From local to global conjugacy in relatively hyperbolic groups

Oleg Bogopolski

Webinar "GT" NY, 5.05.2016

Relative presentations

Let G be a group, $\mathbb{P}=\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$
G=\left\langle\left(\cup_{\lambda \in \Lambda} P_{\lambda}\right) \cup X\right\rangle
$$

In this situation G can be regarded as a quotient group of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

where \widetilde{P}_{λ} is a copy of P_{λ} such that the union of all $\widetilde{P}_{\lambda} \backslash\{1\}$ and X is disjoint.

Relative presentations

Let G be a group, $\mathbb{P}=\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$
G=\left\langle\left(\cup_{\lambda \in \Lambda} P_{\lambda}\right) \cup X\right\rangle
$$

In this situation G can be regarded as a quotient group of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

where \widetilde{P}_{λ} is a copy of P_{λ} such that the union of all $\widetilde{P}_{\lambda} \backslash\{1\}$ and X is disjoint. We will use the most useless presentation of \widetilde{P}_{λ} :

$$
\widetilde{P}_{\lambda}=\left\langle\widetilde{P}_{\lambda} \backslash\{1\} \mid \widetilde{\mathcal{S}}_{\lambda}\right\rangle
$$

where $\widetilde{\mathcal{S}}_{\lambda}$ is the set of all words over the alphabet $\widetilde{P}_{\lambda} \backslash\{1\}$ that represent 1 in the group \widetilde{P}_{λ}. Denote

$$
\widetilde{\mathcal{P}}=\bigcup_{\lambda \in \Lambda}\left(\widetilde{P}_{\lambda} \backslash\{1\}\right), \quad \widetilde{\mathcal{S}}:=\underset{\lambda \in \Lambda}{\cup} \widetilde{S}_{\lambda}
$$

Relative presentations

Let G be a group, $\mathbb{P}=\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$
G=\left\langle\left(\cup_{\lambda \in \Lambda} P_{\lambda}\right) \cup X\right\rangle .
$$

In this situation G can be regarded as a quotient group of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

We will use the most useless presentation $\widetilde{P}_{\lambda}=\left\langle\widetilde{P}_{\lambda} \backslash\{1\} \mid \widetilde{\mathcal{S}}_{\lambda}\right\rangle$, and the sets $\widetilde{\mathcal{P}}$ and $\widetilde{\mathcal{S}}$ as above.

Relative presentations

Let G be a group, $\mathbb{P}=\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ a collection of subgroups of G, X a subset of G. We say that X is a relative generating set of G with respect to \mathbb{P} if

$$
G=\left\langle\left(\cup_{\lambda \in \Lambda} P_{\lambda}\right) \cup X\right\rangle
$$

In this situation G can be regarded as a quotient group of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

We will use the most useless presentation $\widetilde{P}_{\lambda}=\left\langle\widetilde{P}_{\lambda} \backslash\{1\} \mid \widetilde{\mathcal{S}}_{\lambda}\right\rangle$, and the sets $\widetilde{\mathcal{P}}$ and $\widetilde{\mathcal{S}}$ as above. Then \bar{F} has the presentation

$$
\bar{F}=\langle\widetilde{\mathcal{P}} \sqcup X \mid \widetilde{\mathcal{S}}\rangle
$$

and G has a presentation (called relative with respect to \mathbb{P})

$$
G=\langle\widetilde{\mathcal{P}} \sqcup X \mid \widetilde{\mathcal{S}} \sqcup \mathcal{R}\rangle
$$

Finite relative presentations

The relative presentation

$$
G=\langle\widetilde{\mathcal{P}} \sqcup X \mid \widetilde{\mathcal{S}} \sqcup \mathcal{R}\rangle
$$

can be briefly written as

$$
G=\langle X, \mathbb{P} \mid \mathcal{R}\rangle
$$

This relative presentation is called finite if X and \mathcal{R} are finite.

