On spectra of Koopman, groupoid and quasi-regular representations

Artem Dudko

Stony Brook University

Group Theory International Webinar

March 17, 2016

• Throughout the talk *G* is a countable group.

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .
- Given $m \in \mathbb{C}[G]$ or $l^1(G)$, $m = \sum_{g \in G} \alpha_g g, \alpha_g \in \mathbb{C}$ set
- $\pi(m) = \sum_{g \in G} \alpha_g \pi(g)$. Interesting case: *m* is a measure on *G*.

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .
- Given $m \in \mathbb{C}[G]$ or $l^1(G)$, $m = \sum_{g \in G} \alpha_g g$, $\alpha_g \in \mathbb{C}$ set $\pi(m) = \sum_{g \in G} \alpha_g \pi(g)$. Interesting case: m is a measure on G. • If G is finitely generated with a symmetric generating set S then set $M = \frac{1}{|S|} \sum_{s \in S} s$.

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .
- Given $m \in \mathbb{C}[G]$ or $I^1(G)$, $m = \sum_{g \in G} \alpha_g g, \alpha_g \in \mathbb{C}$ set
- $\pi(m) = \sum_{g \in G} \alpha_g \pi(g)$. Interesting case: *m* is a measure on *G*.
- If G is finitely generated with a symmetric generating set S then set $M = \frac{1}{|S|} \sum_{s \in S} s$.

• Denote by $\sigma(A)$ the spectrum of an operator A.

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .
- Given $m \in \mathbb{C}[G]$ or $l^1(G)$, $m = \sum_{g \in G} \alpha_g g, \alpha_g \in \mathbb{C}$ set
- $\pi(m) = \sum_{g \in G} \alpha_g \pi(g)$. Interesting case: *m* is a measure on *G*.
- If G is finitely generated with a symmetric generating set S then set $M = \frac{1}{|S|} \sum_{s \in S} s$.

- Denote by $\sigma(A)$ the spectrum of an operator A.
- Let (X, μ) be a standard Borel space with a measure-class preserving action of a group G on it.

- Throughout the talk G is a countable group.
- By a representation of a group G we mean a homomorphism $\pi: G \to U(\mathcal{H})$ from G into the group of unitary operators on a Hilbert space \mathcal{H} .
- Given $m \in \mathbb{C}[G]$ or $l^1(G)$, $m = \sum_{g \in G} \alpha_g g, \alpha_g \in \mathbb{C}$ set
- $\pi(m) = \sum_{g \in G} \alpha_g \pi(g)$. Interesting case: *m* is a measure on *G*.
- If G is finitely generated with a symmetric generating set S then set $M = \frac{1}{|S|} \sum_{s \in S} s$.
- Denote by $\sigma(A)$ the spectrum of an operator A.
- Let (X, μ) be a standard Borel space with a measure-class preserving action of a group G on it.

In the talk we compare spectra and spectral measures of operators of representations associated to (G, X, μ) .

Weak containment of representations

Definition

Let ρ and η be two unitary representations of a group G acting in Hilbert spaces \mathcal{H}_{ρ} and \mathcal{H}_{η} correspondingly. Then ρ is weakly contained in η (denoted by $\rho \prec \eta$) if for any $\epsilon > 0$, any finite subset $S \subset G$ and any vector $v \in \mathcal{H}_{\rho}$ there exists a finite collection of vectors $w_1, \ldots, w_n \in \mathcal{H}_{\eta}$ such that

$$|(
ho(g)v,v)-\sum_{i=1}^n(\eta(g)w_i,w_i)|<\epsilon$$

for all $g \in S$.

