From local to global conjugacy in relatively hyperbolic groups

Oleg Bogopolski

Webinar "GT" NY, 5.05.2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let G be a group, $\mathbb{P} = \{P_{\lambda}\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a *relative generating set of* G with *respect to* \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_{\lambda}) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

(

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda} \right) * F(X),$$

where \widetilde{P}_{λ} is a copy of P_{λ} such that the union of all $\widetilde{P}_{\lambda} \setminus \{1\}$ and X is disjoint.

Let G be a group, $\mathbb{P} = \{P_{\lambda}\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a *relative generating set of* G with *respect to* \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_{\lambda}) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda} \right) * F(X),$$

where \widetilde{P}_{λ} is a copy of P_{λ} such that the union of all $\widetilde{P}_{\lambda} \setminus \{1\}$ and X is disjoint. We will use the most useless presentation of \widetilde{P}_{λ} :

$$\widetilde{P}_{\lambda} = \langle \widetilde{P}_{\lambda} \setminus \{1\} \, | \, \widetilde{\mathcal{S}}_{\lambda}
angle,$$

where \widetilde{S}_{λ} is the set of all words over the alphabet $\widetilde{P}_{\lambda} \setminus \{1\}$ that represent 1 in the group \widetilde{P}_{λ} . Denote

$$\widetilde{\mathcal{P}} = \underset{\lambda \in \Lambda}{\cup} (\widetilde{P}_{\lambda} \setminus \{1\}), \ \ \widetilde{\mathcal{S}} := \underset{\lambda \in \Lambda}{\cup} \widetilde{\mathcal{S}}_{\lambda}.$$

Let G be a group, $\mathbb{P} = \{P_{\lambda}\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a *relative generating set of* G with *respect to* \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_{\lambda}) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

(

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda} \right) * F(X),$$

We will use the most useless presentation $\widetilde{P}_{\lambda} = \langle \widetilde{P}_{\lambda} \setminus \{1\} | \widetilde{S}_{\lambda} \rangle$, and the sets $\widetilde{\mathcal{P}}$ and \widetilde{S} as above.

Let G be a group, $\mathbb{P} = \{P_{\lambda}\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a *relative generating set of* G with respect to \mathbb{P} if

$$G = \langle (\bigcup_{\lambda \in \Lambda} P_{\lambda}) \cup X \rangle.$$

In this situation G can be regarded as a quotient group of

(

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda} \right) * F(X),$$

We will use the most useless presentation $\widetilde{P}_{\lambda} = \langle \widetilde{P}_{\lambda} \setminus \{1\} | \widetilde{S}_{\lambda} \rangle$, and the sets $\widetilde{\mathcal{P}}$ and \widetilde{S} as above. Then \overline{F} has the presentation

$$\overline{F} = \langle \widetilde{\mathcal{P}} \sqcup X \, | \, \widetilde{\mathcal{S}}
angle$$

and G has a presentation (called relative with respect to \mathbb{P})

$$G = \langle \widetilde{\mathcal{P}} \sqcup X \, | \, \widetilde{\mathcal{S}} \sqcup \mathcal{R} \rangle.$$

Finite relative presentations

The relative presentation

$$G = \langle \widetilde{\mathcal{P}} \sqcup X \, | \, \widetilde{\mathcal{S}} \sqcup \mathcal{R} \rangle$$

can be briefly written as

$$G = \langle X, \mathbb{P} \, | \, \mathcal{R} \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This relative presentation is called finite if X and \mathcal{R} are finite.

Finite relative presentations

The relative presentation

$$G = \langle \widetilde{\mathcal{P}} \sqcup X \, | \, \widetilde{\mathcal{S}} \sqcup \mathcal{R} \rangle$$

can be briefly written as

$$G = \langle X, \mathbb{P} \, | \, \mathcal{R} \rangle.$$

This relative presentation is called finite if X and \mathcal{R} are finite.

