Fixed subgroups are compressed in surface groups

Enric Ventura

Departament de Matemàtiques

Universitat Politècnica de Catalunya

Webinar, April 14th, 2016

(Joint work with Q. Zhang and J. Wu.)

Most of this talk is contained in the paper:

Q. Zhang, E. Ventura, J. Wu, "Fixed subgroups are compressed in surface groups", *International Journal of Algebra and Computation* **25** (5) (2015), 865-887.

Outline

- Fixed subgroups in free groups (history)
- New results in free groups
- 3 Fixed subgroups in surface groups (history)
- 4 New results in surface groups
- 5 New results in direct products of free and surface groups

• Let G be a finitely presented group.

- Aut $(G) \subseteq Mono(G) \subseteq End(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- Fix $(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G$.
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$.
- For $\mathcal{B} \subseteq \text{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let G be a finitely presented group.
- Aut $(G) \subseteq Mono(G) \subseteq End(G)$.
- Let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- Fix $(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G$.
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$.
- For $\mathcal{B} \subseteq \text{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let G be a finitely presented group.
- Aut $(G) \subseteq Mono(G) \subseteq End(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- Fix $(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G$.
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$
- For $\mathcal{B} \subseteq \text{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let G be a finitely presented group.
- Aut $(G) \subseteq Mono(G) \subseteq End(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- Fix $(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G$.
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$
- For $\mathcal{B} \subseteq \text{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let G be a finitely presented group.
- Aut $(G) \subset \text{Mono}(G) \subset \text{End}(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- $Fix(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G.$
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$.
- For $\mathcal{B} \subseteq \text{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let G be a finitely presented group.
- Aut $(G) \subseteq Mono(G) \subseteq End(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- $Fix(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G.$
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$.
- For $\mathcal{B} \subseteq \operatorname{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$.
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then Eq $(\mathcal{B}) = \text{Fix}(\mathcal{B})$.

- Let *G* be a finitely presented group.
- Aut $(G) \subseteq \text{Mono}(G) \subseteq \text{End}(G)$.
- I let endomorphisms $\phi \colon G \to G$ act on the left, $x \mapsto \phi(x)$.
- $Fix(\phi) = \{x \in F_n \mid \phi(x) = x\} \leqslant G.$
- If $\mathcal{B} \subseteq \operatorname{End}(G)$ then $\operatorname{Fix}(\mathcal{B}) = \{x \in G \mid \beta(x) = x \ \forall \beta \in \mathcal{B}\} = \cap_{\beta \in \mathcal{B}} \operatorname{Fix}(\beta) \leqslant G$.
- For $\mathcal{B} \subseteq \operatorname{Hom}(G, H)$, Eq $(\mathcal{B}) = \{x \in G \mid \beta_1(x) = \beta_2(x) \ \forall \beta_1, \beta_2 \in \mathcal{B}\}$.
- Note that if $G \leqslant H$ and $\iota \in \mathcal{B}$ then $Eq(\mathcal{B}) = Fix(\mathcal{B})$.

Outline

- Fixed subgroups in free groups (history)
- New results in free groups
- Fixed subgroups in surface groups (history)
- New results in surface groups
- New results in direct products of free and surface groups

Theorem (Dyer-Scott, 75)

Let $\mathcal{B} \leqslant \operatorname{Aut}(F_n)$ be a finite group of automorphisms of F_n . Then, $\operatorname{Fix}(\mathcal{B}) \leqslant_{\operatorname{ff}} F_n$; in particular, $r(\operatorname{Fix}(\mathcal{B})) \leqslant n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $\mathcal{B} \leq \operatorname{Aut}(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(\mathcal{B})) < \infty$.

Theorem (Dyer-Scott, 75)

Let $\mathcal{B} \leqslant \operatorname{Aut}(F_n)$ be a finite group of automorphisms of F_n . Then, $\operatorname{Fix}(\mathcal{B}) \leqslant_{\operatorname{ff}} F_n$; in particular, $r(\operatorname{Fix}(\mathcal{B})) \leqslant n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $\mathcal{B} \leq \operatorname{Aut}(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(\mathcal{B})) < \infty$.

Theorem (Dyer-Scott, 75)

Let $\mathcal{B} \leqslant \operatorname{Aut}(F_n)$ be a finite group of automorphisms of F_n . Then, $\operatorname{Fix}(\mathcal{B}) \leqslant_{\operatorname{ff}} F_n$; in particular, $r(\operatorname{Fix}(\mathcal{B})) \leqslant n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $\mathcal{B} \leqslant \operatorname{Aut}(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(\mathcal{B})) < \infty$.

Theorem (Dyer-Scott, 75)

Let $\mathcal{B} \leqslant \operatorname{Aut}(F_n)$ be a finite group of automorphisms of F_n . Then, $\operatorname{Fix}(\mathcal{B}) \leqslant_{\operatorname{ff}} F_n$; in particular, $r(\operatorname{Fix}(\mathcal{B})) \leqslant n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leqslant n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $\mathcal{B} \leqslant \text{Aut}(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(\mathcal{B})) < \infty$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$; if ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$: if ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let
$$\phi \in Aut(F_n)$$
. Then $r(Fix(\phi)) \leqslant n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let
$$\phi \in End(F_n)$$
. Then $r(Fix(\phi)) \leqslant n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$; if ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leqslant B \leqslant C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V, 96)

Inertia

1.Free groups (history)

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leqslant B \leqslant C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V. 96)

Definition

A subgroup $H \leq G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leq r(K)$ for every $H \leq K \leq G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leq B \leq C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leq G$ inert $\Rightarrow H \leq G$ compressed $\Rightarrow r(H) \leq r(G)$;
- not known if all compress subgroups of F_n are inert in F_n , or not

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leqslant B \leqslant C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V. 96)

_

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n;
- $A \leq B \leq C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V, 96)

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leqslant B \leqslant C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V. 96)

Inertia

1.Free groups (history)

Definition

A subgroup $H \leqslant G$ is called

- inert in G if $r(H \cap K) \leqslant r(K)$ for every $K \leqslant G$;
- compressed in G if $r(H) \leqslant r(K)$ for every $H \leqslant K \leqslant G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n;
- $A \leqslant B \leqslant C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leqslant G \text{ inert } \Rightarrow H \leqslant G \text{ compressed } \Rightarrow r(H) \leqslant r(G);$
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V. 96)

Inertia

1.Free groups (history)

Definition

A subgroup $H \leq G$ is called

- inert in G if $r(H \cap K) \leq r(K)$ for every $K \leq G$;
- compressed in G if $r(H) \leq r(K)$ for every $H \leq K \leq G$;
- Free factors and cyclic subgroups of F_n are inert in F_n ;
- intersection of inert subgroups are inert;
- free subgroups of rank 1 and 2 in F_n are inert in F_n ;
- $A \leq B \leq C$; if A is inert in B, and B is inert in C then A is inert in C.
- $H \leq G$ inert $\Rightarrow H \leq G$ compressed $\Rightarrow r(H) \leq r(G)$;
- not known if all compress subgroups of F_n are inert in F_n , or not (Compressed-Inert Conjecture, Dicks-V.)

Theorem (Dicks-V, 96)

Inertia Conjecture (Dicks-V.)

For every $\mathcal{B} \subseteq End(F_n)$, $Fix(\mathcal{B})$ is inert in F_n .

Inertia Conjecture (Dicks-V.)

For every $\mathcal{B} \subseteq End(F_n)$, $Fix(\mathcal{B})$ is inert in F_n .

Theorem (Bergman, 99)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(\mathcal{B})) \leq n$.

The inertia conjecture

1.Free groups (history)

Inertia Conjecture (Dicks-V.)

For every $\mathcal{B} \subseteq End(F_n)$, $Fix(\mathcal{B})$ is inert in F_n .

Theorem (Bergman, 99)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(\mathcal{B})) \leqslant n$.

Theorem (Martino-V., 04)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $Fix(\mathcal{B})$ is compressed in F_n .

• • •

Theorem (Bergman, 99

Let ϕ : G woheadrightarrow H be an epimorphism of free groups, with H f.g. Then, the equalizer of any family of sections of ϕ is a free factor of H.

The inertia conjecture

Inertia Conjecture (Dicks-V.)

For every $\mathcal{B} \subseteq End(F_n)$, $Fix(\mathcal{B})$ is inert in F_n .

Theorem (Bergman, 99)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(\mathcal{B})) \leqslant n$.

Theorem (Martino-V., 04)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $Fix(\mathcal{B})$ is compressed in F_n .

• • •

Theorem (Bergman, 99)

Let ϕ : $G \rightarrow H$ be an epimorphism of free groups, with H f.g. Then, the equalizer of any family of sections of ϕ is a free factor of H.

Outline

- Fixed subgroups in free groups (history
- New results in free groups
- Fixed subgroups in surface groups (history)
- New results in surface groups
- 5 New results in direct products of free and surface groups

Theorem (Zhang-Wu-V., 15)

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, for every subgroup $K \leqslant F$ such that $\beta_0(K) \cap Fix\mathcal{B} \leqslant K$, we have $r(K \cap Fix\mathcal{B}) \leqslant r(K)$.

- Since, $Fix \alpha \cap Fix \beta \leqslant Fix(\alpha\beta)$, we have $Fix \langle \mathcal{B} \rangle = Fix \mathcal{B}$ and so, we can assume that $Id \in \langle \mathcal{B} \rangle = \mathcal{B}$.
- Now choose $\beta_0 \in \mathcal{B}$ with $r(\beta_0(F)) = \min\{r(\gamma(F)) \mid \gamma \in \mathcal{B}\}$. Thus, all elements of \mathcal{B} act injectively on $\beta_0(F)$.
- Restricting $\beta_0 \mathcal{B} = \{\beta_0 \gamma \mid \gamma \in \mathcal{B}\} \subseteq \mathcal{B}$ to $\beta_0(F)$ we get the family of injective endos: $\beta_0 \gamma |_{\beta_0(F)} : \beta_0(F) \to \beta_0(F)$, for $\gamma \in \mathcal{B}$.
- Hence, $Fix(\beta_0 \mathcal{B}) = Fix(\beta_0 \mathcal{B}|_{\beta_0(F)})$ is inert in $\beta_0(F)$ that is, for every $L \leq \beta_0(F)$, we have $r(L \cap Fix(\beta_0 \mathcal{B})) \leq r(L)$.