For a representation π of G let C_{π} be the C^* algebra generated by $\pi(g), g \in G$. Results of Dixmier imply:

Proposition

Let ρ, η be two unitary representations of a discrete group G. Then the following conditions are equivalent:

1) $\rho \prec \eta$;

For a representation π of G let C_{π} be the C^* algebra generated by $\pi(g), g \in G$. Results of Dixmier imply:

Proposition

Let ρ, η be two unitary representations of a discrete group G. Then the following conditions are equivalent:

1) $\rho \prec \eta$; 2) $\sigma(\rho(\nu)) \subset \sigma(\eta(\nu))$ for all $\nu \in l^1(G)$;

For a representation π of G let C_{π} be the C^* algebra generated by $\pi(g), g \in G$. Results of Dixmier imply:

Proposition

Let ρ, η be two unitary representations of a discrete group G. Then the following conditions are equivalent:

1)
$$\rho \prec \eta$$
;

- 2) $\sigma(\rho(\nu)) \subset \sigma(\eta(\nu))$ for all $\nu \in l^1(G)$;
- 3) $\|\rho(m)\| \leq \|\eta(m)\|$ for every positive $m \in \mathbb{C}[G]$ (i.e. $m = x^*x$).

For a representation π of G let C_{π} be the C^* algebra generated by $\pi(g), g \in G$. Results of Dixmier imply:

Proposition

Let ρ, η be two unitary representations of a discrete group G. Then the following conditions are equivalent:

1)
$$\rho \prec \eta$$
;

- 2) $\sigma(\rho(\nu)) \subset \sigma(\eta(\nu))$ for all $\nu \in l^1(G)$;
- 3) $\|\rho(m)\| \leq \|\eta(m)\|$ for every positive $m \in \mathbb{C}[G]$ (i.e. $m = x^*x$).

there exists a surjective homomorphism φ : C_η → C_ρ such that φ(η(g)) = ρ(g) for all g ∈ G.

Quasi-regular representations

For $x \in X$ let Gx be the orbit of x. The corresponding quasi-regular representation $\rho_x : G \to U(l^2(Gx))$ is defined by: $(\rho_x(g)f)(y) = f(g^{-1}y), f \in l^2(Gx).$

Quasi-regular representations

For $x \in X$ let Gx be the orbit of x. The corresponding quasi-regular representation $\rho_x : G \to U(l^2(Gx))$ is defined by: $(\rho_x(g)f)(y) = f(g^{-1}y), \quad f \in l^2(Gx).$ Important cases: $X = G/H, H < G, \rho_{G/H}.$ $X = G, \rho_G$ is the regular representation.

Quasi-regular representations and amenability

Theorem (Kesten)

For symmetric generating measure ν on G and $H \lhd G$ one has

 $\|\rho_{G/H}(\nu)\| = \|\rho_G(\nu)\|$

if and only if H is amenable.

Quasi-regular representations and amenability

Theorem (Kesten)

For symmetric generating measure ν on G and $H \lhd G$ one has

 $\|\rho_{G/H}(\nu)\| = \|\rho_G(\nu)\|$

if and only if H is amenable.

Proposition Let H < G. Then $\rho_{G/H} \prec \rho_G$ if and only if H is amenable. Koopman representation is the representation $\kappa: \mathcal{G} \rightarrow U(L^2(X,\mu))$ by

$$(\kappa(g)f)(y)=\sqrt{rac{\mathrm{d}\mu(g^{-1}y)}{\mathrm{d}\mu(y)}}f(g^{-1}y), \ f\in L^2(X,\mu).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Koopman representation is the representation $\kappa: \mathcal{G}
ightarrow U(L^2(X,\mu))$ by

$$(\kappa(g)f)(y) = \sqrt{rac{\mathrm{d}\mu(g^{-1}y)}{\mathrm{d}\mu(y)}}f(g^{-1}y), \ f\in L^2(X,\mu).$$

Ergodicity, weak mixing and mixing can be formulated in terms of spectral properties of κ .

 \bullet Groupoid representation π is the direct integral of quasi-regular representations

$$\pi = \int_{x \in X} \rho_x \mathrm{d}\mu(x).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 \bullet Groupoid representation π is the direct integral of quasi-regular representations

$$\pi = \int_{x \in X} \rho_x \mathrm{d}\mu(x).$$

Let

$$\mathcal{R} = \{(x, y) : x = gy \text{ for some } g \in G\} \subset X imes X$$

be the equivalence relation on X generated by the action of G. G acts on \mathcal{R} by $g : (x, y) \rightarrow (gx, y)$. There exists a unique G-invariant measure ν on \mathcal{R} such that

$$\nu(\{(x,x):x\in A\}=\mu(A)$$

for any measurable subset $A \subset X$.