Example. Consider the amalgamated product

$$G=H_1*_{K\stackrel{\alpha}{\to}L}H_2.$$

With $\mathbb{P} = \{H_1, H_2\}$, there is the following relative presentation

$$G = \langle \emptyset, \mathbb{P} \mid k = \alpha(k) \, (k \in K) \rangle.$$

It can be chosen finite if K is finitely generated.

Relative isoperimetric functions

Suppose that G has a relative presentation

$$G = \langle X, (P_{\lambda})_{\lambda \in \Lambda} | \mathcal{R} \rangle.$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then G is a quotient of

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*}\widetilde{P}_{\lambda}\right) * F(X)$$

If a word $W \in (X \cup \widetilde{\mathcal{P}})^*$ represents 1 in *G*, there exists an expression

$$W \stackrel{\overline{F}}{=} \prod_{i=1}^{k} f_i^{-1} R_i f_i, \quad \text{where} \quad R_i \in \mathcal{R}, \ f_i \in \overline{F}$$
(2)

The smallest possible number k in a representation of type (2) is denoted $Area^{rel}(W)$.

Relative isoperimetric functions

Suppose that G has a relative presentation

$$G = \langle X, (P_{\lambda})_{\lambda \in \Lambda} | \mathcal{R} \rangle.$$
(1)

Then G is a quotient of

$$\overline{F} = \left(\underset{\lambda \in \Lambda}{*}\widetilde{P}_{\lambda}\right) * F(X)$$

If a word $W \in (X \cup \widetilde{\mathcal{P}})^*$ represents 1 in *G*, there exists an expression

$$W \stackrel{\overline{F}}{=} \prod_{i=1}^{k} f_i^{-1} R_i f_i, \quad \text{where} \quad R_i \in \mathcal{R}, \, f_i \in \overline{F}$$
(2)

The smallest possible number k in a representation of type (2) is denoted $Area^{rel}(W)$.

A function $f : \mathbb{N} \to \mathbb{N}$ is called a *relative isoperimetric function* of (1) if for any $n \in \mathbb{N}$ and for any word $W \in (X \cup \widetilde{\mathcal{P}})^*$ of length $|W| \leq n$ representing the trivial element of the group G, we have

Area^{rel}(W) $\leq f(n)$.

Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

$$G = \langle X, \mathbb{P} \,|\, \mathcal{R} \rangle. \tag{1}$$

is called the relative Dehn function of G with respect to $\{P_{\lambda}\}_{\lambda \in \Lambda}$ and is denoted by $\delta_{(G,\mathbb{P})}^{rel}$.

Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

$$G = \langle X, \mathbb{P} \,|\, \mathcal{R} \rangle.$$
 (1)

is called the relative Dehn function of G with respect to $\{P_{\lambda}\}_{\lambda \in \Lambda}$ and is denoted by $\delta_{(G,\mathbb{P})}^{rel}$.

• For finite relative presentations, δ^{rel} is not always well-defined, i.e. it can be infinite for certain values of the argument: The group $G = \mathbb{Z} \times \mathbb{Z} = \langle a, b | [a, b] = 1 \rangle$ has a relative presentation with $X = \{b\}$ and $P = \langle a \rangle$:

$$G = \langle \{b\}, P \,|\, [a, b] = 1 \rangle$$

The word $W_n = [a^n, b]$ has length 4 as a word over $\{b\} \cup P$, but its area equals to n.

Equivalence of Dehn functions

Proposition. Let

$$\langle X_1, (P_\lambda)_{\lambda \in \Lambda} | \mathcal{R}_1 \rangle$$

and

$$\langle X_2, (P_\lambda)_{\lambda \in \Lambda} | \mathcal{R}_2 \rangle$$

be two finite relative presentations of the same group G with respect to a fixed collection of subgroups $(P_{\lambda})_{\lambda \in \Lambda}$, and let δ_1 and δ_2 be the corresponding relative Dehn functions. Suppose that δ_1 is well-defined, i.e. δ_1 is finite for every n. Then δ_2 is well-defined and $\delta_1 \sim \delta_2$.

Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathbb{P} = (P_{\lambda})_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called hyperbolic relative to \mathbb{P} , if

(1) G is finitely presented with respect to $\mathbb P$ and

(2) The relative Dehn function $\delta_{(G,\mathbb{P})}^{rel}$ is linear.