Theorem (Zhang-Wu-V., 15)

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, for every subgroup $K \leqslant F$ such that $\beta_0(K) \cap Fix\mathcal{B} \leqslant K$, we have $r(K \cap Fix\mathcal{B}) \leqslant r(K)$.

- Since, $Fix \alpha \cap Fix \beta \leqslant Fix(\alpha\beta)$, we have $Fix \langle \mathcal{B} \rangle = Fix \mathcal{B}$ and so, we can assume that $Id \in \langle \mathcal{B} \rangle = \mathcal{B}$.
- Now choose $\beta_0 \in \mathcal{B}$ with $r(\beta_0(F)) = \min\{r(\gamma(F)) \mid \gamma \in \mathcal{B}\}$. Thus, all elements of \mathcal{B} act injectively on $\beta_0(F)$.
- Restricting $\beta_0 \mathcal{B} = \{\beta_0 \gamma \mid \gamma \in \mathcal{B}\} \subseteq \mathcal{B}$ to $\beta_0(F)$ we get the family of injective endos: $\beta_0 \gamma |_{\beta_0(F)} : \beta_0(F) \to \beta_0(F)$, for $\gamma \in \mathcal{B}$.
- Hence, $Fix(\beta_0 \mathcal{B}) = Fix(\beta_0 \mathcal{B}|_{\beta_0(F)})$ is inert in $\beta_0(F)$ that is, for every $L \leq \beta_0(F)$, we have $r(L \cap Fix(\beta_0 \mathcal{B})) \leq r(L)$.

Theorem (Zhang-Wu-V., 15)

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, for every subgroup $K \leqslant F$ such that $\beta_0(K) \cap Fix\mathcal{B} \leqslant K$, we have $r(K \cap Fix\mathcal{B}) \leqslant r(K)$.

- Since, $Fix \alpha \cap Fix \beta \leq Fix(\alpha\beta)$, we have $Fix \langle \mathcal{B} \rangle = Fix \mathcal{B}$ and so, we can assume that $Id \in \langle \mathcal{B} \rangle = \mathcal{B}$.
- Now choose $\beta_0 \in \mathcal{B}$ with $r(\beta_0(F)) = \min\{r(\gamma(F)) \mid \gamma \in \mathcal{B}\}$. Thus, all elements of \mathcal{B} act injectively on $\beta_0(F)$.
- Restricting $\beta_0 \mathcal{B} = \{\beta_0 \gamma \mid \gamma \in \mathcal{B}\} \subseteq \mathcal{B}$ to $\beta_0(F)$ we get the family of injective endos: $\beta_0 \gamma|_{\beta_0(F)} : \beta_0(F) \to \beta_0(F)$, for $\gamma \in \mathcal{B}$.
- Hence, $Fix(\beta_0 \mathcal{B}) = Fix(\beta_0 \mathcal{B}|_{\beta_0(F)})$ is inert in $\beta_0(F)$ that is, for every $L \leq \beta_0(F)$, we have $r(L \cap Fix(\beta_0 \mathcal{B})) \leq r(L)$.

Theorem (Zhang-Wu-V., 15)

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, for every subgroup $K \leqslant F$ such that $\beta_0(K) \cap Fix\mathcal{B} \leqslant K$, we have $r(K \cap Fix\mathcal{B}) \leqslant r(K)$.

- Since, $Fix \alpha \cap Fix \beta \leqslant Fix(\alpha\beta)$, we have $Fix \langle \mathcal{B} \rangle = Fix \mathcal{B}$ and so, we can assume that $Id \in \langle \mathcal{B} \rangle = \mathcal{B}$.
- Now choose $\beta_0 \in \mathcal{B}$ with $r(\beta_0(F)) = \min\{r(\gamma(F)) \mid \gamma \in \mathcal{B}\}$. Thus, all elements of \mathcal{B} act injectively on $\beta_0(F)$.
- Restricting $\beta_0 \mathcal{B} = \{\beta_0 \gamma \mid \gamma \in \mathcal{B}\} \subseteq \mathcal{B}$ to $\beta_0(F)$ we get the family of injective endos: $\beta_0 \gamma |_{\beta_0(F)} : \beta_0(F) \to \beta_0(F)$, for $\gamma \in \mathcal{B}$.
- Hence, $Fix(\beta_0 \mathcal{B}) = Fix(\beta_0 \mathcal{B}|_{\beta_0(F)})$ is inert in $\beta_0(F)$ that is, for every $L \leq \beta_0(F)$, we have $r(L \cap Fix(\beta_0 \mathcal{B})) \leq r(L)$.

Theorem (Zhang-Wu-V., 15)

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, for every subgroup $K \leqslant F$ such that $\beta_0(K) \cap Fix\mathcal{B} \leqslant K$, we have $r(K \cap Fix\mathcal{B}) \leqslant r(K)$.

- Since, $Fix \alpha \cap Fix \beta \leqslant Fix(\alpha\beta)$, we have $Fix \langle \mathcal{B} \rangle = Fix \mathcal{B}$ and so, we can assume that $Id \in \langle \mathcal{B} \rangle = \mathcal{B}$.
- Now choose $\beta_0 \in \mathcal{B}$ with $r(\beta_0(F)) = \min\{r(\gamma(F)) \mid \gamma \in \mathcal{B}\}$. Thus, all elements of \mathcal{B} act injectively on $\beta_0(F)$.
- Restricting $\beta_0 \mathcal{B} = \{\beta_0 \gamma \mid \gamma \in \mathcal{B}\} \subseteq \mathcal{B}$ to $\beta_0(F)$ we get the family of injective endos: $\beta_0 \gamma |_{\beta_0(F)} : \beta_0(F) \to \beta_0(F)$, for $\gamma \in \mathcal{B}$.
- Hence, $Fix(\beta_0 \mathcal{B}) = Fix(\beta_0 \mathcal{B}|_{\beta_0(F)})$ is inert in $\beta_0(F)$ that is, for every $L \leq \beta_0(F)$, we have $r(L \cap Fix(\beta_0 \mathcal{B})) \leq r(L)$.

Direct products (new)

Main result for free groups

- Now, let $K \leqslant F$ be a subgroup such that $\beta_0(K) \cap Fix \mathcal{B} \leqslant K$; we have to show that $r(K \cap Fix \mathcal{B}) \leqslant r(K)$.
- Take $E = \beta_0^{-1}(\beta_0(K) \cap Fix(\beta_0 \mathcal{B})) \leqslant F$. By construction, β_0 restricts to an epimorphism $\beta_0|_E \colon E \twoheadrightarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B})$. And every $\gamma \in \mathcal{B}$ restricts to a section of $\beta_0|_E$, namely

$$E \leftarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \colon \gamma|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})},$$

since $x \in \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \Rightarrow \beta_0 \gamma(x) = x$ and so, $\gamma(x) \in E$

- By Bergman's Thm, $Eq(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})})$ is a free factor of $\beta_0(K)\cap Fix(\beta_0\mathcal{B})$.
- But, $Eq(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})}) = Fix(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})})$ $= Fix\mathcal{B}\cap\beta_0(K)\cap Fix(\beta_0\mathcal{B})$ $= \beta_0(K)\cap Fix\mathcal{B}$ $= K\cap Fix\mathcal{B}$
- Thus, intersecting with $L = \beta_0(K) \leqslant \beta_0(F)$, we conclude

$$r(K \cap FixB) \le r(\beta_0(K) \cap Fix(\beta_0B)) \le r(\beta_0(K)) \le r(K)$$
.

- Now, let $K \leq F$ be a subgroup such that $\beta_0(K) \cap Fix \mathcal{B} \leq K$; we have to show that $r(K \cap Fix \mathcal{B}) \leq r(K)$.
- Take $E = \beta_0^{-1}(\beta_0(K) \cap Fix(\beta_0 \mathcal{B})) \leqslant F$. By construction, β_0 restricts to an epimorphism $\beta_0|_E \colon E \twoheadrightarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B})$. And every $\gamma \in \mathcal{B}$ restricts to a section of $\beta_0|_F$, namely

$$E \leftarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \colon \gamma|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})},$$

since $x \in \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \Rightarrow \beta_0 \gamma(x) = x$ and so, $\gamma(x) \in E$.

- By Bergman's Thm, Eq $(\mathcal{B}|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})})$ is a free factor of
- But, $Eq(\mathcal{B}|_{\beta_0(K) \cap FiX(\beta_0 \mathcal{B})}) = Fix(\mathcal{B}|_{\beta_0(K) \cap FiX(\beta_0 \mathcal{B})})$
- Thus, intersecting with $L = \beta_0(K) \leq \beta_0(F)$, we conclude

$$r(K \cap Fix\mathcal{B}) \leqslant r(\beta_0(K) \cap Fix(\beta_0\mathcal{B})) \leqslant r(\beta_0(K)) \leqslant r(K).$$

Main result for free groups

- Now, let $K \leq F$ be a subgroup such that $\beta_0(K) \cap Fix \mathcal{B} \leq K$; we have to show that $r(K \cap Fix \mathcal{B}) \leq r(K)$.
- Take $E = \beta_0^{-1}(\beta_0(K) \cap Fix(\beta_0 \mathcal{B})) \leqslant F$. By construction, β_0 restricts to an epimorphism $\beta_0|_E \colon E \twoheadrightarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B})$. And every $\gamma \in \mathcal{B}$ restricts to a section of $\beta_0|_F$, namely

$$E \leftarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \colon \gamma|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})},$$

since $x \in \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \Rightarrow \beta_0 \gamma(x) = x$ and so, $\gamma(x) \in E$.