Finite relative presentations

The relative presentation

$$
G=\langle\widetilde{\mathcal{P}} \sqcup X \mid \widetilde{\mathcal{S}} \sqcup \mathcal{R}\rangle
$$

can be briefly written as

$$
G=\langle X, \mathbb{P} \mid \mathcal{R}\rangle
$$

This relative presentation is called finite if X and \mathcal{R} are finite.
Example. Consider the amalgamated product

$$
G=H_{1} * K \xrightarrow[\rightarrow]{\alpha} L H_{2} .
$$

With $\mathbb{P}=\left\{H_{1}, H_{2}\right\}$, there is the following relative presentation

$$
G=\langle\emptyset, \mathbb{P} \mid k=\alpha(k)(k \in K)\rangle .
$$

It can be chosen finite if K is finitely generated.

Relative isoperimetric functions

Suppose that G has a relative presentation

$$
\begin{equation*}
G=\left\langle X,\left(P_{\lambda}\right)_{\lambda \in \Lambda} \mid \mathcal{R}\right\rangle \tag{1}
\end{equation*}
$$

Then G is a quotient of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

If a word $W \in(X \cup \widetilde{\mathcal{P}})^{*}$ represents 1 in G, there exists an expression

$$
\begin{equation*}
W \stackrel{\bar{F}}{=} \prod_{i=1}^{k} f_{i}^{-1} R_{i} f_{i}, \quad \text { where } \quad R_{i} \in \mathcal{R}, f_{i} \in \bar{F} \tag{2}
\end{equation*}
$$

The smallest possible number k in a representation of type (2) is denoted Area $^{\text {rel }}(W)$.

Relative isoperimetric functions

Suppose that G has a relative presentation

$$
\begin{equation*}
G=\left\langle X,\left(P_{\lambda}\right)_{\lambda \in \Lambda} \mid \mathcal{R}\right\rangle \tag{1}
\end{equation*}
$$

Then G is a quotient of

$$
\bar{F}=\left(\underset{\lambda \in \Lambda}{*} \widetilde{P}_{\lambda}\right) * F(X)
$$

If a word $W \in(X \cup \widetilde{\mathcal{P}})^{*}$ represents 1 in G, there exists an expression

$$
\begin{equation*}
W \stackrel{\bar{F}}{=} \prod_{i=1}^{k} f_{i}^{-1} R_{i} f_{i}, \quad \text { where } \quad R_{i} \in \mathcal{R}, f_{i} \in \bar{F} \tag{2}
\end{equation*}
$$

The smallest possible number k in a representation of type (2) is denoted Area $^{\text {rel }}(W)$.
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called a relative isoperimetric function of
(1) if for any $n \in \mathbb{N}$ and for any word $W \in(X \cup \widetilde{\mathcal{P}})^{*}$ of length
$|W| \leqslant n$ representing the trivial element of the group G, we have

$$
\text { Area }^{\text {rel }}(W) \leqslant f(n)
$$

Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

$$
\begin{equation*}
G=\langle X, \mathbb{P} \mid \mathcal{R}\rangle \tag{1}
\end{equation*}
$$

is called the relative Dehn function of G with respect to $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ and is denoted by $\delta_{(G, \mathbb{P})}^{\text {rel }}$.

Relative Dehn functions

The smallest relative isoperimetric function of the relative presentation

$$
\begin{equation*}
G=\langle X, \mathbb{P} \mid \mathcal{R}\rangle \tag{1}
\end{equation*}
$$

is called the relative Dehn function of G with respect to $\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ and is denoted by $\delta_{(G, \mathbb{P})}^{\text {rel }}$.

