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Relative presentations
Let G be a group, P = {Pλ}λ∈Λ a collection of subgroups of G , X
a subset of G . We say that X is a relative generating set of G with
respect to P if

G = 〈( ∪
λ∈Λ

Pλ) ∪ X 〉.

In this situation G can be regarded as a quotient group of

F =
(
∗
λ∈Λ

P̃λ
)
∗ F (X ),

where P̃λ is a copy of Pλ such that the union of all P̃λ \ {1} and X
is disjoint.

We will use the most useless presentation of P̃λ:

P̃λ = 〈P̃λ \ {1} | S̃λ〉,

where S̃λ is the set of all words over the alphabet P̃λ \ {1} that
represent 1 in the group P̃λ. Denote

P̃ = ∪
λ∈Λ

(P̃λ \ {1}), S̃ := ∪
λ∈Λ

S̃λ.
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Finite relative presentations

The relative presentation

G = 〈P̃ t X | S̃ t R〉

can be briefly written as

G = 〈X ,P |R〉.

This relative presentation is called finite if X and R are finite.

Example. Consider the amalgamated product

G = H1 ∗K α→L
H2.

With P = {H1,H2}, there is the following relative presentation

G = 〈∅,P | k = α(k) (k ∈ K )〉.

It can be chosen finite if K is finitely generated.



Finite relative presentations

The relative presentation

G = 〈P̃ t X | S̃ t R〉

can be briefly written as

G = 〈X ,P |R〉.

This relative presentation is called finite if X and R are finite.

Example. Consider the amalgamated product

G = H1 ∗K α→L
H2.

With P = {H1,H2}, there is the following relative presentation

G = 〈∅,P | k = α(k) (k ∈ K )〉.

It can be chosen finite if K is finitely generated.



Relative isoperimetric functions
Suppose that G has a relative presentation

G = 〈X , (Pλ)λ∈Λ |R〉. (1)

Then G is a quotient of

F =
(
∗
λ∈Λ

P̃λ
)
∗ F (X )

If a word W ∈ (X ∪ P̃)∗ represents 1 in G , there exists an
expression

W
F
=

k∏
i=1

f −1
i Ri fi , where Ri ∈ R, fi ∈ F (2)

The smallest possible number k in a representation of type (2) is
denoted Arearel(W ).

A function f : N→ N is called a relative isoperimetric function of
(1) if for any n ∈ N and for any word W ∈ (X ∪ P̃)∗ of length
|W | 6 n representing the trivial element of the group G , we have

Arearel(W ) 6 f (n).
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Relative Dehn functions

The smallest relative isoperimetric function of the relative
presentation

G = 〈X ,P |R〉. (1)

is called the relative Dehn function of G with respect to {Pλ}λ∈Λ

and is denoted by δrel(G ,P).

• For finite relative presentations, δrel is not always well-defined,
i.e. it can be infinite for certain values of the argument:
The group G = Z× Z = 〈a, b | [a, b] = 1〉 has a relative
presentation with X = {b} and P = 〈a〉:

G = 〈{b},P | [a, b] = 1〉

The word Wn = [an, b] has length 4 as a word over {b} ∪ P, but
its area equals to n.
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Equivalence of Dehn functions

Proposition. Let
〈X1, (Pλ)λ∈Λ |R1〉

and
〈X2, (Pλ)λ∈Λ |R2〉

be two finite relative presentations of the same group G with
respect to a fixed collection of subgroups (Pλ)λ∈Λ, and let δ1 and
δ2 be the corresponding relative Dehn functions. Suppose that δ1

is well-defined, i.e. δ1 is finite for every n. Then δ2 is well-defined
and δ1 ∼ δ2.



Relatively hyperbolic groups

Definition. (Osin) Let G be a group, P = (Pλ)λ∈Λ a collection of
subgroups of G . The group G is called hyperbolic relative to P, if

(1) G is finitely presented with respect to P and

(2) The relative Dehn function δrel(G ,P) is linear.

In this situation we also say that (G ,P) is relatively hyperbolic and
that P is a peripheral structure for G .