• By Bergman's Thm, $Eq(\mathcal{B}|_{\beta_n(K)\cap Fi_{X(\beta_n\mathcal{B})}})$ is a free factor of $\beta_0(K) \cap Fix(\beta_0 \mathcal{B}).$

```
• But, Eq(\mathcal{B}|_{\beta_0(K) \cap FiX(\beta_0 \mathcal{B})}) = Fix(\mathcal{B}|_{\beta_0(K) \cap FiX(\beta_0 \mathcal{B})})
```

• Thus, intersecting with $L = \beta_0(K) \leqslant \beta_0(F)$, we conclude

$$r(K \cap Fix\mathcal{B}) \leqslant r(\beta_0(K) \cap Fix(\beta_0\mathcal{B})) \leqslant r(\beta_0(K)) \leqslant r(K).$$

- Now, let $K \leq F$ be a subgroup such that $\beta_0(K) \cap Fix \mathcal{B} \leq K$; we have to show that $r(K \cap Fix \mathcal{B}) \leq r(K)$.
- Take $E = \beta_0^{-1}(\beta_0(K) \cap Fix(\beta_0 \mathcal{B})) \leqslant F$. By construction, β_0 restricts to an epimorphism $\beta_0|_E \colon E \twoheadrightarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B})$. And every $\gamma \in \mathcal{B}$ restricts to a section of $\beta_0|_F$, namely

$$E \leftarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \colon \gamma|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})},$$

since $x \in \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \Rightarrow \beta_0 \gamma(x) = x$ and so, $\gamma(x) \in E$.

- By Bergman's Thm, $Eq(\mathcal{B}|_{\beta_n(K)\cap Fi_{X(\beta_n\mathcal{B})}})$ is a free factor of $\beta_0(K) \cap Fix(\beta_0 \mathcal{B}).$
- But, $Eq(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})}) = Fix(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})})$ = $Fix \mathcal{B} \cap \beta_0(K) \cap Fix(\beta_0\mathcal{B})$ $= \beta_0(K) \cap Fix \mathcal{B}$ $= K \cap Fix \mathcal{B}.$
- Thus, intersecting with $L = \beta_0(K) \leq \beta_0(F)$, we conclude

$$r(K \cap Fix\mathcal{B}) \leqslant r(\beta_0(K) \cap Fix(\beta_0\mathcal{B})) \leqslant r(\beta_0(K)) \leqslant r(K).$$

- Now, let $K \leq F$ be a subgroup such that $\beta_0(K) \cap Fix \mathcal{B} \leq K$; we have to show that $r(K \cap Fix \mathcal{B}) \leq r(K)$.
- Take $E = \beta_0^{-1}(\beta_0(K) \cap Fix(\beta_0 \mathcal{B})) \leqslant F$. By construction, β_0 restricts to an epimorphism $\beta_0|_E \colon E \twoheadrightarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B})$. And every $\gamma \in \mathcal{B}$ restricts to a section of $\beta_0|_F$, namely

$$E \leftarrow \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \colon \gamma|_{\beta_0(K) \cap Fix(\beta_0 \mathcal{B})},$$

- since $x \in \beta_0(K) \cap Fix(\beta_0 \mathcal{B}) \Rightarrow \beta_0 \gamma(x) = x$ and so, $\gamma(x) \in E$.
- By Bergman's Thm, $Eq(\mathcal{B}|_{\beta_n(K)\cap Fi_{X(\beta_n\mathcal{B})}})$ is a free factor of $\beta_0(K) \cap Fix(\beta_0 \mathcal{B}).$
- But, $Eq(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})}) = Fix(\mathcal{B}|_{\beta_0(K)\cap FiX(\beta_0\mathcal{B})})$ = $Fix \mathcal{B} \cap \beta_0(K) \cap Fix(\beta_0\mathcal{B})$ $= \beta_0(K) \cap Fix \mathcal{B}$ $= K \cap Fix \mathcal{B}.$
- Thus, intersecting with $L = \beta_0(K) \leq \beta_0(F)$, we conclude

$$r(K \cap Fix\mathcal{B}) \leqslant r(\beta_0(K) \cap Fix(\beta_0\mathcal{B})) \leqslant r(\beta_0(K)) \leqslant r(K).$$

As a first corollary, we obtain

Theorem (Martino-V., 04)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $Fix(\mathcal{B})$ is compressed in F_n .

(Easier alternative proof)

Clearly, $Fix \mathcal{B} \leqslant K \leqslant F \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K$. So, main theorem applies to those K, and $r(Fix \mathcal{B}) = r(K \cap Fix \mathcal{B}) \leqslant r(K)$.

Corollary

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(F)$. Moreover, if $\beta_0(F)$ is inert in F then Fix \mathcal{B} is inert in F as well.

As a first corollary, we obtain

Theorem (Martino-V., 04)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $Fix(\mathcal{B})$ is compressed in F_n .

(Easier alternative proof)

Clearly, $Fix \mathcal{B} \leqslant K \leqslant F \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K$. So, main theorem applies to those K, and $r(Fix \mathcal{B}) = r(K \cap Fix \mathcal{B}) \leqslant r(K)$.

Corollary

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(F)$. Moreover, if $\beta_0(F)$ is inert in F then Fix \mathcal{B} is inert in F as well.

As a first corollary, we obtain

Theorem (Martino-V., 04)

Let $\mathcal{B} \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $Fix(\mathcal{B})$ is compressed in F_n .

(Easier alternative proof)

Clearly, $Fix \mathcal{B} \leqslant K \leqslant F \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K$. So, main theorem applies to those K, and $r(Fix \mathcal{B}) = r(K \cap Fix \mathcal{B}) \leqslant r(K)$.

Corollary

Let F be a f.g. free group, let $\mathcal{B} \subseteq End(F)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(F)$ be with $r(\beta_0(F))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(F)$. Moreover, if $\beta_0(F)$ is inert in F then Fix \mathcal{B} is inert in F as well.

(Proof)

• It follows easily from the main theorem, since

$$K \leqslant \beta_0(F) \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K.$$

- In fact, $x \in \beta_0(K) \cap Fix \mathcal{B} \Rightarrow \beta_0(k) = x = \beta_0(x)$ for some $k \in K$. But both $k, x \in \beta_0(F)$, where β_0 is injective. Thus, $x = k \in K$.
- For the last statement we just use transitivity of the inertia property.

Corollary

Let F be a f.g. free group, and $\mathcal{B} \subseteq End(F)$. If some composition of endos from \mathcal{B} has image of rank 1 or 2, then Fix \mathcal{B} is inert in F.

(Proof)

- It follows easily from the main theorem, since $K \leq \beta_0(F) \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leq K$.
- In fact, $x \in \beta_0(K) \cap Fix \mathcal{B} \Rightarrow \beta_0(k) = x = \beta_0(x)$ for some $k \in K$. But both $k, x \in \beta_0(F)$, where β_0 is injective. Thus, $x = k \in K$.
- For the last statement we just use transitivity of the inertia property.

Corollary

Let F be a f.g. free group, and $\mathcal{B} \subseteq End(F)$. If some composition of endos from \mathcal{B} has image of rank 1 or 2, then $Fix\mathcal{B}$ is inert in F.

(Proof)

• It follows easily from the main theorem, since

$$K \leqslant \beta_0(F) \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K.$$

- In fact, $x \in \beta_0(K) \cap Fix \mathcal{B} \Rightarrow \beta_0(k) = x = \beta_0(x)$ for some $k \in K$. But both $k, x \in \beta_0(F)$, where β_0 is injective. Thus, $x = k \in K$.
- For the last statement we just use transitivity of the inertia property.

Corollary

Let F be a f.g. free group, and $\mathcal{B} \subseteq End(F)$. If some composition of endos from \mathcal{B} has image of rank 1 or 2, then F is inert in F.

(Proof)

• It follows easily from the main theorem, since

$$K \leqslant \beta_0(F) \Rightarrow \beta_0(K) \cap Fix \mathcal{B} \leqslant K.$$

- In fact, $x \in \beta_0(K) \cap Fix \mathcal{B} \Rightarrow \beta_0(k) = x = \beta_0(x)$ for some $k \in K$. But both $k, x \in \beta_0(F)$, where β_0 is injective. Thus, $x = k \in K$.
- For the last statement we just use transitivity of the inertia property.

Corollary

Let F be a f.g. free group, and $\mathcal{B} \subseteq End(F)$. If some composition of endos from \mathcal{B} has image of rank 1 or 2, then Fix \mathcal{B} is inert in F.

