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Relative presentations

Let G be a group, P = {Py},en a collection of subgroups of G, X
a subset of G. We say that X is a relative generating set of G with
respect to P if

G={UP))UX).
(U, PUX)
In this situation G can be regarded as a quotient group of

F= (,\z/\ﬁ)‘) * F(X),

where Py is a copy of Py such that the union of all Py \ {1} and X
is disjoint.
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Let G be a group, P = {Py},en a collection of subgroups of G, X
a subset of G. We say that X is a relative generating set of G with
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In this situation G can be regarded as a quotient group of
F=(xP)*F(X
(Az/\ 2) # F(X),

where P, is a copy of Py such that the union of all Py \ {1} and X
is disjoint. We will use the most useless presentation of Pj:

Py = (P\\ {1}]S)),

where Sy, is the set of all words over the alphabet Py \ {1} that
represent 1 in the group P,. Denote

ﬁ:A%A(F’A\{l})v S:= U Sy
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Relative presentations

Let G be a group, P = {Py},en a collection of subgroups of G, X
a subset of G. We say that X is a relative generating set of G with
respect to P if
G=((UPy)UX).
AEA

In this situation G can be regarded as a quotient group of
F = (,\z/\ﬁA) x F(X),
We will use the most useless presentation Py = (Py\ {1}]S)),
and the sets P and S as above. Then F has the presentation
= (PUX]|S)
and G has a presentation (called relative with respect to P)

G=(PUX|SUR).



Finite relative presentations

The relative presentation
G=(PUX|SUR)
can be briefly written as
G =(X,P|IR).

This relative presentation is called finite if X and R are finite.



Finite relative presentations

The relative presentation
G=(PUX|SUR)
can be briefly written as
G =(X,P|R).
This relative presentation is called finite if X and R are finite.
Example. Consider the amalgamated product
G = Hi x,q, Ha.
With P = {Hi, Ha}, there is the following relative presentation
G=(0,P|k=alk)(k € K)).

It can be chosen finite if K is finitely generated.



Relative isoperimetric functions
Suppose that G has a relative presentation

G = (X,(P\)xen|R). (1)
Then G is a quotient of

F= (AZAﬁA) * F(X)

If a word W € (X U P)* represents 1 in G, there exists an
expression

_ Kk
wE [ Rfi, where R eR,ficF (2)
i=1
The smallest possible number k in a representation of type (2) is
denoted Area"™ (W).



Relative isoperimetric functions
Suppose that G has a relative presentation

G = (X,(P\)xen|R). (1)
Then G is a quotient of

F= (AZAﬁA) * F(X)

If a word W € (X U P)* represents 1 in G, there exists an
expression

k
w £ [If R, where RieR,ficF (2)

i=1
The smallest possible number k in a representation of type (2) is
denoted Area"™ (W).
A function f : N — N is called a relative isoperimetric function of
(1) if for any n € N and for any word W € (X U P)* of length
|W| < n representing the trivial element of the group G, we have

Area™ (W) < f(n).
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The smallest relative isoperimetric function of the relative
presentation
G = (X,P|R). (1)

is called the relative Dehn function of G with respect to {Py}aen
and is denoted by 5(“36’ P):



Relative Dehn functions

The smallest relative isoperimetric function of the relative

presentation
G = (X,P|R). (1)

is called the relative Dehn function of G with respect to {Py}aen
and is denoted by 5(“36’ P):

e For finite relative presentations, 5" is not always well-defined,
i.e. it can be infinite for certain values of the argument:

The group G =Z x Z = {(a,b|[a, b] = 1) has a relative
presentation with X = {b} and P = (a):

G =({b},P|[a,b] = 1)

The word W,, = [a", b] has length 4 as a word over {b} U P, but
its area equals to n.



Equivalence of Dehn functions

Proposition. Let
(X1, (Px)ren | R1)

and
(X2, (Px)xen | R2)

be two finite relative presentations of the same group G with
respect to a fixed collection of subgroups (Py)xea, and let 41 and
02 be the corresponding relative Dehn functions. Suppose that §;
is well-defined, i.e. d7 is finite for every n. Then &, is well-defined
and (51 ~ (52.



Relatively hyperbolic groups

Definition. (Osin) Let G be a group, P = (P))xea a collection of
subgroups of G. The group G is called hyperbolic relative to P, if

(1) G is finitely presented with respect to P and

(2) The relative Dehn function 3¢ ) is linear.

In this situation we also say that (G, P) is relatively hyperbolic and
that P is a peripheral structure for G.



Relatively hyperbolic groups

Definition. (Osin) Let G be a group, P = (P))xea a collection of
subgroups of G. The group G is called hyperbolic relative to P, if

(1) G is finitely presented with respect to P and

(2) The relative Dehn function 3¢ ) is linear.

In this situation we also say that (G, P) is relatively hyperbolic and
that P is a peripheral structure for G.