Remark. Conditions (1)&(2) are equivalent to conditions (1)&(3):

(3) The relative Dehn function δrel(G ,P) is well-defined and

the Cayley graph Γ(G ,X ∪ P) is a hyperbolic metric space.
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The main difficulty and the resulting assumption

Difficulty: The space Γ(G ,X ∪ P) is hyperbolic, but is not locally
finite if X or P is infinite.

Assumption. The group G is generated by a finite set X and
(G ,P) is relatively hyperbolic.

Notation. There are two distance functions on Γ(G ,X ∪ P),
distX∪P and distX . So, we use notation |AB|X∪P and |AB|X .

We use blue color to draw geodesic lines with respect to X .



Useful theorem

Theorem. (Osin) For any triple (G ,P,X ) satisfying the above
assumption, there exists a constant ν > 0 with the following
property.

Let ∆ be a triangle whose sides p, q, r are geodesics in
Γ(G ,X ∪ P). Then for any vertex v on p, there exists a vertex u
on the union q ∪ r such that

distX (u, v) < ν.



Parabolic, hyperbolic and loxodromic elements

Let (G , (Pλ)λ∈Λ) be relatively hyperbolic. An element g ∈ G is
called
• parabolic if it is conjugate into one of the subgroups Pλ, λ ∈ Λ
• hyperbolic if it is not parabolic
• loxodromic if it is hyperbolic and has infinite order.



Properties of loxodromic elements

Suppose that (G ,P,X ) satisfies the above assumption.

Theorem (Osin) For any loxodromic element g ∈ G , there exist
λ > 0, σ > 0 such that for any n ∈ Z holds

|gn|X∪P > λ|n| − σ.

Recall that a subgroup of a group is called elementary if it contains
a cyclic subgroup of finite index.

Theorem. (Osin) Every loxodromic element g ∈ G is contained in
a unique maximal elementary subgroup, namely in

EG (g) = {f ∈ G | f −1gnf = g±n for some n ∈ N}.
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Relatively quasiconvex subgroups

Definition. Let G be a group generated by a finite set X ,
P = {Pλ}λ∈Λ a collection of subgroups of G .
A subgroup H of G is called relatively quasiconvex with respect to
P if there exists ε > 0 such that the following condition holds. Let
h1, h2 be two elements of H and p an arbitrary geodesic path from
h1 to h2 in Γ(G ,X ∪ P). Then for any vertex v ∈ p, there exists a
vertex u ∈ H such that

distX (v , u) 6 ε.

h1 h2

v

u H



Else one property of loxodromic elements

Lemma. For every loxodromic element b ∈ G , there exists τ > 0
such that the following holds. Let m be a natural number and
[A,B] a geodesic segment in Γ(G ,X ∪ P) connecting 1 and bm,
Then the Hausdorff distance (induced by the distX -metric)
between the sets [A,B] and {bi | 0 6 i 6 m} is at most τ .

b
A

B



Main theorem
Theorem 1. (BB) Suppose that a finitely generated group G is
hyperbolic relative to a collection of subgroups P = {P1, . . . ,Pm}.
Let H1,H2 be subgroups of G such that
• H1 is relatively quasiconvex with respect to P and
• H2 has a loxodromic element.

Suppose that H2 is elementwise conjugate into H1. Then there
exists a finite index subgroup of H2 which is conjugate into H1.

The length of the conjugator w.r.t. a finite generating set X of G
can be bounded in terms of |X |, ε1, distX (1, b), where ε1 is a quasi-
convexity constant of H1, and b is a loxodromic element of H2.

Remark. Passage to a finite index subgroup of H2 cannot be
avoided:

F2 > H2 > H1

↓ ↓ ↓
A4 > K > Z2
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Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups
are hyperbolic relative to a collection of representatives of
conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H1 and H2 be
subgroups of G , where H1 is finitely generated. Suppose that H2 is
elementwise conjugate into H1. Then there exists a finite index
subgroup of H2 which is conjugate into H1.

The index depends only on H1. The length of the conjugator with
respect to a fixed generating system X of G depends only on H1

and

m =


min

g∈hyp(H2)
distX (1, g) if hyp(H2) 6= ∅,

min
g∈H2\{1}

distX (1, g) otherwise.