Outline

- Fixed subgroups in free groups (history
- New results in free groups
- 3 Fixed subgroups in surface groups (history)
- New results in surface groups
- 5 New results in direct products of free and surface groups

- Σ_g denotes the orientable surface of genus g, $g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $NS_k = \pi_1(N\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type $(\chi < 0)$: S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_a) = 2g, r(NS_k) = k, (and r(F_n) = n).$$

- Σ_g denotes the orientable surface of genus g, $g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $NS_k = \pi_1(N\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $\bullet \ NS_1=\mathbb{Z}/2\mathbb{Z}, \ NS_2=\langle a_1,a_2\mid a_1^2a_2^2\rangle\simeq \langle a,b\mid aba^{-1}b\rangle.$
- Euler characteristic: $\chi(\Sigma_q) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type $(\chi < 0)$: S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_{\sigma}) = 2g, r(NS_{k}) = k, (and r(F_{n}) = n).$$

- Σ_g denotes the orientable surface of genus g, $g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $NS_k = \pi_1(N\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $\bullet \ NS_1=\mathbb{Z}/2\mathbb{Z}, \ NS_2=\langle a_1,a_2\mid a_1^2a_2^2\rangle\simeq \langle a,b\mid aba^{-1}b\rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_a) = 2g, r(NS_k) = k, (and r(F_n) = n).$$

- Σ_g denotes the orientable surface of genus $g, g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ \mathit{NS}_k = \pi_1(\mathit{N}\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $\bullet \ NS_1=\mathbb{Z}/2\mathbb{Z}, \ NS_2=\langle a_1,a_2\mid a_1^2a_2^2\rangle\simeq \langle a,b\mid aba^{-1}b\rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n)$$

- Σ_g denotes the orientable surface of genus $g, g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ \mathsf{NS}_k = \pi_1(\mathsf{N}\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $NS_1 = \mathbb{Z}/2\mathbb{Z}$, $NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle$.
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g$$
, $r(NS_k) = k$, (and $r(F_n) = n$)

- Σ_g denotes the orientable surface of genus $g, g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ NS_k = \pi_1(N\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $\bullet \ NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n)$$

- Σ_g denotes the orientable surface of genus g, $g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ NS_k = \pi_1(N\Sigma_k) = \langle a_1, \ldots, a_k \mid a_1^2 \cdots a_k^2 \rangle;$
- $\bullet \ NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n)$$

- Σ_g denotes the orientable surface of genus $g, g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ \mathsf{NS}_k = \pi_1(\mathsf{N}\Sigma_k) = \langle \mathsf{a}_1, \ldots, \mathsf{a}_k \mid \mathsf{a}_1^2 \cdots \mathsf{a}_k^2 \rangle;$
- $\bullet \ NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n)$$

- Σ_g denotes the orientable surface of genus g, $g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ \mathsf{NS}_k = \pi_1(\mathsf{N}\Sigma_k) = \langle \mathsf{a}_1, \ldots, \mathsf{a}_k \mid \mathsf{a}_1^2 \cdots \mathsf{a}_k^2 \rangle;$
- $\bullet \ NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n)$$

- Σ_g denotes the orientable surface of genus $g, g \geqslant 0$;
- $S_g = \pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle;$
- $S_0 = \langle | \rangle = 1, S_1 = \mathbb{Z}^2.$
- $N\Sigma_k$ denotes the connected sum of k projective planes, $k \ge 1$;
- $\bullet \ \mathsf{NS}_k = \pi_1(\mathsf{N}\Sigma_k) = \langle \mathsf{a}_1, \ldots, \mathsf{a}_k \mid \mathsf{a}_1^2 \cdots \mathsf{a}_k^2 \rangle;$
- $\bullet \ NS_1 = \mathbb{Z}/2\mathbb{Z}, \ NS_2 = \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle \simeq \langle a, b \mid aba^{-1}b \rangle.$
- Euler characteristic: $\chi(\Sigma_g) = 2 2g$, $\chi(N\Sigma_k) = 2 k$;
- Euclidean type ($\chi \geqslant 0$): S_0 , S_1 , NS_1 , NS_2 , (and $F_1 = \mathbb{Z}$);
- Hyperbolic type (χ < 0): S_g , $g \ge 2$, NS_k , $k \ge 3$, (and F_n , $n \ge 2$).

$$r(S_g) = 2g, r(NS_k) = k, (and r(F_n) = n).$$

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \leq r(G) \ \forall \ \phi \in End(G)$.

- (ii) $r(FixB) \leq \frac{1}{2}r(G)$, if B contains a non-epimorphic endomorphism;
- (iii) if $\mathcal{B} \subseteq Aut(G)$, then $Fix \mathcal{B}$ is inert in G.

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \leq r(G) \ \forall \ \phi \in End(G)$.

Theorem (Wu-Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and $\mathcal{B} \subseteq End(G)$. Then,

- (i) $r(FixB) \le r(G)$, with equality if and only if $B = \{id\}$;

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \le r(G) \forall \phi \in End(G)$.

Theorem (Wu-Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and $\mathcal{B} \subseteq End(G)$. Then,

- (i) $r(FixB) \leqslant r(G)$, with equality if and only if $B = \{id\}$;
- (ii) $r(FixB) \leq \frac{1}{2}r(G)$, if B contains a non-epimorphic endomorphism;
- (iii) if $\mathcal{B} \subseteq Aut(G)$, then $Fix \mathcal{B}$ is inert in G.

Inertia Conjecture

Let G be a surface group. For every $\mathcal{B} \subseteq End(G)$, $Fix(\mathcal{B})$ is inert in G.

Theorem (Wu-Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and H a f.g. free group. If $\phi \colon G \to H$ is an epimorphism and \mathcal{B} is a family of sections of ϕ , then $r(Eq(\mathcal{B})) \leqslant r(H) \leqslant \frac{1}{2}r(G)$.

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \leq r(G) \ \forall \ \phi \in End(G)$.

Theorem (Wu–Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and $\mathcal{B} \subseteq End(G)$. Then,

- (i) $r(FixB) \le r(G)$, with equality if and only if $B = \{id\}$;
- (ii) $r(FixB) \leq \frac{1}{2}r(G)$, if B contains a non-epimorphic endomorphism;
- (iii) if $\mathcal{B} \subseteq Aut(G)$, then $Fix \mathcal{B}$ is inert in G.

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \leq r(G) \ \forall \ \phi \in End(G)$.

Theorem (Wu–Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and $\mathcal{B} \subseteq End(G)$. Then,

- (i) $r(FixB) \le r(G)$, with equality if and only if $B = \{id\}$;
- (ii) $r(FixB) \leq \frac{1}{2}r(G)$, if B contains a non-epimorphic endomorphism;
- (iii) if $\mathcal{B} \subseteq Aut(G)$, then $Fix \mathcal{B}$ is inert in G.

Inertia Conjecture

Let G be a surface group. For every $\mathcal{B} \subseteq End(G)$, $Fix(\mathcal{B})$ is inert in G.

Theorem (Jiang-Wang-Zhang, 11)

Let G be a surf. gr. $\chi(G) < 0$. Then, $r(Fix(\phi)) \leq r(G) \ \forall \phi \in End(G)$.

Theorem (Wu–Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and $\mathcal{B} \subseteq End(G)$. Then,

- (i) $r(FixB) \le r(G)$, with equality if and only if $B = \{id\}$;
- (ii) $r(FixB) \leq \frac{1}{2}r(G)$, if B contains a non-epimorphic endomorphism;
- (iii) if $\mathcal{B} \subseteq Aut(G)$, then Fix \mathcal{B} is inert in G.

Inertia Conjecture

Let G be a surface group. For every $\mathcal{B} \subseteq \operatorname{End}(G)$, $\operatorname{Fix}(\mathcal{B})$ is inert in G.

Theorem (Wu-Zhang, 14)

Let G be a surface group with $\chi(G) < 0$, and H a f.g. free group. If $\phi: G \rightarrow H$ is an epimorphism and \mathcal{B} is a family of sections of ϕ , then $r(Eq(\mathcal{B})) \leqslant r(H) \leqslant \frac{1}{2}r(G).$

Outline

- Fixed subgroups in free groups (history
- New results in free groups
- Fixed subgroups in surface groups (history)
- New results in surface groups
- 5 New results in direct products of free and surface groups

The proof of main Theorem for free groups works for surface groups of negative Euler characteristic as well. For non-negative Euler characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either $F_0 = S_0 = 1$, or $S_1 = \mathbb{Z}^2$, or $NS_1 = \mathbb{Z}/2\mathbb{Z}$, or NS_2 , and let $\mathcal{B} \subseteq End(G)$. Then, Fix \mathcal{B} is inert in G.

Theorem (Zhang-Wu-V., 15)

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, for every subgroup $K \leqslant G$ such that $\beta_0(K) \cap Fix \mathcal{B} \leqslant K$, we have $r(K \cap Fix) \leqslant r(K)$.

(Proof)

The proof of main Theorem for free groups works for surface groups of negative Euler characteristic as well. For non-negative Euler characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either $F_0=S_0=1$, or $S_1=\mathbb{Z}^2$, or $NS_1=\mathbb{Z}/2\mathbb{Z}$, or NS_2 , and let $\mathcal{B}\subseteq End(G)$. Then, Fix \mathcal{B} is inert in G.

Theorem (Zhang-Wu-V., 15

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, for every subgroup $K \leqslant G$ such that $\beta_0(K) \cap Fix \mathcal{B} \leqslant K$, we have $r(K \cap Fix) \leqslant r(K)$.

(Proof)

The proof of main Theorem for free groups works for surface groups of negative Euler characteristic as well. For non-negative Euler characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either $F_0=S_0=1$, or $S_1=\mathbb{Z}^2$, or $NS_1=\mathbb{Z}/2\mathbb{Z}$, or NS_2 , and let $\mathcal{B}\subseteq End(G)$. Then, Fix \mathcal{B} is inert in G.

Theorem (Zhang-Wu-V., 15)

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, for every subgroup $K \leqslant G$ such that $\beta_0(K) \cap Fix \mathcal{B} \leqslant K$, we have $r(K \cap Fix) \leqslant r(K)$.

(Proof)

The proof of main Theorem for free groups works for surface groups of negative Euler characteristic as well. For non-negative Euler characteristic one can prove the inertia conjecture directly.

Proposition

Let G be either $F_0=S_0=1$, or $S_1=\mathbb{Z}^2$, or $NS_1=\mathbb{Z}/2\mathbb{Z}$, or NS_2 , and let $\mathcal{B}\subseteq End(G)$. Then, Fix \mathcal{B} is inert in G.

Theorem (Zhang-Wu-V., 15)

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, for every subgroup $K \leqslant G$ such that $\beta_0(K) \cap Fix \mathcal{B} \leqslant K$, we have $r(K \cap Fix) \leqslant r(K)$.

(Proof)

Theorem (Zhang-Wu-V., 15)

Let G be a surface group and $\mathcal{B} \subseteq End(G)$. Then, $Fix(\mathcal{B})$ is compressed in G.

Corollary

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(G)$. Moreover, if $\beta_0(G)$ is inert in G then Fix \mathcal{B} is inert in G as well.

Corollary

For every $\mathcal{B} \subseteq End(NS_3)$, $Fix \mathcal{B}$ is inert in NS_3 .