In this situation we also say that (G, \mathbb{P}) is *relatively hyperbolic* and that \mathbb{P} is a *peripheral structure* for G.

Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathbb{P} = (P_{\lambda})_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called hyperbolic relative to \mathbb{P} , if

(1) G is finitely presented with respect to $\mathbb P$ and

(2) The relative Dehn function $\delta_{(G,\mathbb{P})}^{rel}$ is linear.

In this situation we also say that (G, \mathbb{P}) is *relatively hyperbolic* and that \mathbb{P} is a *peripheral structure* for G.

Remark. Conditions (1)&(2) are equivalent to conditions (1)&(3):

(3) The relative Dehn function δ^{rel}_(G,P) is well-defined and the Cayley graph Γ(G, X ∪ P) is a hyperbolic metric space. The main difficulty and the resulting assumption

Difficulty: The space $\Gamma(G, X \cup P)$ is hyperbolic, but is not locally finite if X or P is infinite.

Assumption. The group G is generated by a finite set X and (G, \mathbb{P}) is relatively hyperbolic.

Notation. There are two distance functions on $\Gamma(G, X \cup \mathcal{P})$, $dist_{X \cup \mathcal{P}}$ and $dist_X$. So, we use notation $|AB|_{X \cup \mathcal{P}}$ and $|AB|_X$.

We use blue color to draw geodesic lines with respect to X.

Useful theorem

Theorem. (Osin) For any triple (G, \mathbb{P}, X) satisfying the above assumption, there exists a constant $\nu > 0$ with the following property.

Let Δ be a triangle whose sides p, q, r are geodesics in $\Gamma(G, X \cup P)$. Then for any vertex v on p, there exists a vertex u on the union $q \cup r$ such that

 $dist_X(u, v) < \nu$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parabolic, hyperbolic and loxodromic elements

- Let $(G, (P_{\lambda})_{\lambda \in \Lambda})$ be relatively hyperbolic. An element $g \in G$ is called
- *parabolic* if it is conjugate into one of the subgroups P_{λ} , $\lambda \in \Lambda$

- *hyperbolic* if it is not parabolic
- *loxodromic* if it is hyperbolic and has infinite order.

Properties of loxodromic elements

Suppose that (G, \mathbb{P}, X) satisfies the above assumption.

Theorem (Osin) For any loxodromic element $g \in G$, there exist $\lambda > 0$, $\sigma \ge 0$ such that for any $n \in \mathbb{Z}$ holds

 $|g^n|_{X\cup\mathcal{P}} \ge \lambda |n| - \sigma.$

Properties of loxodromic elements

Suppose that (G, \mathbb{P}, X) satisfies the above assumption.

Theorem (Osin) For any loxodromic element $g \in G$, there exist $\lambda > 0$, $\sigma \ge 0$ such that for any $n \in \mathbb{Z}$ holds

 $|g^n|_{X\cup\mathcal{P}} \ge \lambda |n| - \sigma.$

Recall that a subgroup of a group is called *elementary* if it contains a cyclic subgroup of finite index.

Theorem. (Osin) Every loxodromic element $g \in G$ is contained in a unique maximal elementary subgroup, namely in

$$E_G(g) = \{ f \in G \mid f^{-1}g^n f = g^{\pm n} \text{ for some } n \in \mathbb{N} \}.$$

Relatively quasiconvex subgroups

Definition. Let *G* be a group generated by a finite set *X*, $\mathbb{P} = \{P_{\lambda}\}_{\lambda \in \Lambda}$ a collection of subgroups of *G*. A subgroup *H* of *G* is called relatively quasiconvex with respect to \mathbb{P} if there exists $\epsilon > 0$ such that the following condition holds. Let h_1, h_2 be two elements of *H* and *p* an arbitrary geodesic path from h_1 to h_2 in $\Gamma(G, X \cup \mathcal{P})$. Then for any vertex $v \in p$, there exists a vertex $u \in H$ such that

 $dist_X(v, u) \leq \epsilon$.