Remark. Conditions (1)&(2) are equivalent to conditions (1)&(3):

(3) The relative Dehn function (5(“2! p) is well-defined and

the Cayley graph I'(G, X UP) is a hyperbolic metric space.



The main difficulty and the resulting assumption

Difficulty: The space I'(G, X UP) is hyperbolic, but is not locally
finite if X or P is infinite.

Assumption. The group G is generated by a finite set X and
(G,P) is relatively hyperbolic.

Notation. There are two distance functions on (G, X U P),
distxp and distx. So, we use notation |AB|xup and |AB|x.

We use blue color to draw geodesic lines with respect to X.



Useful theorem

Theorem. (Osin) For any triple (G, P, X) satisfying the above
assumption, there exists a constant v > 0 with the following
property.

Let A be a triangle whose sides p, g, r are geodesics in
(G, X UP). Then for any vertex v on p, there exists a vertex u
on the union g U r such that

distx(u,v) < v.



Parabolic, hyperbolic and loxodromic elements

Let (G, (Px)xen) be relatively hyperbolic. An element g € G is
called

e parabolic if it is conjugate into one of the subgroups Py, A € A
e hyperbolic if it is not parabolic

e Joxodromic if it is hyperbolic and has infinite order.



Properties of loxodromic elements

Suppose that (G, P, X) satisfies the above assumption.

Theorem (Osin) For any loxodromic element g € G, there exist
A >0, o0 > 0 such that for any n € Z holds

&"|xup > Aln| — .



Properties of loxodromic elements

Suppose that (G, P, X) satisfies the above assumption.
Theorem (Osin) For any loxodromic element g € G, there exist
A >0, o0 > 0 such that for any n € Z holds

&"|xup > Aln| — .

Recall that a subgroup of a group is called elementary if it contains
a cyclic subgroup of finite index.

Theorem. (Osin) Every loxodromic element g € G is contained in
a unique maximal elementary subgroup, namely in

Ec(g) ={f € G|f 1g"f =g=" for some n € N}.



Relatively quasiconvex subgroups

Definition. Let G be a group generated by a finite set X,

P = {Py}ren a collection of subgroups of G.

A subgroup H of G is called relatively quasiconvex with respect to
P if there exists € > 0 such that the following condition holds. Let
h1, hy be two elements of H and p an arbitrary geodesic path from
hi to hy in T(G,X UP). Then for any vertex v € p, there exists a
vertex u € H such that

distx(v,u) < e.

h1 h2

=
=



Else one property of loxodromic elements

Lemma. For every loxodromic element b € G, there exists 7 > 0
such that the following holds. Let m be a natural number and
[A, B] a geodesic segment in ['(G, X U P) connecting 1 and b™,
Then the Hausdorff distance (induced by the distx-metric)
between the sets [A, B] and {b' |0 < i < m} is at most 7.

B



Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is
hyperbolic relative to a collection of subgroups P = {P1,..., Pnm}.
Let H;, H> be subgroups of G such that

e Hy is relatively quasiconvex with respect to P and

e H> has a loxodromic element.

Suppose that H, is elementwise conjugate into H;. Then there
exists a finite index subgroup of H, which is conjugate into Hj.
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The length of the conjugator w.r.t. a finite generating set X of G
can be bounded in terms of | X|, €1, distx(1, b), where €; is a quasi-
convexity constant of Hi, and b is a loxodromic element of H,.



Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is
hyperbolic relative to a collection of subgroups P = {P1,..., Pnm}.
Let H;, H> be subgroups of G such that

e Hy is relatively quasiconvex with respect to P and

e H> has a loxodromic element.

Suppose that H, is elementwise conjugate into H;. Then there
exists a finite index subgroup of H, which is conjugate into Hj.

The length of the conjugator w.r.t. a finite generating set X of G
can be bounded in terms of | X|, €1, distx(1, b), where €; is a quasi-
convexity constant of Hi, and b is a loxodromic element of H,.

Remark. Passage to a finite index subgroup of H, cannot be

avoided:
Fo > H, > H;
{ { {
A, =2 K = 7o



Corollaries

Theorem. (Dahmani and, alternatively Alibegovi¢) Limit groups
are hyperbolic relative to a collection of representatives of
conjugacy classes of maximal noncyclic abelian subgroups.
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conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H; and H> be
subgroups of G, where Hj is finitely generated. Suppose that Hs is
elementwise conjugate into Hi. Then there exists a finite index
subgroup of H, which is conjugate into Hs.



Corollaries

Theorem. (Dahmani and, alternatively Alibegovi¢) Limit groups
are hyperbolic relative to a collection of representatives of
conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H; and H> be
subgroups of G, where Hj is finitely generated. Suppose that Hs is
elementwise conjugate into Hi. Then there exists a finite index
subgroup of H, which is conjugate into Hs.