Theorem (Zhang-Wu-V., 15)

Let G be a surface group and $\mathcal{B} \subseteq End(G)$. Then, $Fix(\mathcal{B})$ is compressed in G.

Corollary

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(G)$. Moreover, if $\beta_0(G)$ is inert in G then Fix \mathcal{B} is inert in G as well.

Corollary

For every $\mathcal{B} \subseteq End(NS_3)$, Fix \mathcal{B} is inert in NS_3

Corollaries

Theorem (Zhang-Wu-V., 15)

Let G be a surface group and $\mathcal{B} \subseteq End(G)$. Then, $Fix(\mathcal{B})$ is compressed in G.

Corollary

Let G be a surface group, let $\mathcal{B} \subseteq End(G)$, and let $\beta_0 \in \langle \mathcal{B} \rangle \leqslant End(G)$ be with $r(\beta_0(G))$ minimal. Then, Fix \mathcal{B} is inert in $\beta_0(G)$. Moreover, if $\beta_0(G)$ is inert in G then Fix \mathcal{B} is inert in G as well.

Corollary

For every $\mathcal{B} \subseteq End(NS_3)$, Fix \mathcal{B} is inert in NS_3 .

Outline

- Fixed subgroups in free groups (history
- New results in free groups
- Fixed subgroups in surface groups (history)
- New results in surface groups
- 5 New results in direct products of free and surface groups

Definition

A product group is a group of the form $G = G_1 \times \cdots \times G_n$, where $n \ge 1$, and each G_i is either F_r , $r \ge 1$, or S_g , $g \ge 1$, or NS_k , $k \ge 1$. Block notation: $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$, $n_i \ge 1$, and $G_i \not\simeq G_j$ for $i \ne j$; of course, $n = n_1 + \cdots + n_m$.

Definition

- hyperbolic type if G_i is hyperbolic for every i;
- Euclidean type if G_i is Euclidean for every i;
- mixed type if G_i is hyperbolic and G_j is Euclidean, for some i, j;

Definition

A product group is a group of the form $G = G_1 \times \cdots \times G_n$, where $n \ge 1$, and each G_i is either F_r , $r \ge 1$, or S_g , $g \ge 1$, or NS_k , $k \ge 1$. Block notation: $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$, $n_i \ge 1$, and $G_i \ne G_j$ for $i \ne j$; of course, $n = n_1 + \cdots + n_m$.

Definition

- hyperbolic type if G_i is hyperbolic for every i;
- Euclidean type if G_i is Euclidean for every i;
- mixed type if G_i is hyperbolic and G_j is Euclidean, for some i, j;

Definition

A product group is a group of the form $G = G_1 \times \cdots \times G_n$, where $n \geqslant 1$, and each G_i is either F_r , $r \geqslant 1$, or S_g , $g \geqslant 1$, or NS_k , $k \geqslant 1$. Block notation: $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$, $n_i \geqslant 1$, and $G_i \not\simeq G_j$ for $i \neq j$; of course, $n = n_1 + \cdots + n_m$.

Definition

- hyperbolic type if G_i is hyperbolic for every i;
- Euclidean type if G_i is Euclidean for every i;
- mixed type if G_i is hyperbolic and G_j is Euclidean, for some i, j;

Definition

A product group is a group of the form $G = G_1 \times \cdots \times G_n$, where $n \geqslant 1$, and each G_i is either F_r , $r \geqslant 1$, or S_g , $g \geqslant 1$, or NS_k , $k \geqslant 1$. Block notation: $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$, $n_i \geqslant 1$, and $G_i \not\simeq G_j$ for $i \neq j$; of course, $n = n_1 + \cdots + n_m$.

Definition

- hyperbolic type if G_i is hyperbolic for every i;
- Euclidean type if Gi is Euclidean for every i;
- mixed type if G_i is hyperbolic and G_j is Euclidean, for some i, j;

Definition

A product group is a group of the form $G = G_1 \times \cdots \times G_n$, where $n \ge 1$, and each G_i is either F_r , $r \ge 1$, or S_g , $g \ge 1$, or NS_k , $k \ge 1$. Block notation: $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$, $n_i \ge 1$, and $G_i \ne G_j$ for $i \ne j$; of course, $n = n_1 + \cdots + n_m$.

Definition

- hyperbolic type if G_i is hyperbolic for every i;
- Euclidean type if Gi is Euclidean for every i;
- mixed type if G_i is hyperbolic and G_j is Euclidean, for some i, j;

In general, $r(A \times B) \leq r(A) + r(B)$, but...

Lemma

For a product group, $r(G_1 \times \cdots \times G_n) = r(G_1) + \cdots + r(G_n)$.

Lemma

Let G be a product group. Then, $Z(G) = 1 \Leftrightarrow G$ is of hyperbolic type.

Corollary

Let G be Euclidean, $G = NS_2^{\ell} \times \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})^q$, for $\ell, p, q \geqslant 0$. Ther any subgroup $H \leqslant G$ satisfies $r(H) \leqslant r(G) = 2\ell + p + q$. In particular, $r(Fix(\phi)) \leqslant r(G)$ for every $\phi \in End(G)$.

In general, $r(A \times B) \leqslant r(A) + r(B)$, but...

Lemma

For a product group, $r(G_1 \times \cdots \times G_n) = r(G_1) + \cdots + r(G_n)$.

Lemma

Let G be a product group. Then, $Z(G) = 1 \Leftrightarrow G$ is of hyperbolic type.

Corollary

Let G be Euclidean, $G = NS_2^{\ell} \times \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})^q$, for $\ell, p, q \geqslant 0$. Ther any subgroup $H \leqslant G$ satisfies $r(H) \leqslant r(G) = 2\ell + p + q$. In particular, $r(Fix(\phi)) \leqslant r(G)$ for every $\phi \in End(G)$.

In general, $r(A \times B) \leq r(A) + r(B)$, but...

Lemma

For a product group, $r(G_1 \times \cdots \times G_n) = r(G_1) + \cdots + r(G_n)$.

Lemma

Let G be a product group. Then, $Z(G) = 1 \Leftrightarrow G$ is of hyperbolic type.

Corollary

Let G be Euclidean, $G = NS_2^{\ell} \times \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})^q$, for $\ell, p, q \geqslant 0$. Then any subgroup $H \leqslant G$ satisfies $r(H) \leqslant r(G) = 2\ell + p + q$. In particular, $r(Fix(\phi)) \leqslant r(G)$ for every $\phi \in End(G)$.

In general, $r(A \times B) \leq r(A) + r(B)$, but...

Lemma

For a product group, $r(G_1 \times \cdots \times G_n) = r(G_1) + \cdots + r(G_n)$.

Lemma

Let G be a product group. Then, $Z(G) = 1 \Leftrightarrow G$ is of hyperbolic type.

Corollary

Let G be Euclidean, $G = NS_2^{\ell} \times \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})^q$, for $\ell, p, q \geqslant 0$. Then any subgroup $H \leqslant G$ satisfies $r(H) \leqslant r(G) = 2\ell + p + q$. In particular, $r(Fix(\phi)) \leqslant r(G)$ for every $\phi \in End(G)$.

Lemma

For $g_i \in G_i$, $Cen_G(g_1, \ldots, g_n) \simeq Cen_{G_1}(g_1) \times \cdots \times Cen_{G_n}(g_n)$. So, in the hyperbolic case, $Cen_G(g_1, \ldots, g_n) \simeq \widehat{G_1} \times \cdots \times \widehat{G_n}$, where $\widehat{G_i} = G_i$ if $g_i = 1$, or $\widehat{G_i} = \mathbb{Z}$ if $g_i \neq 1$.

In general $\mathbb{Z} \times A \simeq \mathbb{Z} \times B \Rightarrow A \simeq B$, but...

Proposition

Let $G = G_1 \times \cdots \times G_n$ and $H = H_1 \times \cdots \times H_m$ be two product groups of hyperbolic type. Then, $G \simeq H \Leftrightarrow n = m$ and $G_i \simeq H_i$ up to reordering.

Not true for the Euclidean type: $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$

Lemma

For $g_i \in G_i$, $Cen_G(g_1, \ldots, g_n) \simeq Cen_{G_1}(g_1) \times \cdots \times Cen_{G_n}(g_n)$. So, in the hyperbolic case, $Cen_G(g_1, \ldots, g_n) \simeq \widehat{G_1} \times \cdots \times \widehat{G_n}$, where $\widehat{G_i} = G_i$ if $g_i = 1$, or $\widehat{G_i} = \mathbb{Z}$ if $g_i \neq 1$.

In general $\mathbb{Z} \times A \simeq \mathbb{Z} \times B \Rightarrow A \simeq B$, but...

Proposition

Let $G = G_1 \times \cdots \times G_n$ and $H = H_1 \times \cdots \times H_m$ be two product groups of hyperbolic type. Then, $G \simeq H \Leftrightarrow n = m$ and $G_i \simeq H_i$ up to reordering.

Not true for the Euclidean type: $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$

Lemma

For $g_i \in G_i$, $Cen_G(g_1, \ldots, g_n) \simeq Cen_{G_1}(g_1) \times \cdots \times Cen_{G_n}(g_n)$. So, in the hyperbolic case, $Cen_G(g_1, \ldots, g_n) \simeq \widehat{G_1} \times \cdots \times \widehat{G_n}$, where $\widehat{G_i} = G_i$ if $g_i = 1$, or $\widehat{G_i} = \mathbb{Z}$ if $g_i \neq 1$.

In general $\mathbb{Z} \times A \simeq \mathbb{Z} \times B \Rightarrow A \simeq B$, but...

Proposition

Let $G = G_1 \times \cdots \times G_n$ and $H = H_1 \times \cdots \times H_m$ be two product groups of hyperbolic type. Then, $G \simeq H \Leftrightarrow n = m$ and $G_i \simeq H_i$ up to reordering.

Not true for the Euclidean type: $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$.

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, $r(Fix \phi) \leq r(G)$ $\forall \phi \in Aut(G) \Leftrightarrow G$ is either of Euclidean or of hyperbolic type.