Else one property of loxodromic elements

Lemma. For every loxodromic element $b \in G$, there exists $\tau > 0$ such that the following holds. Let *m* be a natural number and [A, B] a geodesic segment in $\Gamma(G, X \cup \mathcal{P})$ connecting 1 and b^m , Then the Hausdorff distance (induced by the *dist*_X-metric) between the sets [A, B] and $\{b^i | 0 \leq i \leq m\}$ is at most τ .

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- \bullet ${\it H}_1$ is relatively quasiconvex with respect to ${\mathbb P}$ and
- H₂ has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- \bullet ${\it H}_1$ is relatively quasiconvex with respect to ${\mathbb P}$ and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of |X|, ϵ_1 , $dist_X(1, b)$, where ϵ_1 is a quasiconvexity constant of H_1 , and b is a loxodromic element of H_2 .

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- H_1 is relatively quasiconvex with respect to $\mathbb P$ and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of |X|, ϵ_1 , $dist_X(1, b)$, where ϵ_1 is a quasiconvexity constant of H_1 , and b is a loxodromic element of H_2 .

Remark. Passage to a finite index subgroup of H_2 cannot be avoided:

$$\begin{array}{cccc} F_2 & \geqslant & H_2 & \geqslant & H_1 \\ \downarrow & & \downarrow & & \downarrow \\ A_4 & \geqslant & K & \geqslant & \mathbb{Z}_2 \end{array}$$

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_1 and H_2 be subgroups of G, where H_1 is finitely generated. Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_1 and H_2 be subgroups of G, where H_1 is finitely generated. Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

The index depends only on H_1 . The length of the conjugator with respect to a fixed generating system X of G depends only on H_1 and

$$m = egin{cases} \min_{g \in hyp(H_2)} dist_X(1,g) & ext{if } hyp(H_2)
eq \emptyset, \ \min_{g \in H_2 \setminus \{1\}} dist_X(1,g) & ext{otherwise.} \end{cases}$$

Here $hyp(H_2)$ denotes the set of hyperbolic elements of H_2 .

Definition. (BG) A group G is called subgroup conjugacy separable (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.

Definition. (BG) A group G is called subgroup conjugacy separable (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.

Corollary 2. (BB, alternatively Zalesski and Chagas) Limit groups are SICS and SCS.

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P} = \{P_1, \ldots, P_m\}$. Let H_1, H_2 be subgroups of G such that

- H_1 is relatively quasiconvex with respect to $\mathbb P$ and
- H_2 has a loxodromic element.

Suppose that H_2 is elementwise conjugate into H_1 . Then there exists a finite index subgroup of H_2 which is conjugate into H_1 .

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of |X|, ϵ_1 , $dist_X(1, b)$, where ϵ_1 is a quasiconvexity constant of H_1 , and b is a loxodromic element of H_2 .

First steps of the proof

Take a loxodromic element $b \in H_2$ and an arbitrary $a \in H_2$. There exists $z_n \in G$ such that $z_n^{-1}(b^n a)z_n \in H_1$:

First steps of the proof

Take a loxodromic element $b \in H_2$ and an arbitrary $a \in H_2$. There exists $z_n \in G$ such that $z_n^{-1}(b^n a)z_n \in H_1$:

How to avoid large "cancellations" between the blue and red lines?

Change of the conjugator z_n

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Change of the conjugator

Notation: For $u, v \in G$ and c > 0, we write $u \underset{c}{\cdot} v$ if $|uv| \ge |u| + |v| - 2c$.

Change of the conjugator

Notation: For $u, v \in G$ and c > 0, we write $u \underset{c}{\cdot} v$ if $|uv| \ge |u| + |v| - 2c$.

Lemma. Given two elements $a, b \in G$, where b is loxodromic, there exists a constant c = c(a, b) > 0 such that for all $n \in \mathbb{N}$ and $z_n \in G$

$$z_n^{-1}(b^n a)z_n = x_n^{-1} \cdot (b^k a b^\ell) \cdot x_n$$

for some $x_n \in G$ and $k, \ell \in \mathbb{N}$ with $n = k + \ell$.