Groupoid representations is the representation $\pi: \mathcal{G} \to \mathcal{U}(L^2(\mathcal{R}, \nu))$ given by

$$(\pi(g)f)(x,y) = f(g^{-1}x,y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Groupoid representations is the representation $\pi: G \to U(L^2(\mathcal{R}, \nu))$ given by

$$(\pi(g)f)(x,y)=f(g^{-1}x,y).$$

When μ is *G*-invariant π is related to character theory, finite factor-representations, non-free actions etc.

Spherically homogeneous rooted tree

For a sequence $\overline{d} = \{d_n\}_{n \in \mathbb{N}}, d_n \ge 2$ the spherically homogeneous rooted tree $T_{\overline{d}}$ is a tree such that:

- the vertex set $V = \bigcup_{n \in \mathbb{Z}_+} V_n$;
- $V_0 = \{v_0\}$ where v_0 is called the root;
- each vertex from V_n is connected by an edge to the same number d_n of vertices from V_{n+1} .

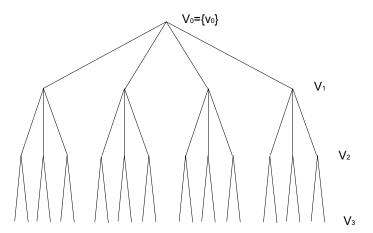
Spherically homogeneous rooted tree

For a sequence $\overline{d} = \{d_n\}_{n \in \mathbb{N}}, d_n \ge 2$ the spherically homogeneous rooted tree $T_{\overline{d}}$ is a tree such that:

- the vertex set $V = \bigcup_{n \in \mathbb{Z}_+} V_n$;
- $V_0 = \{v_0\}$ where v_0 is called the root;
- each vertex from V_n is connected by an edge to the same number d_n of vertices from V_{n+1} .

If $d_i = d$ for all *i* the corresponding rooted tree T_d is called *d*-regular.

Spherically homogeneous rooted tree



▲ロト▲圖ト▲画ト▲画ト 画 のべつ

Automorphisms of $T_{\overline{d}}$

Let $\operatorname{Aut}(T_{\overline{d}})$ be the group of all automorphisms of $T_{\overline{d}}$ preserving the root. The boundary ∂T_d is the space of simple infinite paths in T_d starting at v_0 . Let X_n be finite sets of cardinality d_n . Then $\partial T_{\overline{d}}$ is naturally isomorphic to $\prod_{n \in \mathbb{N}} X_n$. Equip $\partial T_{\overline{d}}$ with $\operatorname{Aut}(T_{\overline{d}})$ -invariant Bernoulli measure $\mu = \mu_{\overline{d}}$.

Automorphisms of $T_{\overline{d}}$

Let $\operatorname{Aut}(T_{\overline{d}})$ be the group of all automorphisms of $T_{\overline{d}}$ preserving the root. The boundary ∂T_d is the space of simple infinite paths in T_d starting at v_0 . Let X_n be finite sets of cardinality d_n . Then $\partial T_{\overline{d}}$ is naturally isomorphic to $\prod_{n \in \mathbb{N}} X_n$. Equip $\partial T_{\overline{d}}$ with $\operatorname{Aut}(T_{\overline{d}})$ -invariant Bernoulli measure $\mu = \mu_{\overline{d}}$. Any $g \in \operatorname{Aut}(T_{\overline{d}})$ can be written as

$$g=s(g_1,g_2,\ldots,g_{d_1}),$$

where g_1, \ldots, g_{d_1} are the restrictions of g onto the subtrees emerging from the vertices of V_1 and s is a permutation on V_1 .

Self-similar and automaton group

If $d_i = d$ for all *i* then elements g_1, \ldots, g_d can be viewed as elements of Aut (T_d) .

If $d_i = d$ for all *i* then elements g_1, \ldots, g_d can be viewed as elements of Aut (T_d) .

