_0 e}$. If the original action on $(X(\partial_0 e), d_{\partial_0 e})$ was $\theta^{\partial_0 e}$ -affine, the

action on $(X(\partial_0 e), \eta d_{\partial_0 e})$ will now be $\eta \theta^{\partial_0 e} \eta^{-1}$ -affine.

If e does not belong to T^* , then the edge element $g_e \in \pi_1(\mathcal{G})$ is non-trivial.

Now choose η or θ_{g_e} so that $\eta \ell(u) = \ell(v)$ or $\theta_{g_e} \ell(u) = \ell(v)$. Further snag: What if there is no *o*-automorphism of Λ_0 that maps $\ell(u)$ to $\ell(v)$?

Combining ATF groups

Take a regular embedding $h : \Lambda_0 \to \Lambda_1$: that is, an embedding h together with an embedding $\theta_g \mapsto \overline{\theta}_g$ of $\operatorname{Aut}^+(\Lambda_0)$ in $\operatorname{Aut}^+(\Lambda_1)$ such that

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ < (

Shane O Rourke

Cork Institute of Technology

1 Aut⁺(Λ_1) acts transitively on the positive elements of Λ_0 ,

Aut⁺(Λ₁) acts transitively on the positive elements of Λ₀,
 h · θ_g = θ
 _g · h,

Image: Image:

A Combination Theorem for Affine Tree-Free groups

Shane O Rourke

1 Aut⁺(Λ_1) acts transitively on the positive elements of Λ_0 ,

2
$$h \cdot \theta_g = \overline{\theta}_g \cdot h$$
, and

$$[\operatorname{im}(1-\theta_g)]_{\Lambda_0} \subset [\mu]_{\Lambda_0} \Rightarrow [\operatorname{im}(1-\bar{\theta}_g)]_{\Lambda_1} \subset [h(\mu)]_{\Lambda_1}$$

< □ > < 同 >

Shane O Rourke

1 Aut⁺(Λ_1) acts transitively on the positive elements of Λ_0 ,

2
$$h \cdot \theta_g = \overline{\theta}_g \cdot h$$
, and

$$[\operatorname{im}(1-\theta_g)]_{\Lambda_0} \subset [\mu]_{\Lambda_0} \Rightarrow [\operatorname{im}(1-\bar{\theta}_g)]_{\Lambda_1} \subset [h(\mu)]_{\Lambda_1}$$

Lemma

- **1** The natural extension of an essentially free action to the Λ_0 -fulfilment is essentially free.
- **2** Regular embeddings always exist.
- **3** Essential freeness is preserved by regular embeddings.

Image: Image:

Consider $\Gamma = \langle G, t | tut^{-1} = v \rangle$ where G is $ITF(\Lambda_0)$. In order for Γ to be ITF we would need to have $\ell(u) = \ell(v)$ with respect to some free isometric action of G. But this is impossible in certain cases (as noted earlier). In order for Γ to be $ATF(\mathbb{Z} \times \Lambda_0)$ it suffices to find a free isometric action of G on a Λ_0 -tree such that

- **1** u and v generate maximal cyclic subgroups of G
- 2 u is not conjugate to the inverse of v
- 3 there is a homomorphism $\theta : G \to \operatorname{Aut}^+(\Lambda_0)$ such that $\theta_t \ell(u) = \ell(v)$.

Cork Institute of Technology

Consider $\Gamma = \langle G, t | tut^{-1} = v \rangle$ where G is $ITF(\Lambda_0)$. In order for Γ to be ITF we would need to have $\ell(u) = \ell(v)$ with respect to some free isometric action of G. But this is impossible in certain cases (as noted earlier). In order for Γ to be $ATF(\mathbb{Z} \times \Lambda_0)$ it suffices to find a free isometric action of G on a Λ_0 -tree such that

- **1** u and v generate maximal cyclic subgroups of G
- 2 u is not conjugate to the inverse of v
- 3 there is a homomorphism $\theta : G \to \operatorname{Aut}^+(\Lambda_0)$ such that $\theta_t \ell(u) = \ell(v)$.

Taking a regular embedding of Λ_0 in some Λ_1 , and replacing Λ_0 by Λ_1 , we can ensure that θ_t can be found.

In particular, conjugacy pinched one-relator groups $\langle F, t \mid tut^{-1} = v \rangle$ with maximal cyclic $\langle u \rangle$ and $\langle v \rangle$ and u not conjugate to v^{-1} admit a free affine action on a $\mathbb{Z} \times \mathbb{Q}$ -tree.

・ロット・「四マ・山下・(四マ・トロマ

Shane O Rourke

Cork Institute of Technology

In particular, conjugacy pinched one-relator groups $\langle F, t \mid tut^{-1} = v \rangle$ with maximal cyclic $\langle u \rangle$ and $\langle v \rangle$ and u not conjugate to v^{-1} admit a free affine action on a $\mathbb{Z} \times \mathbb{Q}$ -tree.

For example the groups

$$\langle x, y, t \mid t[x^m, y^n]t^{-1} = [x^r, y^s] \rangle \quad m, n, r, s \neq 0$$

and

Shane O Rourke

$$\langle x, y, t \mid txt^{-1} = [x, y] \rangle$$

are $ATF(\mathbb{Z} \times \mathbb{Q})$.

Cork Institute of Technology

Image: Image:

Cork Institute of Technology

In particular, conjugacy pinched one-relator groups $\langle F, t \mid tut^{-1} = v \rangle$ with maximal cyclic $\langle u \rangle$ and $\langle v \rangle$ and u not conjugate to v^{-1} admit a free affine action on a $\mathbb{Z} \times \mathbb{Q}$ -tree.