Here hyp(H2) denotes the set of hyperbolic elements of H2.
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Corollaries

Definition. (BG) A group G is called subgroup conjugacy
separable (abbreviated as SCS) if any two finitely generated and
non-conjugate subgroups of G remain non-conjugate in some finite
quotient of G . An into-conjugacy version of SCS is abbreviated by
SICS.

Corollary 2. (BB, alternatively Zalesski and Chagas) Limit groups
are SICS and SCS.
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First steps of the proof

Take a loxodromic element b ∈ H2 and an arbitrary a ∈ H2.
There exists zn ∈ G such that z−1

n (bna)zn ∈ H1:

K = 1 N

H1

b
n

a

zn zn

How to avoid large “cancellations” between the blue and red lines?



First steps of the proof

Take a loxodromic element b ∈ H2 and an arbitrary a ∈ H2.
There exists zn ∈ G such that z−1

n (bna)zn ∈ H1:

K = 1 N

H1

b
n

a

zn zn

How to avoid large “cancellations” between the blue and red lines?



Change of the conjugator zn

a

xn xn

b
k

b
l

K = 1 N = hn

A

B C

D

H1

z−1
n (bna)zn = x−1

n ·
c

(bkab`) ·
c
xn



Change of the conjugator

Notation: For u, v ∈ G and c > 0, we write u ·
c
v if

|uv | > |u|+ |v | − 2c .

Lemma. Given two elements a, b ∈ G , where b is loxodromic,
there exists a constant c = c(a, b) > 0 such that for all n ∈ N and
zn ∈ G

z−1
n (bna)zn = x−1

n ·c (bkab`) ·
c
xn

for some xn ∈ G and k, ` ∈ N with n = k + `.
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Proof of Theorem

a

µ(b)

2ν

ǫ1

P

R

U

V

xn xn

bk bl

K = 1 N = hn

A

B C

D

H1



Lemma 1

a
bk bℓ

A

B C

D

P

R

For all sufficiently large k and every vertex P in the middle third of
the waved line AB, there exists a vertex R ∈ [A,D] such that

distX (P,R) < µ(b).



Lemma 1

a
bk bℓ

A

B C

D

P

R

For all sufficiently large k and every vertex P in the middle third of
the waved line AB, there exists a vertex R ∈ [A,D] such that

distX (P,R) < µ(b).



Proof of Lemma 1

a

b b
A

B C

D

P

Q

R



Proof of Lemma 1

a

b b
A

B C

D

P

Q



Proof of Lemma 1

a

b b
A

B C

D

P

Q

R



Proof of Lemma 1

a

b b
A

B C

D

P

Q

R



Proof of Lemma 1

a

b b
A

B C

D

P

Q R



Proof of Lemma 1

a

b b
A

B C

D

P

Q R

S



Proof of Lemma 1

a

b b
A

B C

D

P
P1

Q R

S



Proof of Lemma 1

a

b b
A

B C

D

P
P1

P2

Q R

S
S2

Label([PiSi ]) =
G
bki abli .

Repetition of labels: bki abli = bkjablj

a−1bki−kja = blj−li

Hence a ∈ EG (b), a contradiction.
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g−1bpabqg ∈ H1, |g |X 6 f1(b), 0 6 p, q < s 6 f2(b)
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Proof of Theorem

g−1bpabqg ∈ H1, where |g |X , p, q are bounded in terms of b.

a ∈ z−1H1z · bt , where |z |X and t are bounded in terms of b.

H2 ⊆
⋃

(z,t)∈M
z−1H1z · bt

⋃
EG (b).

H2 =
⋃

(z,t)∈M
(z−1H1z ∩ H2) · bt

⋃
(EG (b) ∩ H2).

Theorem. (B.H. Neumann) If a group G is covered by a finite
number of some cosets of subgroups of G , then among these
subgroups, there is a subgroup of finite index in G .

Thus, one of the following subgroups has finite index in H2:
• z−1H1z ∩ H2

• EG (b) ∩ H2
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