Definition

A subgroup $G < \operatorname{Aut}(T_d)$ is called self-similar if for any $g \in G$ one has $g_1, \ldots, g_d \in G$. A subgroup $G < \operatorname{Aut}(T_d)$ is called an automaton group if G is generated by a finite set S such that for any $g \in S$ one has $g_1, \ldots, g_d \in S$.

Examples: Grigorchuk group F

Grigorchuk group is the group $\Gamma = \langle a, b, c, d \rangle$ acting on T_2 with

$$a = \epsilon, \ b = (a, c), \ c = (a, d), \ d = (1, b),$$

where ϵ is a non-trivial transformation of V_1 . Γ is torsion free group of intermediate growth, subexponentally amenable bun not elementary amenable group.

Spectra of Γ

To study the spectrum of $\kappa(M)$ where $M = \frac{1}{4}(a + b + c + d)$ Bartholdi and Grigorchuk used operator recursions and associated the map

$$F(x,y) = \left(x - \frac{xy^2}{x^2 - 4}, \frac{2y^2}{x^2 - 4}\right)$$

to $\kappa(M)$. Studying F they obtained:

Theorem (Bartholdi-Grigorchuk) $\sigma(\kappa(M)) = \sigma(\rho_x(M)) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1].$

Spectra of Γ

To study the spectrum of $\kappa(M)$ where $M = \frac{1}{4}(a + b + c + d)$ Bartholdi and Grigorchuk used operator recursions and associated the map

$$F(x,y) = \left(x - \frac{xy^2}{x^2 - 4}, \frac{2y^2}{x^2 - 4}\right)$$

to $\kappa(M)$. Studying F they obtained:

Theorem (Bartholdi-Grigorchuk) $\sigma(\kappa(M)) = \sigma(\rho_x(M)) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1].$

Proposition (D.) $\sigma(\rho_{\Gamma}(M)) = [-\frac{1}{2}, 0] \cup [\frac{1}{2}, 1].$

Examples: Basilica group \mathcal{B}

Basilica group is the group $\mathcal{B} = \langle a, b \rangle$ acting on T_2 with

$$a = (1, b), \ b = \epsilon(1, a).$$

Basilica group is the iterated monodromy group of $p(z) = z^2 - 1$, torsion free group of exponential grouth, amenable but not subexponentially amenable. Operator recursions for $\kappa(M)$ where $M = \frac{1}{4}(a + a^{-1} + b + b^{-1})$ give rise to the map

$$F(x,y) = \left(\frac{y-2}{x^2}, -2 + \frac{y(y-2)}{x^2}\right).$$

Examples: Lamplighter group

Grigorchuk and Zuk showed that the Lamplighter group $L = \mathbb{Z} \ltimes \mathbb{Z}_2^{\mathbb{Z}}$ can be realized as a group acting on a binary rooted tree as follows: $L = \langle a, b \rangle$ where

$$a = \epsilon(1, b), b = (a, b).$$

Examples: Lamplighter group

Grigorchuk and Zuk showed that the Lamplighter group $L = \mathbb{Z} \ltimes \mathbb{Z}_2^{\mathbb{Z}}$ can be realized as a group acting on a binary rooted tree as follows: $L = \langle a, b \rangle$ where

$$a = \epsilon(1, b), b = (a, b).$$

Theorem (Grigorchuk-Zuk)

Spectral measure of $\rho_L(M)$ is supported on a countable set $\{\cos(q\pi) : a \in \mathbb{Q}\}$ and so $\sigma(\rho_L(M)) = [-1, 1]$.

Examples: Lamplighter group

Grigorchuk and Zuk showed that the Lamplighter group $L = \mathbb{Z} \ltimes \mathbb{Z}_2^{\mathbb{Z}}$ can be realized as a group acting on a binary rooted tree as follows: $L = \langle a, b \rangle$ where

$$a = \epsilon(1, b), b = (a, b).$$

Theorem (Grigorchuk-Zuk)

Spectral measure of $\rho_L(M)$ is supported on a countable set $\{\cos(q\pi) : a \in \mathbb{Q}\}$ and so $\sigma(\rho_L(M)) = [-1, 1]$.