(Proof)

- Step 1: If G Euclidean then ok. Done.
- Step 2: If G hyperbolic the ok ...
- Step 3: For any mixed type G, $\exists \phi \in Aut(G)$ s.t. $r(Fix \phi) > r(G)$...

$$\phi = \sigma_1 \circ \cdots \circ \sigma_m \circ (\prod_{i=1}^m \prod_{j=1}^{n_i} \phi_{i,j}) = \prod_{i=1}^m (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j}).$$

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, $r(Fix \phi) \leq r(G)$ $\forall \phi \in Aut(G) \Leftrightarrow G$ is either of Euclidean or of hyperbolic type.

(Proof)

- Step 1: If G Euclidean then ok. Done.
- Step 2: If G hyperbolic the ok ...
- Step 3: For any mixed type G, $\exists \phi \in Aut(G)$ s.t. $r(Fix \phi) > r(G)$...

$$\phi = \sigma_1 \circ \cdots \circ \sigma_m \circ (\prod_{i=1}^m \prod_{j=1}^{n_i} \phi_{i,j}) = \prod_{i=1}^m (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j}).$$

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, $r(Fix \phi) \leq r(G)$ $\forall \phi \in Aut(G) \Leftrightarrow G$ is either of Euclidean or of hyperbolic type.

(Proof)

- Step 1: If G Euclidean then ok. Done.
- Step 2: If G hyperbolic the ok ...
- Step 3: For any mixed type G, $\exists \phi \in Aut(G)$ s.t. $r(Fix \phi) > r(G)$...

$$\phi = \sigma_1 \circ \cdots \circ \sigma_m \circ (\prod_{i=1}^m \prod_{j=1}^{n_i} \phi_{i,j}) = \prod_{i=1}^m (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j})$$

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, $r(Fix \phi) \leq r(G)$ $\forall \phi \in Aut(G) \Leftrightarrow G$ is either of Euclidean or of hyperbolic type.

(Proof)

- Step 1: If G Euclidean then ok. Done.
- Step 2: If G hyperbolic the ok ...
- Step 3: For any mixed type G, $\exists \phi \in Aut(G)$ s.t. $r(Fix \phi) > r(G)$...

Proposition (Zhang-Wu-V., 15)

Let $G = G_1^{n_1} \times \cdots \times G_m^{n_m}$ be a product group in block notation. If G is of hyperbolic type then, $\forall \phi \in Aut(G), \exists \phi_{i,i} \in Aut(G_i)$ and $\sigma_i \in S_{n_i}$ such that

$$\phi = \sigma_1 \circ \cdots \circ \sigma_m \circ (\prod_{i=1}^m \prod_{j=1}^{n_i} \phi_{i,j}) = \prod_{i=1}^m (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j}).$$

Direct products (new)

Main result for fee products

- Assume G of hyperbolic type, let $\phi \in Aut(G)$, and let us prove that $r(Fix \phi) \leq r(G)$.
- By previous result, $\phi = \prod_{i=1}^{m} (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j})$. So,

$$\mathit{Fix}\,\phi = \mathit{Fix}\,\big(\sigma_1 \circ (\phi_{1,1} \times \cdots \times \phi_{1,n_1})\big) \times \cdots \times \mathit{Fix}\,\big(\sigma_m \circ (\phi_{m,1} \times \cdots \times \phi_{m,n_m})\big),$$

we are reduced to the case m=1, i.e., $G=G_1^n=G_{1,1}\times\cdots\times G_1$ $(G_{1,i}=G_1)$ and $\phi=\sigma\circ(\phi_1\times\cdots\times\phi_n)$, for $\sigma\in S_n,\,\phi_i\in Aut(G_{1,i})$

• If $\sigma = Id$ then $Fix \phi = Fix \phi_1 \times \cdots \times Fix \phi_n$ and so,

$$r(Fix \phi) \leqslant r(Fix \phi_1) + \cdots + r(Fix \phi_n) \leqslant n r(G_1) = r(G_1^n) = r(G).$$

- If $\sigma \neq Id$, considering its decomposition as a product of cycles, we can reduce to the case of a cycle, $\sigma = (n, n-1, \ldots, 1)$.
- In this situation, $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$ has the form

$$\phi \colon G_{1,1} \times \cdots \times G_{1,n} \to G_{1,1} \times \cdots \times G_{1,n} \\
(g_1, \dots, g_n) \mapsto \sigma(\phi_1(g_1), \phi_2(g_2), \dots, \phi_n(g_n)) = \\
= (\phi_n(g_n), \phi_1(g_1), \dots, \phi_{n-1}(g_{n-1}))$$

Main result for fee products

- Assume G of hyperbolic type, let $\phi \in Aut(G)$, and let us prove that $r(Fix \phi) \leqslant r(G)$.
- By previous result, $\phi = \prod_{i=1}^m (\sigma_i \circ \prod_{j=1}^{n_i} \phi_{i,j})$. So,

$$\mathit{Fix}\,\phi = \mathit{Fix}\,\big(\sigma_1 \circ (\phi_{1,1} \times \cdots \times \phi_{1,n_1})\big) \times \cdots \times \mathit{Fix}\,\big(\sigma_m \circ (\phi_{m,1} \times \cdots \times \phi_{m,n_m})\big),$$

we are reduced to the case m=1, i.e., $G=G_1^n=G_{1,1}\times\cdots\times G_{1,n}$ $(G_{1,i}=G_1)$ and $\phi=\sigma\circ (\phi_1\times\cdots\times\phi_n)$, for $\sigma\in S_n$, $\phi_j\in Aut(G_{1,j})$.

• If $\sigma = Id$ then $Fix \phi = Fix \phi_1 \times \cdots \times Fix \phi_n$ and so,

$$r(Fix\phi) \leqslant r(Fix\phi_1) + \cdots + r(Fix\phi_n) \leqslant n \, r(G_1) = r(G_1^n) = r(G).$$

- If $\sigma \neq Id$, considering its decomposition as a product of cycles, we can reduce to the case of a cycle, $\sigma = (n, n-1, ..., 1)$.
- In this situation, $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$ has the form

$$\begin{array}{cccc} \phi \colon G_{1,1} \times \dots \times G_{1,n} & \to & G_{1,1} \times \dots \times G_{1,n} \\ (g_1,\dots,g_n) & \mapsto & \sigma(\phi_1(g_1),\phi_2(g_2),\dots,\phi_n(g_n)) = \\ & = (\phi_n(g_n),\phi_1(g_1),\dots,\phi_{n-1}(g_{n-1})) \end{array}$$

Main result for fee products

- Assume G of hyperbolic type, let $\phi \in Aut(G)$, and let us prove that $r(Fix \phi) \leqslant r(G)$.
- By previous result, $\phi = \prod_{i=1}^m (\sigma_i \circ \prod_{i=1}^{n_i} \phi_{i,i})$. So,

$$Fix \phi = Fix \left(\sigma_1 \circ (\phi_{1,1} \times \cdots \times \phi_{1,n_1})\right) \times \cdots \times Fix \left(\sigma_m \circ (\phi_{m,1} \times \cdots \times \phi_{m,n_m})\right),$$

we are reduced to the case m = 1, i.e., $G = G_1^n = G_{1,1} \times \cdots \times G_{1,n}$ $(G_{1,i} = G_1)$ and $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$, for $\sigma \in S_n$, $\phi_i \in Aut(G_{1,i})$.

• If $\sigma = \text{Id then Fix } \phi = \text{Fix } \phi_1 \times \cdots \times \text{Fix } \phi_n \text{ and so,}$

$$r(Fix\phi) \leqslant r(Fix\phi_1) + \cdots + r(Fix\phi_n) \leqslant n \, r(G_1) = r(G_1^n) = r(G).$$

- If $\sigma \neq Id$, considering its decomposition as a product of cycles, we
- In this situation, $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$ has the form

$$\phi \colon G_{1,1} \times \cdots \times G_{1,n} \to G_{1,1} \times \cdots \times G_{1,n} \\
(g_1, \dots, g_n) \mapsto \sigma(\phi_1(g_1), \phi_2(g_2), \dots, \phi_n(g_n)) = \\
= (\phi_n(g_n), \phi_1(g_1), \dots, \phi_{n-1}(g_{n-1}))$$

- Assume G of hyperbolic type, let $\phi \in Aut(G)$, and let us prove that $r(Fix \phi) \leqslant r(G)$.
- By previous result, $\phi = \prod_{i=1}^m (\sigma_i \circ \prod_{i=1}^{n_i} \phi_{i,i})$. So,

$$\mathit{Fix}\,\phi = \mathit{Fix}\,\big(\sigma_1 \circ (\phi_{1,1} \times \cdots \times \phi_{1,n_1})\big) \times \cdots \times \mathit{Fix}\,\big(\sigma_m \circ (\phi_{m,1} \times \cdots \times \phi_{m,n_m})\big),$$

we are reduced to the case m = 1, i.e., $G = G_1^n = G_{1,1} \times \cdots \times G_{1,n}$ $(G_{1,i} = G_1)$ and $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$, for $\sigma \in S_n$, $\phi_i \in Aut(G_{1,i})$.