The index depends only on Hj. The length of the conjugator with
respect to a fixed generating system X of G depends only on H;
and

min distx(1,g) if hyp(Hz) # 0,
gehyp(H,)

min  distx(1, otherwise.
gemb () x(1,8)

Here hyp(Hz) denotes the set of hyperbolic elements of H,.



Corollaries

Definition. (BG) A group G is called subgroup conjugacy
separable (abbreviated as SCS) if any two finitely generated and
non-conjugate subgroups of G remain non-conjugate in some finite
quotient of G. An into-conjugacy version of SCS is abbreviated by
SICS.



Corollaries

Definition. (BG) A group G is called subgroup conjugacy
separable (abbreviated as SCS) if any two finitely generated and
non-conjugate subgroups of G remain non-conjugate in some finite
quotient of G. An into-conjugacy version of SCS is abbreviated by
SICS.

Corollary 2. (BB, alternatively Zalesski and Chagas) Limit groups
are SICS and SCS.



Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is
hyperbolic relative to a collection of subgroups P = {P1,..., Pnm}.
Let H;, H> be subgroups of G such that

e H is relatively quasiconvex with respect to P and

e H> has a loxodromic element.

Suppose that Hs is elementwise conjugate into Hy. Then there
exists a finite index subgroup of H, which is conjugate into Hj.

The length of the conjugator w.r.t. a finite generating set X of G
can be bounded in terms of | X|, €1, distx(1, b), where €; is a quasi-
convexity constant of Hi, and b is a loxodromic element of H,.



First steps of the proof

Take a loxodromic element b € H, and an arbitrary a € H,.
There exists z, € G such that z,}(b"a)z, € Hi:



First steps of the proof

Take a loxodromic element b € H, and an arbitrary a € H,.
There exists z, € G such that z,}(b"a)z, € Hi:

b‘!l

H,

How to avoid large “cancellations” between the blue and red lines?



Change of the conjugator z,

DA



Change of the conjugator

Notation: For u,v € G and ¢ > 0, we write u - v if
C

luv| > |u| + |v| — 2c.



Change of the conjugator

Notation: For u,v € G and ¢ > 0, we write u - v if
C
luv| > |u| + |v| — 2c.
Lemma. Given two elements a, b € G, where b is loxodromic,

there exists a constant ¢ = c(a, b) > 0 such that for all n € N and
z, €G

zyY(b"a)z, = x; L - (bXabt) - x,
C C

for some x, € G and k,¢ € N with n =k + £.



Proof of Theorem

Q>
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Proof of Theorem

Q>



Lemma 1

bk

bE



Lemma 1

bk bE

R

For all sufficiently large k and every vertex P in the middle third of
the waved line AB, there exists a vertex R € [A, D] such that

distx (P, R) < u(b).



Proof of Lemma 1
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Proof of Lemma 1

Label([P;Si]) = bkiabli.



Proof of Lemma 1

Label([P;Si]) = bkiabli.

Repetition of labels: bkiab' = bkiabli
a lbki—kig = pli~li

Hence a € Eg(b), a contradiction.



Proof of Theorem

Q>
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Proof of Theorem

o 5 = = E DA
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Proof of Theorem

g lbPabig € Hy, lglx < fi(b), 0 < p,q < s < fr(b)



Proof of Theorem

g bPabig € Hy, where |g|x, p, g are bounded in terms of b.
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Proof of Theorem

g bPabig € Hy, where |g|x, p, g are bounded in terms of b.
a€z Hz- b, where |z|x and t are bounded in terms of b.

H,C U z 'Hiz-b' |J Eg(b).
(z,t)eM

Hy= U (z7'Hizn Hy) - b* U (Eg(b) N Ha).
(z,t)eM



Proof of Theorem

g bPabig € Hy, where |g|x, p, g are bounded in terms of b.

a€z Hz- b, where |z|x and t are bounded in terms of b.

HyC U zlHiz-bt | Eg(b).
(z,t)eM

Hy= U (z7'Hizn Hy) - b* U (Eg(b) N Ha).
(z,t)eM

Theorem. (B.H. Neumann) If a group G is covered by a finite

number of some cosets of subgroups of G, then among these

subgroups, there is a subgroup of finite index in G.



Proof of Theorem

g bPabig € Hy, where |g|x, p, g are bounded in terms of b.
a€z Hz- b, where |z|x and t are bounded in terms of b.

HyC U zlHiz-bt | Eg(b).
(z,t)eM

Hy= U (z7'Hizn Hy) - b* U (Eg(b) N Ha).
(z,t)eM

Theorem. (B.H. Neumann) If a group G is covered by a finite
number of some cosets of subgroups of G, then among these
subgroups, there is a subgroup of finite index in G.

Thus, one of the following subgroups has finite index in Hy:
ez 'HizN H,
e Eg(b)N H,



THANK YOU!
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