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Vague prehistory

A theorem

Suppose that G is a group and H is its subgroup of finite index.
Then. . .

H contains a normal finite-index subgroup of G .

if G is finitely generated, then H contains a finite-index
subgroup.

if H is abelian, then G has a characteristic abelian finite-index
subgroup.

The last fact is tricky. . . The characteristic subgroup does not

necessarily lie inside H.
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Vague history. Some proofs

The last fact is tricky. . .

Theorem

if a group G has an abelian finite-index subgroup H, then G has a
characteristic abelian finite-index subgroup N.

Proof.

Let us try to take N1 = 〈ϕ(H) | ϕ ∈ AutG 〉. Well, N1 is of finite

index, characteristic but not abelian. Then, let us take

N2 = Z (N1). It is abelian. . . And characteristic. . . Is it of finite

index? Yes! Actually, N1 = 〈ϕ1(H), . . . , ϕk(H)〉 (because

|G : H| <∞). So, N2 = Z (N1) ⊇ ϕ1(H) ∩ · · · ∩ ϕk(H). And the

index is finite.
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Khukhro–Makarenko theorem

Khukhro–Makarenko theorem (2007)

If a group has a finite-index subgroup satisfying an outer
commutator identity, then this group also has a characteristic
finite-index subgroup satisfying the same identity.

An outer (or multilinear) commutator identity is an identity of the
form [. . . [x1, . . . , xt ] . . . ] = 1 with some meaningful arrangement of
brackets, where all letters x1, . . . , xt are different:

[[x , y ], z ] = 1; [[x , y ], [z , t]] = 1; [[[x , y ], [z , t]], u] = 1; . . .
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Is it easy to prove?

Khukhro–Makarenko theorem (2007)

If a group has a finite-index subgroup satisfying an outer
commutator identity, then this group also has a characteristic
finite-index subgroup satisfying the same identity.

Theorem (K, Melnikova, 2009)

There exist a one-page proof of the Khukhro–Makarenko theorem.
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Generalisation

Khukhro–Makarenko theorem for algebras (2008)

Let G be an algebra (possibly, non-associative) over a field. If G
contains a finite-codimensional subspace satisfying a multilinear
identity, then G contains a finite-codimensional subspace satisfying
the same identity and invariant under all automorphisms of G .

There are other analogues also. . .

Theorem (Khukhro, K, Makarenko, Melnikova, 2009)

. . . (Some theorem on multioperator groups that includes all these
variants of the Khukhro–Makarenko theorem).
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My favorite application

Very easy folklore theorem

If N / G , N is solvable of derived length n and G/N is solvable of
derived length m, then G is solvable of derived length n + m.

What about virtually solvable?

If N / G , N is virtually solvable and G/N is virtually solvable ,
then G is virtually solvable .
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Similar but. . .

Makarenko and Shumyatsky, 2012

Suppose that a locally finite group G contains a finite-index
subgroup N having normal (in G ) series

{1} = A0 ⊆ · · · ⊆ An = N

such that each quotient Ai/Ai−1 either satisfies a multilinear
commutator identity wi = 1 or is locally nilpotent. Then G
contains a characteristic subgroup H with the same property.

This is similar to the Khukhro–Makarenko theorem. . . but is not a

special case of our “general” theorem:

Theorem (Khukhro, K, Makarenko, Melnikova, 2009)

. . . (Some theorem on multioperator groups that includes all
known variants of the Khukhro–Makarenko theorem).
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The most general theorem

Theorem (K, Milentyeva, 2015)

. . . (Some theorem on lattices that includes all known variants of
the Khukhro–Makarenko theorem .)

And has some new corollaries.
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Applications. Groups, Series theorem.

Makarenko and Shumyatsky, 2012

Suppose that a locally finite group contains a finite-index subgroup
N having normal (in G ) series {1} = A0 ⊆ · · · ⊆ An = N such that
each quotient Ai/Ai−1 either satisfies a multilinear commutator
identity wi = 1 or is locally nilpotent. Then G contains a
characteristic subgroup with the same property.

K, Milentyeva, 2015

Here, locally finite may be replaced by any and

locally nilpotent may be replaced by finite, finite p-group, locally
finite, periodic, Noetherian, Artinian, nilpotent, solvable, virtually
solvable, locally polycyclic, group satisfying nontrivial identities,
group without nonabelian free subgroups, amenable,. . . .
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Applications. Groups, Series theorem.