Lemma 1

Lemma 1

For all sufficiently large k and every vertex P in the middle third of the waved line AB, there exists a vertex $R \in [A, D]$ such that

 $dist_X(P,R) < \mu(b).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

・ロト ・聞ト ・ヨト ・ヨト

æ

 $Label([P_iS_i]) \stackrel{}{=} b^{k_i}ab^{l_i}.$

 $\begin{aligned} & Label([P_iS_i]) \underset{G}{=} b^{k_i} a b^{l_i}.\\ & \text{Repetition of labels: } b^{k_i} a b^{l_i} = b^{k_j} a b^{l_j}\\ & a^{-1} b^{k_i - k_j} a = b^{l_j - l_i}\\ & \text{Hence } a \in E_G(b), \text{ a contradiction.} \end{aligned}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

くしゃ (中)・(中)・(中)・(日)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 $g^{-1}b^pab^qg\in H_1$,

 $|g|_X \leqslant f_1(b), \ 0 \leqslant p, q < s \leqslant f_2(b)$

 $g^{-1}b^pab^qg \in H_1$, where $|g|_X, p, q$ are bounded in terms of b.

 $g^{-1}b^{p}ab^{q}g \in H_{1}$, where $|g|_{X}, p, q$ are bounded in terms of b. $a \in z^{-1}H_{1}z \cdot b^{t}$, where $|z|_{X}$ and t are bounded in terms of b.

 $g^{-1}b^{p}ab^{q}g \in H_{1}, \quad \text{where } |g|_{X}, p, q \text{ are bounded in terms of } b.$ $a \in z^{-1}H_{1}z \cdot b^{t}, \quad \text{where } |z|_{X} \text{ and } t \text{ are bounded in terms of } b.$ $H_{2} \subseteq \bigcup_{\substack{(z,t) \in M}} z^{-1}H_{1}z \cdot b^{t} \bigcup E_{G}(b).$ $H_{2} = \bigcup_{\substack{(z,t) \in M}} (z^{-1}H_{1}z \cap H_{2}) \cdot b^{t} \bigcup (E_{G}(b) \cap H_{2}).$

 $g^{-1}b^{p}ab^{q}g \in H_{1}, \quad \text{where } |g|_{X}, p, q \text{ are bounded in terms of } b.$ $a \in z^{-1}H_{1}z \cdot b^{t}, \quad \text{where } |z|_{X} \text{ and } t \text{ are bounded in terms of } b.$ $H_{2} \subseteq \bigcup_{(z,t)\in M} z^{-1}H_{1}z \cdot b^{t} \bigcup E_{G}(b).$ $H_{2} = \bigcup_{(z,t)\in M} (z^{-1}H_{1}z \cap H_{2}) \cdot b^{t} \bigcup (E_{G}(b) \cap H_{2}).$

Theorem. (B.H. Neumann) If a group G is covered by a finite number of some cosets of subgroups of G, then among these subgroups, there is a subgroup of finite index in G.

 $g^{-1}b^{p}ab^{q}g \in H_{1}, \quad \text{where } |g|_{X}, p, q \text{ are bounded in terms of } b.$ $a \in z^{-1}H_{1}z \cdot b^{t}, \quad \text{where } |z|_{X} \text{ and } t \text{ are bounded in terms of } b.$ $H_{2} \subseteq \bigcup_{\substack{(z,t) \in M}} z^{-1}H_{1}z \cdot b^{t} \bigcup E_{G}(b).$ $H_{2} = \bigcup_{\substack{(z,t) \in M}} (z^{-1}H_{1}z \cap H_{2}) \cdot b^{t} \bigcup (E_{G}(b) \cap H_{2}).$

Theorem. (B.H. Neumann) If a group G is covered by a finite number of some cosets of subgroups of G, then among these subgroups, there is a subgroup of finite index in G.

Thus, one of the following subgroups has finite index in H_2 :

- $z^{-1}H_1z \cap H_2$
- $E_G(b) \cap H_2$

THANK YOU!