- For finite relative presentations, $\delta^{r e l}$ is not always well-defined, i.e. it can be infinite for certain values of the argument: The group $G=\mathbb{Z} \times \mathbb{Z}=\langle a, b \mid[a, b]=1\rangle$ has a relative presentation with $X=\{b\}$ and $P=\langle a\rangle$:

$$
G=\langle\{b\}, P \mid[a, b]=1\rangle
$$

The word $W_{n}=\left[a^{n}, b\right]$ has length 4 as a word over $\{b\} \cup P$, but its area equals to n.

Equivalence of Dehn functions

Proposition. Let

$$
\left\langle X_{1},\left(P_{\lambda}\right)_{\lambda \in \Lambda} \mid \mathcal{R}_{1}\right\rangle
$$

and

$$
\left\langle X_{2},\left(P_{\lambda}\right)_{\lambda \in \Lambda} \mid \mathcal{R}_{2}\right\rangle
$$

be two finite relative presentations of the same group G with respect to a fixed collection of subgroups $\left(P_{\lambda}\right)_{\lambda \in \Lambda}$, and let δ_{1} and δ_{2} be the corresponding relative Dehn functions. Suppose that δ_{1} is well-defined, i.e. δ_{1} is finite for every n. Then δ_{2} is well-defined and $\delta_{1} \sim \delta_{2}$.

Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathbb{P}=\left(P_{\lambda}\right)_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called hyperbolic relative to \mathbb{P}, if
(1) G is finitely presented with respect to \mathbb{P} and
(2) The relative Dehn function $\delta_{(G, \mathbb{P})}^{r e l}$ is linear.

In this situation we also say that (G, \mathbb{P}) is relatively hyperbolic and that \mathbb{P} is a peripheral structure for G.

Relatively hyperbolic groups

Definition. (Osin) Let G be a group, $\mathbb{P}=\left(P_{\lambda}\right)_{\lambda \in \Lambda}$ a collection of subgroups of G. The group G is called hyperbolic relative to \mathbb{P}, if
(1) G is finitely presented with respect to \mathbb{P} and
(2) The relative Dehn function $\delta_{(G, \mathbb{P})}^{r e l}$ is linear.

In this situation we also say that (G, \mathbb{P}) is relatively hyperbolic and that \mathbb{P} is a peripheral structure for G.

Remark. Conditions (1)\&(2) are equivalent to conditions (1)\&(3):
(3) The relative Dehn function $\delta_{(G, \mathbb{P})}^{r e l}$ is well-defined and the Cayley graph $\Gamma(G, X \cup \mathcal{P})$ is a hyperbolic metric space.

The main difficulty and the resulting assumption

Difficulty: The space $\Gamma(G, X \cup \mathcal{P})$ is hyperbolic, but is not locally finite if X or \mathcal{P} is infinite.

Assumption. The group G is generated by a finite set X and (G, \mathbb{P}) is relatively hyperbolic.

Notation. There are two distance functions on $\Gamma(G, X \cup \mathcal{P})$, $\operatorname{dist}_{X \cup \mathcal{P}}$ and dist $_{X}$. So, we use notation $|A B|_{X \cup \mathcal{P}}$ and $|A B|_{X}$.

We use blue color to draw geodesic lines with respect to X.

Useful theorem

Theorem. (Osin) For any triple (G, \mathbb{P}, X) satisfying the above assumption, there exists a constant $\nu>0$ with the following property.

Let Δ be a triangle whose sides p, q, r are geodesics in $\Gamma(G, X \cup \mathcal{P})$. Then for any vertex v on p, there exists a vertex u on the union $q \cup r$ such that

$$
\operatorname{dist}_{X}(u, v)<\nu
$$

Parabolic, hyperbolic and loxodromic elements

Let $\left(G,\left(P_{\lambda}\right)_{\lambda \in \Lambda}\right)$ be relatively hyperbolic. An element $g \in G$ is called

- parabolic if it is conjugate into one of the subgroups $P_{\lambda}, \lambda \in \Lambda$
- hyperbolic if it is not parabolic
- loxodromic if it is hyperbolic and has infinite order.