• If $\sigma = Id$ then $Fix \phi = Fix \phi_1 \times \cdots \times Fix \phi_n$ and so,

$$r(Fix\phi) \leqslant r(Fix\phi_1) + \cdots + r(Fix\phi_n) \leqslant n \, r(G_1) = r(G_1^n) = r(G).$$

- If $\sigma \neq Id$, considering its decomposition as a product of cycles, we can reduce to the case of a cycle, $\sigma = (n, n-1, ..., 1)$.
- In this situation, $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$ has the form

$$\phi \colon G_{1,1} \times \cdots \times G_{1,n} \to G_{1,1} \times \cdots \times G_{1,n} \\
(g_1, \dots, g_n) \mapsto \sigma(\phi_1(g_1), \phi_2(g_2), \dots, \phi_n(g_n)) = \\
= (\phi_n(g_n), \phi_1(g_1), \dots, \phi_{n-1}(g_{n-1}))$$

- Assume G of hyperbolic type, let $\phi \in Aut(G)$, and let us prove that $r(Fix \phi) \leq r(G)$.
- By previous result, $\phi = \prod_{i=1}^m (\sigma_i \circ \prod_{i=1}^{n_i} \phi_{i,i})$. So,

$$\mathit{Fix}\,\phi = \mathit{Fix}\,\big(\sigma_1 \circ (\phi_{1,1} \times \cdots \times \phi_{1,n_1})\big) \times \cdots \times \mathit{Fix}\,\big(\sigma_m \circ (\phi_{m,1} \times \cdots \times \phi_{m,n_m})\big),$$

we are reduced to the case m = 1, i.e., $G = G_1^n = G_{1,1} \times \cdots \times G_{1,n}$ $(G_{1,i} = G_1)$ and $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$, for $\sigma \in S_n$, $\phi_i \in Aut(G_{1,i})$.

• If $\sigma = Id$ then $Fix \phi = Fix \phi_1 \times \cdots \times Fix \phi_n$ and so,

$$r(Fix \phi) \leqslant r(Fix \phi_1) + \cdots + r(Fix \phi_n) \leqslant n r(G_1) = r(G_1^n) = r(G).$$

- If $\sigma \neq Id$, considering its decomposition as a product of cycles, we can reduce to the case of a cycle, $\sigma = (n, n-1, ..., 1)$.
- In this situation, $\phi = \sigma \circ (\phi_1 \times \cdots \times \phi_n)$ has the form

$$\phi \colon G_{1,1} \times \cdots \times G_{1,n} \to G_{1,1} \times \cdots \times G_{1,n} \\
(g_1, \ldots, g_n) \mapsto \sigma(\phi_1(g_1), \phi_2(g_2), \ldots, \phi_n(g_n)) = \\
= (\phi_n(g_n), \phi_1(g_1), \ldots, \phi_{n-1}(g_{n-1})).$$

and so.

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1) = r(G)$.
- This finishes step 2.

and so.

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1) = r(G)$.
- This finishes step 2.

and so.

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1) = r(G)$.
- This finishes step 2.

and so.

and bo

$$\operatorname{\mathit{Fix}} \phi = \{ \big(g, \phi_1(g), \phi_2 \phi_1(g), \dots, (\phi_{n-1} \cdots \phi_1)(g) \big) \mid g \in \operatorname{\mathit{Fix}} (\phi_n \cdots \phi_1) \}.$$

- Hence, $r(Fix\phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1^n) = r(G)$.
- This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang-Wu-V., 15

Let *G* be a product group of mixed type. Then, $\exists \phi \in Aut(G)$ such that $r(Fix\phi) > r(G)$.

(Proof

• We can reduce to the case $G=G_1\times G_2$ with G_1 Euclidean and G_2 hyperbolic. Take $1\neq t\in Z(G_1)$), and $Z(G_2)=1$.

and so.

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1) = r(G)$.
- This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang–Wu–V., 15)

Let G be a product group of mixed type. Then, $\exists \phi \in Aut(G)$ such that $r(Fix \phi) > r(G)$.

and so.

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1) = r(G)$.
- This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang–Wu–V., 15)

Let G be a product group of mixed type. Then, $\exists \phi \in Aut(G)$ such that $r(Fix \phi) > r(G)$.

(Proof)

• We can reduce to the case $G = G_1 \times G_2$ with G_1 Euclidean and G_2 hyperbolic. Take $1 \neq t \in Z(G_1)$, and $Z(G_2) = 1$.

and so,

$$\mathit{Fix}\,\phi = \{ \big(g,\phi_1(g),\phi_2\phi_1(g),\ldots,(\phi_{n-1}\cdots\phi_1)(g)\big) \mid g \in \mathit{Fix}\,(\phi_n\cdots\phi_1) \}.$$

- Hence, $r(Fix \phi) = r(Fix(\phi_n \cdots \phi_1)) \leqslant r(G_1) \leqslant r(G_1^n) = r(G)$.
- This finishes step 2.

Finally, for step 3 let us prove that ...

Proposition (Zhang-Wu-V., 15)

Let G be a product group of mixed type. Then, $\exists \phi \in Aut(G)$ such that $r(Fix \phi) > r(G)$.

(Proof)

• We can reduce to the case $G=G_1\times G_2$ with G_1 Euclidean and G_2 hyperbolic. Take $1\neq t\in Z(G_1)$), and $Z(G_2)=1$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_a$, or $G = NS_k$.
- ightarrow Case 1: $G_2 = F_r = \langle a_1, \ldots, a_r \mid \rangle, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, a_2 \mapsto a_2, \ldots, a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_a$, or $G = NS_k$.
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$,
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so,

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- $ightarrow \underline{\textit{Case 1:}} \; \textit{G}_2 = \textit{F}_r = \langle \textit{a}_1, \ldots, \textit{a}_r \mid \rangle, \, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- $ightarrow \underline{\textit{Case 1:}} \; \textit{G}_2 = \textit{F}_r = \langle \textit{a}_1, \ldots, \textit{a}_r \mid \rangle, \, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- $ightarrow \underline{\textit{Case 1:}} \; \textit{G}_2 = \textit{F}_r = \langle \textit{a}_1, \ldots, \textit{a}_r \mid \rangle, \, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- $ightarrow \underline{\textit{Case 1:}} \; \textit{G}_2 = \textit{F}_r = \langle \textit{a}_1, \ldots, \textit{a}_r \mid \rangle, \, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- $ightarrow \underline{\textit{Case 1:}} \; \textit{G}_2 = \textit{F}_r = \langle \textit{a}_1, \ldots, \textit{a}_r \mid \rangle, \, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Since $Z(G_1)$ is $Z(F_1) = \mathbb{Z}$, or $Z(S_1) = \mathbb{Z}^2$, or $Z(NS_1) = \mathbb{Z}/2\mathbb{Z}$, or $Z(NS_2) = \mathbb{Z}$, we deduce $o(t) = 2, \infty$.
- Let us distinguish the 3 cases: $G_2 = F_r$, $G = S_g$, or $G = NS_k$.
- \rightarrow Case 1: $G_2 = F_r = \langle a_1, \ldots, a_r \mid \rangle, r \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto a_2, \dots, \ a_r \mapsto a_r$. This is well defined because t commutes with all of G_1 .
- Now, ϕ maps $w(a_1, \ldots, a_r) \mapsto w(ta_1, a_2, \ldots, a_r) = t^{|w|_1} w(a_1, \ldots, a_r)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$.
- Hence, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- But ker π is a normal subgroup of $G_2 = F_r$ of either infinite index (and so, infinitely generated) or of index 2 (and so, $r(\ker \pi) = 1 + 2(r-1) = 2r-1$).
- In both cases, $r(\ker \pi) > r = r(G_2)$ and so, $r(Fix \phi) = r(G_1) + r(\ker \pi) > r(G)$.

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping
- $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, ..., a_g, b_g) \mapsto w(ta_1, b_1, ..., a_g, b_g) = t^{|w|_1} w(a_1, b_1, ..., a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero)
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t)
- We conclude like above, after proving that r(ker π) > r(G₂) = 2g.
 If o(t) = 2, this is true because ker π ≤₂ G₂ and so, ker π is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leq_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surface. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus $\pi(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2g)$

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, ..., a_g, b_g) \mapsto w(ta_1, b_1, ..., a_g, b_g) = t^{|w|_1}w(a_1, b_1, ..., a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leq_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \to \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leqslant_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus. $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- \rightarrow Case 2: $G_2 = S_q = \langle a_1, b_1, \dots, a_q, b_q \mid [a_1, b_1] \cdots [a_q, b_q] \rangle, g \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, b_1 \mapsto b_1, \dots, a_q \mapsto a_q, b_q \mapsto b_q$. It is well defined because t commutes with b₁ and all of G₁.
- As in case 1, $w(a_1, b_1, ..., a_a, b_a) \mapsto w(ta_1, b_1, ..., a_a, b_a) =$ $t^{|w|_1}w(a_1,b_1,\ldots,a_a,b_a)$, where $|w|_1\in\mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a₁-exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi: G_2 \to \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because ker $\pi \leqslant_2 G_2$ and so, ker π is a
- If $o(t) = \infty$ then $\ker \pi \leq_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely
- Choosing x appropriately, this rank is arbitrarily big and therefore

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leq_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t)=\infty$ then $\ker \pi \leqslant_\infty G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2: \langle \ker \pi, x \rangle] = [\mathbb{Z}: \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2: \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2-2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g-2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leqslant_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2-2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g-2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leqslant_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