For example the groups

$$\langle x, y, t \mid t[x^m, y^n]t^{-1} = [x^r, y^s] \rangle \quad m, n, r, s \neq 0$$

and

$$\langle x, y, t \mid txt^{-1} = [x, y] \rangle$$

are $ATF(\mathbb{Z} \times \mathbb{Q})$.

(Aside: the latter is even isometrically tree-free, but not residually nilpotent.)

• • • • • • • • • • •

Shane O Rourke

Decomposing free affine actions on $\mathbb{Z}\times\Lambda_0\text{-trees}$

Free affine action of Γ on a Λ -tree X ($\Lambda = \mathbb{Z} \times \Lambda_0$), and where the induced action on the quotient \mathbb{Z} -tree X^* is without inversions

 \rightsquigarrow graph of groups \mathcal{G} : vertex groups $\mathcal{G}(x^*)$ are $\operatorname{ATF}(\Lambda_0)$, edge groups are line stabilisers.

< □ > < 同 >

A Combination Theorem for Affine Tree-Free groups

Shane O Rourke

Decomposing free affine actions on $\mathbb{Z}\times\Lambda_0\text{-trees}$

Free affine action of Γ on a Λ -tree X ($\Lambda = \mathbb{Z} \times \Lambda_0$), and where the induced action on the quotient \mathbb{Z} -tree X^* is without inversions

 \rightsquigarrow graph of groups \mathcal{G} : vertex groups $\mathcal{G}(x^*)$ are $\operatorname{ATF}(\Lambda_0)$, edge groups are line stabilisers.

Inductively, \rightsquigarrow hierarchical decomposition of an $ATF(\mathbb{Z}^n)$ group where the lowest ranked groups are $ATF(\mathbb{Z})$ groups — i.e. free groups.

Image: A math a math

A Combination Theorem for Affine Tree-Free groups

Shane O Rourke

Decomposing free affine actions on $\mathbb{Z}\times\Lambda_0\text{-trees}$

Free affine action of Γ on a Λ -tree X ($\Lambda = \mathbb{Z} \times \Lambda_0$), and where the induced action on the quotient \mathbb{Z} -tree X^* is without inversions

 \rightsquigarrow graph of groups \mathcal{G} : vertex groups $\mathcal{G}(x^*)$ are $\operatorname{ATF}(\Lambda_0)$, edge groups are line stabilisers.

Inductively, \rightsquigarrow hierarchical decomposition of an $ATF(\mathbb{Z}^n)$ group where the lowest ranked groups are $ATF(\mathbb{Z})$ groups — i.e. free groups.

End stabilisers in $ATF(\mathbb{Z}^n)$ groups coincide with line stabilisers, which embed in $UT(n + 1, \mathbb{Z})$.

So edge groups are maximal nilpotent.

Isometrically Tree-Free (ITF) groups 0000 Affine Tree-Free (ATF) groups 0 000 000000000 0 000

Decomposing free affine actions on $\mathbb{Z} \times \Lambda_0\text{-trees}$

Theorem

A torsion-free relatively hyperbolic group has

- **1** solvable Word Problem (B. Farb)
- solvable Conjugacy Problem (I. Bumagin) (provided the parabolic subgroups have solvable Word and Conjugacy problem)

- ∢ 🗗 ▶

Isometrically Tree-Free (ITF) groups 0000 Affine Tree-Free (ATF) groups 0 000 000000000 0 000

Decomposing free affine actions on $\mathbb{Z} \times \Lambda_0\text{-trees}$

Theorem

A torsion-free relatively hyperbolic group has

- **1** solvable Word Problem (B. Farb)
- solvable Conjugacy Problem (I. Bumagin) (provided the parabolic subgroups have solvable Word and Conjugacy problem)
- **3** solvable Isomorphism Problem in case the parabolic subgroups are nilpotent (F. Dahmani, N. Touikan)
Isometrically Tree-Free (ITF) groups 0000 Affine Tree-Free (ATF) groups 0 000 000000000 0 000

Decomposing free affine actions on $\mathbb{Z} \times \Lambda_0\text{-trees}$

Theorem

A torsion-free relatively hyperbolic group has

- **1** solvable Word Problem (B. Farb)
- solvable Conjugacy Problem (I. Bumagin) (provided the parabolic subgroups have solvable Word and Conjugacy problem)
- **3** solvable Isomorphism Problem in case the parabolic subgroups are nilpotent (F. Dahmani, N. Touikan)

An $ATF^{o}(\mathbb{Z}^{n})$ group — that is, a finitely generated group that admits a free affine action on a \mathbb{Z}^{n} -tree where no line has its orientation reversed — is relatively hyperbolic with torsion-free nilpotent parabolic subgroups. This follows from Bigdely-Wise. Isometrically Tree-Free (ITF) groups 0000 Decomposing free affine actions on $\mathbb{Z}\times\Lambda_0\text{-trees}$

Therefore, finitely generated $ATF^{o}(\mathbb{Z}^{n})$ groups have solvable Word, Conjugacy and Isomorphism Problems.

It also follows from Dahmani's work that finitely generated $ATF^{o}(\mathbb{Z}^{n})$ groups are locally relatively quasiconvex.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Combination Theorem for Affine Tree-Free groups

Isometrically Tree-Free (ITF) groups

Decomposing free affine actions on $\mathbb{Z} \times \Lambda_0\text{-trees}$

Thank you!

Shane O Rourke

Cork Institute of Technology

A D > A D > A

A Combination Theorem for Affine Tree-Free groups