Properties of loxodromic elements

Suppose that (G, \mathbb{P}, X) satisfies the above assumption.
Theorem (Osin) For any loxodromic element $g \in G$, there exist $\lambda>0, \sigma \geqslant 0$ such that for any $n \in \mathbb{Z}$ holds

$$
\left|g^{n}\right|_{X \cup \mathcal{P}} \geqslant \lambda|n|-\sigma .
$$

Properties of loxodromic elements

Suppose that (G, \mathbb{P}, X) satisfies the above assumption.
Theorem (Osin) For any loxodromic element $g \in G$, there exist
$\lambda>0, \sigma \geqslant 0$ such that for any $n \in \mathbb{Z}$ holds

$$
\left|g^{n}\right|_{x \cup p} \geqslant \lambda|n|-\sigma .
$$

Recall that a subgroup of a group is called elementary if it contains a cyclic subgroup of finite index.

Theorem. (Osin) Every loxodromic element $g \in G$ is contained in a unique maximal elementary subgroup, namely in

$$
E_{G}(g)=\left\{f \in G \mid f^{-1} g^{n} f=g^{ \pm n} \text { for some } n \in \mathbb{N}\right\}
$$

Relatively quasiconvex subgroups

Definition. Let G be a group generated by a finite set X, $\mathbb{P}=\left\{P_{\lambda}\right\}_{\lambda \in \Lambda}$ a collection of subgroups of G.
A subgroup H of G is called relatively quasiconvex with respect to \mathbb{P} if there exists $\epsilon>0$ such that the following condition holds. Let h_{1}, h_{2} be two elements of H and p an arbitrary geodesic path from h_{1} to h_{2} in $\Gamma(G, X \cup \mathcal{P})$. Then for any vertex $v \in p$, there exists a vertex $u \in H$ such that

$$
\operatorname{dist}_{X}(v, u) \leqslant \epsilon
$$

Else one property of loxodromic elements

Lemma. For every loxodromic element $b \in G$, there exists $\tau>0$ such that the following holds. Let m be a natural number and $[A, B]$ a geodesic segment in $\Gamma(G, X \cup \mathcal{P})$ connecting 1 and b^{m}, Then the Hausdorff distance (induced by the dist $_{X}$-metric) between the sets $[A, B]$ and $\left\{b^{i} \mid 0 \leqslant i \leqslant m\right\}$ is at most τ.

Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P}=\left\{P_{1}, \ldots, P_{m}\right\}$. Let H_{1}, H_{2} be subgroups of G such that

- H_{1} is relatively quasiconvex with respect to \mathbb{P} and
- H_{2} has a loxodromic element.

Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P}=\left\{P_{1}, \ldots, P_{m}\right\}$. Let H_{1}, H_{2} be subgroups of G such that

- H_{1} is relatively quasiconvex with respect to \mathbb{P} and
- H_{2} has a loxodromic element.

Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|, \epsilon_{1}$, $\operatorname{dist}_{X}(1, b)$, where ϵ_{1} is a quasiconvexity constant of H_{1}, and b is a loxodromic element of H_{2}.

Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P}=\left\{P_{1}, \ldots, P_{m}\right\}$. Let H_{1}, H_{2} be subgroups of G such that

- H_{1} is relatively quasiconvex with respect to \mathbb{P} and
- H_{2} has a loxodromic element.

Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|, \epsilon_{1}$, $\operatorname{dist}_{X}(1, b)$, where ϵ_{1} is a quasiconvexity constant of H_{1}, and b is a loxodromic element of H_{2}.

Remark. Passage to a finite index subgroup of H_{2} cannot be avoided:

Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_{1} and H_{2} be subgroups of G, where H_{1} is finitely generated. Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

Corollaries

Theorem. (Dahmani and, alternatively Alibegović) Limit groups are hyperbolic relative to a collection of representatives of conjugacy classes of maximal noncyclic abelian subgroups.