Locally nilpotent, finite, finite p-group, locally finite, periodic,
Noetherian, Artinian, nilpotent, solvable, virtually solvable, locally
polycyclic, group satisfying nontrivial identities, group without
nonabelian free subgroups, amenable,. . .

What is this list?

This is just a (non-complete) list of radical formations, i.e. classes
of groups closed with respect to normal subgroups, finite products
of normal subgroups, homomorphic images, and subdirect
products.
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Applications. Groups. “Co-Khukhro–Makarenko theorem”

Khukhro–Makarenko theorem (2007)

If a group has a finite-index subgroup satisfying an outer
commutator identity, then this group also has a characteristic
finite-index subgroup satisfying the same identity.

Dual theorem (K, Milentyeva, 2015)

If a group G has a finite normal subgroup such that, in the
quotient group, a given universal positive closed first-order formula
holds, then G has a characteristic finite subgroup with the same
property.

Anton A. Klyachko Large and symmetric
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Ring-theoretic analogue

(K, Milentyeva, 2015)

If an algebra G has a finite-dimensional two-sided ideal such that
the quotient algebra satisfies a given universal positive closed
first-order formula (in the language of algebras over the given
field), then G has a characteristic finite-dimensional two-sided ideal
with the same property.
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Applications. Graphs

(K, Milentyeva, 2015)

Let {Γ1, . . . , Γl} be a finite set of finite graphs called forbidden and
considered up to isomorphism, and let G be some graph. If G

contains a finite set N of edges such that G \ N does not contain
forbidden subgraphs, then G contains a finite set of edges H which
is invariant with respect to all automorphisms of G and has the
same property: G \ H does not contain forbidden subgraphs.

Planarity theorem (K, Milentyeva, 2015)

If a graph can be made planar by removing a finite number of
edges, then it can be made planar by removing a finite set of edges
which is invariant with respect to all automorphisms of the graph.

Anton A. Klyachko Large and symmetric
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Estimates

Khukhro–Makarenko theorem (2007)

If a group has a finite-index subgroup N satisfying an outer
commutator identity, then this group also has a characteristic
finite-index subgroup H satisfying the same identity.

(K, Melnikova, 2009)

In addition,
log2 |G :H| 6 f t−1(log2 |G :N|)

if the subgroup N is normal and, therefore,
log2 |G :H| 6 f t−1(log2 |G :N|!) in the general case, where f k(x)
is the k-th iteration of the function f (x) = x(x + 1).

Similar estimates are valid in all other theorems except one.
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Estimates. The only exception

Planarity theorem (K, Milentyeva, 2015)

If a graph can be made planar by removing a finite set of edges N,
then it can be made planar by removing a finite set of edges H
which is invariant with respect to all automorphisms of the graph.

|H| cannot be estimated by a function of |N|.
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Estimates. The only exception

Planarity theorem (K, Milentyeva, 2015)

If a graph can be made planar by removing a finite set of edges N,
then it can be made planar by removing a finite set of edges H
which is invariant with respect to all automorphisms of the graph.

|H| cannot be estimated by a function of |N|.
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Picture

This is just the “union” of the 3 graphs above (where 3 plays the
role of large number).
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Picture

This is just the “union” of the 3 graphs above (where 3 plays the
role of large number).
We remove 5 edhes to make the graph planar.
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Picture

Yes. The obtained graph is planar; it is somorphic to
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Picture

But we cannot remove an automorphism invariant small set of
edges and make the graph planar.
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Picture

But we cannot remove an automorphism invariant small set of
edges and make the graph planar.
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Picture

But we cannot remove an automorphism invariant small set of
edges and make the graph planar. Because the Aut(G )-orbit of
each eges contains > 3 · 5 edges (and 3 represents a large number
here).
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Bonus

Problem for high school

In the three-dimensional Euclidean space, there is a set X . It is
known that we can remove a finite set of points from X in such a
way that no 2015 of the remaining points lie on the same sphere.
Show that this finite set can be chosen invariant under all
symmetries(= isometries) of X .
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Links and thanks

A lot of other applications can be found in our paper and the
literature cited therein.

Ant. A. Klyachko, Maria V. Milentyeva. Large and symmetric:
The Khukhro-Makarenko theorem on laws – without laws.
Journal of Algebra, 2015, 424, 222-241. See also
arXiv:1309.0571.

Thank you!
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