Theorem (Grigorchuk-Linnel-Schick-Zuk)

L is a counterexample to Strong Atiyah Conjecture.

Spectra of operators associated to actions on rooted trees

G acts on T_d spherically transitively if it is transitive on each level V_n of T_d .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Spectra of operators associated to actions on rooted trees

G acts on T_d spherically transitively if it is transitive on each level V_n of T_d .

Theorem (Bartholdi-Grigorchuk)

Let $G = \langle S \rangle$ be a finitely generated group acting spherically transitively on a d-regular rooted tree T_d . Then for all $x \in \partial T_d$ one has $\rho_x \prec \kappa$ i.e. for every $m \in \mathbb{C}[G]$ one has

 $\sigma(\rho_{\mathsf{x}}(m)) \subset \sigma(\kappa(m)).$

(日) (同) (三) (三) (三) (○) (○)

If moreover the action of G on Gx is amenable then $\rho_x \sim \kappa$.

General case

Theorem (D.-Grigorchuk)

For an ergodic measure class preserving action of a countable group G on a standard Borel space (X, μ) one has:

 $\rho_{\rm X} \sim \pi \prec \kappa$

for almost all $x \in X$. If moreover (G, X, μ) is hyperfinite then $\pi \sim \kappa$.

Related results

Our results imply

Theorem (Kuhn)

For an ergodic Zimmer amenable measure class preserving action of G on a probability measure space (X, μ) one has

 $\kappa \prec \lambda_{\mathsf{G}},$

where κ is the Koopman representation associated to the action of G and ρ_G is the regular representation.

Related results

Our results imply

Theorem (Kuhn)

For an ergodic Zimmer amenable measure class preserving action of G on a probability measure space (X, μ) one has

 $\kappa \prec \lambda_{G}$,

where κ is the Koopman representation associated to the action of G and ρ_G is the regular representation.

and the "only if" part of

Theorem (Pichot)

A measure class preserving action of a countable group G on a standard probability space $L^2(X, \mu)$ is hyperfinite if and only if for every $m \in l^1(G)$ with $||m||_1 = 1$ one has $||\pi(m)|| = 1$, where π is the corresponding groupoid representation.

Spectral measures

Theorem (Spectral Theorem)

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} . Then there exists a projector-valued measure $E(\lambda)$ supported on $\sigma(A)$ such that

$$A = \int \lambda \mathrm{d}E(\lambda).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Spectral measures

Theorem (Spectral Theorem)

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} . Then there exists a projector-valued measure $E(\lambda)$ supported on $\sigma(A)$ such that

$$A = \int \lambda \mathrm{d} E(\lambda).$$

Given the projector-valued spectral measure $E(\lambda)$ and a vector $\xi \in \mathcal{H}$ the spectral measure η_{ξ} of A corresponding to ξ is

$$\eta_{\xi}(\lambda) = (E(\lambda)\xi, \xi).$$

Kesten spectral measures

Let G be finitely generated group with a symmetric generating set S and $M = \sum_{s \in S} s \in \mathbb{C}[G]$.

Definition

Given an action of G on a set X the spectral measure λ_x of the operator $\rho_x(M)$ corresponding to the vector $\delta_x \in l^2(Gx)$ is called Kesten spectral measure.

Kesten spectral measures

Let G be finitely generated group with a symmetric generating set S and $M = \sum_{s \in S} s \in \mathbb{C}[G]$.

Definition

Given an action of G on a set X the spectral measure λ_x of the operator $\rho_x(M)$ corresponding to the vector $\delta_x \in l^2(Gx)$ is called Kesten spectral measure.

More generally, for any self-adjoint $m \in \mathbb{C}[G]$ we will consider the Kesten measure λ_x^m of $\rho_x(m)$.

Kesten spectral measures

Let G be finitely generated group with a symmetric generating set S and $M = \sum_{s \in S} s \in \mathbb{C}[G]$.