Corollary 1. Let G be a limit group and let H_{1} and H_{2} be subgroups of G, where H_{1} is finitely generated. Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

The index depends only on H_{1}. The length of the conjugator with respect to a fixed generating system X of G depends only on H_{1} and

$$
m= \begin{cases}\min _{g \in h_{y p}\left(H_{2}\right)} \operatorname{dist}_{X}(1, g) & \text { if } \operatorname{hyp}\left(H_{2}\right) \neq \emptyset \\ \min _{g \in H_{2} \backslash\{1\}} \operatorname{dist}_{X}(1, g) & \text { otherwise. }\end{cases}
$$

Here hyp $\left(\mathrm{H}_{2}\right)$ denotes the set of hyperbolic elements of H_{2}.

Corollaries

Definition. (BG) A group G is called subgroup conjugacy separable (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.

Corollaries

Definition. (BG) A group G is called subgroup conjugacy separable (abbreviated as SCS) if any two finitely generated and non-conjugate subgroups of G remain non-conjugate in some finite quotient of G. An into-conjugacy version of SCS is abbreviated by SICS.

Corollary 2. (BB, alternatively Zalesski and Chagas) Limit groups are SICS and SCS.

Main theorem

Theorem 1. (BB) Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups $\mathbb{P}=\left\{P_{1}, \ldots, P_{m}\right\}$. Let H_{1}, H_{2} be subgroups of G such that

- H_{1} is relatively quasiconvex with respect to \mathbb{P} and
- H_{2} has a loxodromic element.

Suppose that H_{2} is elementwise conjugate into H_{1}. Then there exists a finite index subgroup of H_{2} which is conjugate into H_{1}.

The length of the conjugator w.r.t. a finite generating set X of G can be bounded in terms of $|X|, \epsilon_{1}$, $\operatorname{dist}_{X}(1, b)$, where ϵ_{1} is a quasiconvexity constant of H_{1}, and b is a loxodromic element of H_{2}.

First steps of the proof

Take a loxodromic element $b \in H_{2}$ and an arbitrary $a \in H_{2}$. There exists $z_{n} \in G$ such that $z_{n}^{-1}\left(b^{n} a\right) z_{n} \in H_{1}$:

First steps of the proof

Take a loxodromic element $b \in H_{2}$ and an arbitrary $a \in H_{2}$. There exists $z_{n} \in G$ such that $z_{n}^{-1}\left(b^{n} a\right) z_{n} \in H_{1}$:

How to avoid large "cancellations" between the blue and red lines?

Change of the conjugator z_{n}

$$
z_{n}^{-1}\left(b^{n} a\right) z_{n}=x_{n}^{-1} \cdot\left(b^{k} a b^{\ell}\right) \cdot_{c} x_{n}
$$

Change of the conjugator

Notation: For $u, v \in G$ and $c>0$, we write $u \cdot v$ if

$$
|u v| \geqslant|u|+|v|-2 c .
$$

Change of the conjugator

Notation: For $u, v \in G$ and $c>0$, we write $u_{c} v$ if

$$
|u v| \geqslant|u|+|v|-2 c
$$

Lemma. Given two elements $a, b \in G$, where b is loxodromic, there exists a constant $c=c(a, b)>0$ such that for all $n \in \mathbb{N}$ and $z_{n} \in G$

$$
z_{n}^{-1}\left(b^{n} a\right) z_{n}=x_{n}^{-1} \dot{c}^{\left(b^{k} a b^{\ell}\right) \cdot x_{n}}
$$

for some $x_{n} \in G$ and $k, \ell \in \mathbb{N}$ with $n=k+\ell$.