- $\rightarrow \underline{\textit{Case 2:}} \; \textit{G}_2 = \textit{S}_g = \langle \textit{a}_1, \textit{b}_1, \ldots, \textit{a}_g, \textit{b}_g \mid [\textit{a}_1, \textit{b}_1] \cdots [\textit{a}_g, \textit{b}_g] \rangle \text{, } g \geqslant 2.$
- Consider $\phi \in Aut(G)$ fixing G_1 pointwise, and mapping $a_1 \mapsto ta_1, \ b_1 \mapsto b_1, \dots, \ a_g \mapsto a_g, \ b_g \mapsto b_g$. It is well defined because t commutes with b_1 and all of G_1 .
- As in case 1, $w(a_1, b_1, \ldots, a_g, b_g) \mapsto w(ta_1, b_1, \ldots, a_g, b_g) = t^{|w|_1}w(a_1, b_1, \ldots, a_g, b_g)$, where $|w|_1 \in \mathbb{Z}$ is the total a_1 -exponent of $w \in G_2$ (which makes sense because the def. rel. in G_2 has total a_1 -exponent equal to zero).
- Hence, as above, $Fix \phi = G_1 \times \{w \in G_2 \mid |w|_1 \equiv 0\} = G_1 \times \ker \pi$, where $\pi \colon G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1$, and \equiv means equality of integers modulo o(t).
- We conclude like above, after proving that $r(\ker \pi) > r(G_2) = 2g$.
- If o(t) = 2, this is true because $\ker \pi \leq_2 G_2$ and so, $\ker \pi$ is a surface group of bigger genus (and rank).
- If $o(t) = \infty$ then $\ker \pi \leqslant_{\infty} G_2$ (so, free), and $\ker \pi$ is infinitely generated by the following argument: $\forall x \in G_2 \setminus \ker \pi$, we have $[G_2 : \langle \ker \pi, x \rangle] = [\mathbb{Z} : \langle \pi(x) \rangle] = |\pi(x)| < \infty$ and so, $\langle \ker \pi, x \rangle$ is a surf. gr. with $\chi(\langle \ker \pi, x \rangle) = [G_2 : \langle \ker \pi, x \rangle] \chi(G_2) = |\pi(x)| (2 2g)$ and thus, $r(\langle \ker \pi, x \rangle) = 2 + |\pi(x)| (2g 2)$.
- Choosing x appropriately, this rank is arbitrarily big and therefore

```
ightarrow \underline{\textit{Case 3:}} \; \textit{G}_2 = \textit{NS}_k = \langle \textit{a}_1, \textit{a}_2, \ldots, \textit{a}_k \mid \textit{a}_1^2 \cdots \textit{a}_k^2 \rangle \text{, } k \geqslant 3.
```

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto t^{-1}a_2, \ a_3 \mapsto a_3, \dots, \ a_k \mapsto a_k$. It is well defined because t commutes with a_1, a_2 and all of G_1 .
- Observe now that, due to the form of the def. rel. in G_2 , the "total a_i -exponent" of an element of $w \in G$ is not well defined; however, the difference of two of them, say $|w|_1 |w|_2 \in \mathbb{Z}$, it really is.
- Hence, the projection $\pi: G_2 \to \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1 |w|_2$ is well defined, ϕ maps $w(a_1, \ldots, a_k)$ to $w(ta_1, t^{-1}a_2, a_3, \ldots, a_k) = t^{|w|_1 |w|_2}w(a_1, \ldots, a_k)$, and we proceed and conclude as in case 2

```
\rightarrow \underline{\textit{Case 3:}} \; \textit{G}_2 = \textit{NS}_k = \langle \textit{a}_1, \textit{a}_2, \ldots, \textit{a}_k \mid \textit{a}_1^2 \cdots \textit{a}_k^2 \rangle \text{, } k \geqslant 3.
```

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto t^{-1}a_2, \ a_3 \mapsto a_3, \dots, \ a_k \mapsto a_k$. It is well defined because t commutes with a_1, a_2 and all of G_1 .
- Observe now that, due to the form of the def. rel. in G_2 , the "total a_i -exponent" of an element of $w \in G$ is not well defined; however, the difference of two of them, say $|w|_1 |w|_2 \in \mathbb{Z}$, it really is.
- Hence, the projection $\pi: G_2 \to \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1 |w|_2$ is well defined, ϕ maps $w(a_1, \ldots, a_k)$ to $w(ta_1, t^{-1}a_2, a_3, \ldots, a_k) = t^{|w|_1 |w|_2}w(a_1, \ldots, a_k)$, and we proceed and conclude as in case 2

```
\rightarrow \underline{\textit{Case 3:}} \; \textit{G}_2 = \textit{NS}_k = \langle \textit{a}_1, \textit{a}_2, \ldots, \textit{a}_k \mid \textit{a}_1^2 \cdots \textit{a}_k^2 \rangle \text{, } k \geqslant 3.
```

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto t^{-1}a_2, \ a_3 \mapsto a_3, \dots, \ a_k \mapsto a_k$. It is well defined because t commutes with a_1, a_2 and all of G_1 .
- Observe now that, due to the form of the def. rel. in G_2 , the "total a_i -exponent" of an element of $w \in G$ is not well defined; however, the difference of two of them, say $|w|_1 |w|_2 \in \mathbb{Z}$, it really is.
- Hence, the projection $\pi: G_2 \to \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1 |w|_2$ is well defined, ϕ maps $w(a_1, \ldots, a_k)$ to $w(ta_1, t^{-1}a_2, a_3, \ldots, a_k) = t^{|w|_1 |w|_2}w(a_1, \ldots, a_k)$, and we proceed and conclude as in case 2.

```
\rightarrow \underline{\textit{Case 3:}} \; \textit{G}_2 = \textit{NS}_k = \langle \textit{a}_1, \textit{a}_2, \ldots, \textit{a}_k \mid \textit{a}_1^2 \cdots \textit{a}_k^2 \rangle \text{, } k \geqslant 3.
```

- Consider $\phi \in Aut(G)$ fixing G_1 pointwise and mapping $a_1 \mapsto ta_1, \ a_2 \mapsto t^{-1}a_2, \ a_3 \mapsto a_3, \dots, \ a_k \mapsto a_k$. It is well defined because t commutes with a_1, a_2 and all of G_1 .
- Observe now that, due to the form of the def. rel. in G_2 , the "total a_i -exponent" of an element of $w \in G$ is not well defined; however, the difference of two of them, say $|w|_1 |w|_2 \in \mathbb{Z}$, it really is.
- Hence, the projection $\pi: G_2 \twoheadrightarrow \mathbb{Z}/o(t)\mathbb{Z}$, $w \mapsto |w|_1 |w|_2$ is well defined, ϕ maps $w(a_1, \ldots, a_k)$ to $w(ta_1, t^{-1}a_2, a_3, \ldots, a_k) = t^{|w|_1 |w|_2} w(a_1, \ldots, a_k)$, and we proceed and conclude as in case 2.

Characterizing compression

It is natural to ask for similar characterizations of full compression and full inertia.

Theorem (Zhang-Wu-V., 15

Let $G = G_1 \times \cdots \times G_n$ be a product group. If $Fix \phi$ is compressed in G for every $\phi \in Aut(G)$, then G must be of one of the following forms:

```
(euc1) G=\mathbb{Z}^p	imes (\mathbb{Z}/2\mathbb{Z})^q for some p,q\geqslant 0; or
```

(euc2)
$$G = NS_2 \times (\mathbb{Z}/2\mathbb{Z})^q$$
 for some $q \geqslant 0$; or

(euc3)
$$extbf{ extit{G}} = extstyle extstyle NS_2 imes \mathbb{Z}^p imes (\mathbb{Z}/2\mathbb{Z})$$
 for some $p \geqslant 1$; or

(euc4)
$$G = NS_2^{\ell} \times \mathbb{Z}^p$$
 for some $\ell \geqslant 1$, $p \geqslant 0$; or

```
(hyp1) G = F_r \times NS_3^{\ell} for some r \ge 2, \ell \ge 0; or
```

(hyp2)
$$G = S_g \times NS_3^{\ell}$$
 for some $g \geqslant 2$, $\ell \geqslant 0$; or

(hyp3)
$$G = NS_k \times NS_3^{\ell}$$
 for some $k \geqslant 3$, $\ell \geqslant 0$.

Characterizing compression

It is natural to ask for similar characterizations of full compression and full inertia.

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. If $Fix \phi$ is compressed in G for every $\phi \in Aut(G)$, then G must be of one of the following forms:

- (euc1) $G = \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})^q$ for some $p, q \geqslant 0$; or
- (euc2) $G = NS_2 \times (\mathbb{Z}/2\mathbb{Z})^q$ for some $q \geqslant 0$; or
- (euc3) $G = NS_2 \times \mathbb{Z}^p \times (\mathbb{Z}/2\mathbb{Z})$ for some $p \geqslant 1$; or
- (euc4) $G = NS_2^{\ell} \times \mathbb{Z}^p$ for some $\ell \geqslant 1$, $p \geqslant 0$; or
- (hyp1) $G = F_r \times NS_3^{\ell}$ for some $r \geqslant 2$, $\ell \geqslant 0$; or
- (hyp2) $G = S_g \times NS_3^{\ell}$ for some $g \geqslant 2, \ell \geqslant 0$; or
- (hyp3) $G = NS_k \times NS_3^{\ell}$ for some $k \geqslant 3$, $\ell \geqslant 0$.

Characterizing inertia

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. If $Fix \phi$ is inert in G for every $\phi \in Aut(G)$, then G is of one of the forms: (euc1), or (euc2), or (euc3), or (euc4), or

(hyp1') $G = F_r$ for some $r \geqslant 2$; or

(hyp2') $G = S_g$ for some $g \geqslant 2$; or

(hyp3') $G = NS_k$ for some $k \geqslant 3$.

Conjecture (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, the following are equivalent:

- (a) every $\phi \in End(G)$ satisfies that $Fix \phi$ is inert in G,
- (b) every $\phi \in Aut(G)$ satisfies that $Fix \phi$ is inert in G,
- (c) G is of the form (euc1), or (euc2), or (euc3), or (euc4), or (hyp1'), or (hyp2'), or (hyp3').

Characterizing inertia

Theorem (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. If $Fix \phi$ is inert in G for every $\phi \in Aut(G)$, then G is of one of the forms: (euc1), or (euc2), or (euc3), or (euc4), or

- (hyp1') $G = F_r$ for some $r \geqslant 2$; or
- (hyp2') $G = S_g$ for some $g \geqslant 2$; or
- (hyp3') $G = NS_k$ for some $k \geqslant 3$.

Conjecture (Zhang-Wu-V., 15)

Let $G = G_1 \times \cdots \times G_n$ be a product group. Then, the following are equivalent:

- (a) every $\phi \in End(G)$ satisfies that $Fix \phi$ is inert in G,
- (b) every $\phi \in Aut(G)$ satisfies that $Fix \phi$ is inert in G,
- (c) G is of the form (euc1), or (euc2), or (euc3), or (euc4), or (hyp1'), or (hyp2'), or (hyp3').

THANKS