Definition

Given an action of G on a set X the spectral measure λ_x of the operator $\rho_x(M)$ corresponding to the vector $\delta_x \in l^2(Gx)$ is called Kesten spectral measure.

More generally, for any self-adjoint $m \in \mathbb{C}[G]$ we will consider the Kesten measure λ_x^m of $\rho_x(m)$.

Proposition (Kesten)

Let P_n be a decreasing sequence of finite index subgroups of G and $P = \cap P_n$. Then $\lambda_{G/P_n} \rightarrow \lambda_{G/P}$ weakly when $n \rightarrow \infty$.

Counting measures

For a bounded linear operator T and a subset $A \subset \mathbb{C}$ denote by N(T, A) the number of eigenvalues of T inside A (counting multiplicity).

Definition

For a subgroup H < G of finite index and a self-adjoint $m \in \mathbb{C}[G]$ introduce counting measures $\tau^m_{G/H}$ of $\rho_{G/H}(m)$:

$$\tau^m_{G/H}(A) = \frac{1}{|G/H|} N(\rho_{G/H}(m), A).$$

Counting measures

For a bounded linear operator T and a subset $A \subset \mathbb{C}$ denote by N(T, A) the number of eigenvalues of T inside A (counting multiplicity).

Definition

For a subgroup H < G of finite index and a self-adjoint $m \in \mathbb{C}[G]$ introduce counting measures $\tau^m_{G/H}$ of $\rho_{G/H}(m)$:

$$\tau^m_{G/H}(A) = \frac{1}{|G/H|} N(\rho_{G/H}(m), A).$$

If G is finitely generated with a symmetric set of generators S and $M = \frac{1}{|S|} \sum_{s \in S} s$ we set $\tau_{G/H} = \tau^M_{G/H}$.

Kesten-Neumann-Serre measures

Proposition (Bartholdi-Grigorchuk)

Let P_n be a decreasing sequence of finite index subgroups of a finitely generated group G. Then there exists a weak limit

 $\lim \tau_{G/P_n} = \tau_*.$

Kesten-Neumann-Serre measures

Proposition (Bartholdi-Grigorchuk)

Let P_n be a decreasing sequence of finite index subgroups of a finitely generated group G. Then there exists a weak limit

$$\lim \tau_{G/P_n} = \tau_*.$$

Definition

The measure τ_* is called Kesten-Neumann-Serre (KNS) measure.

Kesten-Neumann-Serre measures

Proposition (Bartholdi-Grigorchuk)

Let P_n be a decreasing sequence of finite index subgroups of a finitely generated group G. Then there exists a weak limit

 $\lim \tau_{G/P_n} = \tau_*.$

Definition

The measure τ_* is called Kesten-Neumann-Serre (KNS) measure.

Proposition

Let P_n be a decreasing sequence of finite index subgroups of a group G and $m \in \mathbb{C}[G]$ be self-adjoint. Then there exists a weak limit

$$\lim \tau^m_{G/P_n} = \tau^m_*.$$

Let $G < \operatorname{Aut}(T_d)$. For $x \in \partial T_d$ let $v_n = v_n(x) \in V_n$ be the sequence of vertices through which the path defined by x passes. Set $P_n = P_n(x) = \operatorname{St}_G(v_n)$.

Let $G < \operatorname{Aut}(T_d)$. For $x \in \partial T_d$ let $v_n = v_n(x) \in V_n$ be the sequence of vertices through which the path defined by x passes. Set $P_n = P_n(x) = \operatorname{St}_G(v_n)$.

Remark

1) Consider the action of G on V_n . The quasi-regular representation ρ_{G/P_n} is isomorphic to ρ_{v_n} . 2) The counting measures τ^*_{G/P_n} and the corresponding KNS measure τ^m_* do not depend on $x \in \partial T_d$.

Let $G < \operatorname{Aut}(T_d)$. For $x \in \partial T_d$ let $v_n = v_n(x) \in V_n$ be the sequence of vertices through which the path defined by x passes. Set $P_n = P_n(x) = \operatorname{St}_G(v_n)$.