Proof of Theorem

Proof of Theorem

Proof of Theorem

Lemma 1

Lemma 1

For all sufficiently large k and every vertex P in the middle third of the waved line $A B$, there exists a vertex $R \in[A, D]$ such that

$$
\operatorname{dist}_{X}(P, R)<\mu(b)
$$

Proof of Lemma 1

Proof of Lemma 1

Proof of Lemma 1

Proof of Lemma 1

$\operatorname{Label}\left(\left[P_{i} S_{i}\right]\right) \underset{G}{=} b^{k_{i}} a b^{l_{i}}$.

Proof of Lemma 1

$\operatorname{Label}\left(\left[P_{i} S_{i}\right]\right) \underset{G}{=} b^{k_{i}} a b^{l_{i}}$.
Repetition of labels: $b^{k_{i}} a b^{l_{i}}=b^{k_{j}} a b^{l_{j}}$
$a^{-1} b^{k_{i}-k_{j}} a=b^{l_{j}-l_{i}}$
Hence $a \in E_{G}(b)$, a contradiction.

Proof of Theorem

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}$,

$$
|g|_{x} \leqslant f_{1}(b), 0 \leqslant p, q<s \leqslant f_{2}(b)
$$

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}$, where $|g|_{X}, p, q$ are bounded in terms of b.

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}$,
$a \in z^{-1} H_{1} z \cdot b^{t}$,
where $|g|_{x}, p, q$ are bounded in terms of b. where $|z|_{X}$ and t are bounded in terms of b.

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}, \quad$ where $|g|_{X}, p, q$ are bounded in terms of b. $a \in z^{-1} H_{1} z \cdot b^{t}, \quad$ where $|z|_{X}$ and t are bounded in terms of b.

$$
\begin{aligned}
& H_{2} \subseteq \bigcup_{(z, t) \in M} z^{-1} H_{1} z \cdot b^{t} \bigcup E_{G}(b) . \\
& H_{2}=\bigcup_{(z, t) \in M}\left(z^{-1} H_{1} z \cap H_{2}\right) \cdot b^{t} \bigcup\left(E_{G}(b) \cap H_{2}\right) .
\end{aligned}
$$

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}, \quad$ where $|g|_{X}, p, q$ are bounded in terms of b.
$a \in z^{-1} H_{1} z \cdot b^{t}, \quad$ where $|z|_{X}$ and t are bounded in terms of b.

$$
\begin{aligned}
& H_{2} \subseteq \bigcup_{(z, t) \in M} z^{-1} H_{1} z \cdot b^{t} \bigcup E_{G}(b) . \\
& H_{2}=\bigcup_{(z, t) \in M}\left(z^{-1} H_{1} z \cap H_{2}\right) \cdot b^{t} \bigcup\left(E_{G}(b) \cap H_{2}\right) .
\end{aligned}
$$

Theorem. (B.H. Neumann) If a group G is covered by a finite number of some cosets of subgroups of G, then among these subgroups, there is a subgroup of finite index in G.

Proof of Theorem

$g^{-1} b^{p} a b^{q} g \in H_{1}, \quad$ where $|g|_{X}, p, q$ are bounded in terms of b.
$a \in z^{-1} H_{1} z \cdot b^{t}, \quad$ where $|z|_{X}$ and t are bounded in terms of b.

$$
\begin{aligned}
& H_{2} \subseteq \bigcup_{(z, t) \in M} z^{-1} H_{1} z \cdot b^{t} \bigcup E_{G}(b) . \\
& H_{2}=\bigcup_{(z, t) \in M}\left(z^{-1} H_{1} z \cap H_{2}\right) \cdot b^{t} \bigcup\left(E_{G}(b) \cap H_{2}\right) .
\end{aligned}
$$

Theorem. (B.H. Neumann) If a group G is covered by a finite number of some cosets of subgroups of G, then among these subgroups, there is a subgroup of finite index in G.

Thus, one of the following subgroups has finite index in H_{2} :

- $z^{-1} H_{1} z \cap H_{2}$
- $E_{G}(b) \cap H_{2}$

THANK YOU!