Remark

1) Consider the action of G on V_n . The quasi-regular representation ρ_{G/P_n} is isomorphic to ρ_{v_n} .

2) The counting measures τ^*_{G/P_n} and the corresponding KNS measure τ^m_* do not depend on $x \in \partial T_d$.

Bartholdi and Grigorchuk caclulated KNS measures for Γ and some other automaton groups. They proposed a question under which conditions τ_* and λ_x coincide.

Proposition (Bartholdi-Grigorchuk)

For the action of Γ on T_2 for almost all $x \in T_2$ the KNS measure τ_* coincides with the Kesten measure λ_x .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proposition (Bartholdi-Grigorchuk)

For the action of Γ on T_2 for almost all $x \in T_2$ the KNS measure τ_* coincides with the Kesten measure λ_x .

Theorem (Grigorchuk-Zuk, Kambites-Silva-Steinberg)

Let G be an automaton group with a symmetric set of generators S acting on T_d spherically transitively and essentially freely. Then the KNS measure τ_* coincides with the Kesten measures of ρ_G .

Action of arbitrary group on a rooted tree

Proposition (Grigorchuk)

Every finitely generated residually finite group has a faithful spherically transitive action on a spherically homogeneous rooted tree.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Action of arbitrary group on a rooted tree

Proposition (Grigorchuk)

Every finitely generated residually finite group has a faithful spherically transitive action on a spherically homogeneous rooted tree.

Let G be any group and $\mathcal{P} = \{P_n\}_{n \in \mathbb{Z}_+}$ be a decreasing sequence of finite index subgroups of G with $P_0 = G$. Set $d_n = [P_{n-1} : P_n]$. Introduce a spherically homogeneous rooted tree $T_{\overline{d}}$:

•
$$V_n = G/P_n;$$

• gP_n is connected to fP_{n+1} iff $gP_n \supset fP_{n+1}$.

G acts on each level by left multiplication: $g(fP_n) = gfP_n$. Let μ_P be the $\operatorname{Aut}(T_{\overline{d}})$ -invariant measure on $X_P = \partial T_{\overline{d}}$

Relation between the measures

Given measure class preserving action of G on a standard Borel space (X, μ) consider the corresponding groupoid representation $\pi : G \to U(L^2(\mathcal{R}, \nu))$. Let $\xi = \delta_{x,y} \in L^2(\mathcal{R}, \nu)$. Fix $m \in \mathbb{C}[G]$. Introduce the spectral measure γ_{π}^m of $\pi(m)$ associated to ξ .

Relation between the measures

Given measure class preserving action of G on a standard Borel space (X, μ) consider the corresponding groupoid representation $\pi : G \to U(L^2(\mathcal{R}, \nu))$. Let $\xi = \delta_{x,y} \in L^2(\mathcal{R}, \nu)$. Fix $m \in \mathbb{C}[G]$. Introduce the spectral measure γ_{π}^m of $\pi(m)$ associated to ξ .One has:

$$\gamma^{m}_{\pi} = \int \lambda^{m}_{\mathsf{x}} \mathrm{d}\mu(\mathsf{x}).$$

Relation between the measures

Given measure class preserving action of G on a standard Borel space (X, μ) consider the corresponding groupoid representation $\pi : G \to U(L^2(\mathcal{R}, \nu))$. Let $\xi = \delta_{x,y} \in L^2(\mathcal{R}, \nu)$. Fix $m \in \mathbb{C}[G]$. Introduce the spectral measure γ_{π}^m of $\pi(m)$ associated to ξ .One has:

$$\gamma_{\pi}^{m} = \int \lambda_{x}^{m} \mathrm{d}\mu(x).$$

Theorem (D.)

Let G be a countable group, $m \in \mathbb{C}[G]$ be self-adjoint and $\mathcal{P} = \{P_n\}_{n \in \mathbb{Z}_+}$ be a decreasing sequence of finite index subgroups of G. Let π be the groupoid representation of G corresponding to the action on $(X_{\mathcal{P}}, \mu_{\mathcal{P}})$. The KNS measure τ^m_* coincides with the spectral measure γ^m_{π} .

Thank you!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●