Infinitely presented graphical small cancellation groups

Dominik Gruber

Université de Neuchâtel

Stevens Group Theory International Webinar

December 10, 2015

Motivation

Graphical small cancellation theory (Gromov 2003)

Tool for constructing finitely generated groups with prescribed subgraphs in their Cayley graphs.

Gromov's monsters (Gromov '03, Arzhantseva-Delzant '08, Osajda '14)

- Contain expanders (infinite sequences of sparse highly connected finite graphs) in a "good" way.
- Do not coarsely embed into Hilbert space.
- Only known counterexamples to the Baum-Connes conjecture with coefficients.

Today: most general combinatorial interpretation of the theory!

Plan

1 Graphical small cancellation theory

2 Coarse embedding theorem

3 Acylindrical hyperbolicity theorem

Group defined by a labelled graph

Labelled graph

Graph Γ where every edge has orientation and label in S

Group defined by $\boldsymbol{\Gamma}$

$$G(\Gamma) := \langle S \mid \mathsf{labels} \; \mathsf{of} \; \mathsf{closed} \; \mathsf{paths} \; \mathsf{in} \; \Gamma
angle$$

Example:
$$\langle a, b, c \mid a^2 c^{-1} b^{-2} a^{-1} b^{-1}, a^2 b^{-1} c^{-2} a^{-1} c^{-1}, \dots \rangle$$

Group defined by a labelled graph

Labelled graph

Graph Γ where every edge has orientation and label in S

Group defined by Γ

$$G(\Gamma) := \langle S \mid \mathsf{labels} \; \mathsf{of} \; \mathsf{closed} \; \mathsf{paths} \; \mathsf{in} \; \Gamma
angle$$

Example: $\langle a, b, c \mid a^2 c^{-1} b^{-2} a^{-1} b^{-1}, a^2 b^{-1} c^{-2} a^{-1} c^{-1}, \dots \rangle$

Group defined by a labelled graph

Labelled graph

Graph Γ where every edge has orientation and label in S

Group defined by $\ensuremath{\mathsf{\Gamma}}$

$$G(\Gamma) := \langle S \mid \text{labels of closed paths in } \Gamma \rangle$$

Labelling induces map $\Gamma \to \operatorname{Cay}(G(\Gamma), S)$

 Γ_0 connected component, choose image of a base vertex. Map:

$$\Gamma_0 \rightarrow \operatorname{Cay}(G(\Gamma), S).$$

Well-defined since closed paths are sent to closed paths.

Caution! Map is not necessarily injective, quasi-isometric, ...

Graphical Gr(k) small cancellation condition

Piece

Reduced path p s.t. there exist paths p_1 and p_2 in Γ with the same label as p s.t. for every automorphism ϕ of Γ we have $\phi(p_1) \neq p_2$.

Example: classical C(k)-presentations

Classical small cancellation = graphical over cycle graphs

 $\langle S \mid R \rangle$ presentation, for $r \in R$, let γ_r be cycle graph labelled by r.

$$\Gamma_R := \bigsqcup_{r \in R} \gamma_r$$

 $\langle S \mid R \rangle$ classical C(k). $\iff \Gamma_R$ graphical Gr(k).

Classical pieces correspond to graphical pieces!

Method: van Kampen diagrams

Van Kampen diagram D over $\langle S \mid R \rangle$

Finite connected S-labelled graph embedded in \mathbb{R}^2 s.t. every bounded region (*face*) has boundary word in R. Boundary word of D is the word on the boundary of the unbounded region.

Van Kampen's Lemma

w is trivial in G. \iff There exists D with boundary word w.

$\langle S \mid R \rangle = \langle a, b \mid aba^{-1}b^{-1} \rangle$ $w = b^{-1}a^4b^2a^{-2}b^{-2}a^{-1}ba^{-1}$

Method: van Kampen diagrams

Van Kampen diagram D over $\langle S \mid R \rangle$

Finite connected S-labelled graph embedded in \mathbb{R}^2 s.t. every bounded region (*face*) has boundary word in *R*. Boundary word of *D* is the word on the boundary of the unbounded region.

Van Kampen's Lemma

w is trivial in G. \iff There exists D with boundary word w.

Arc in a diagram

Path where all vertices except the endpoints have degree 2.

Graphical van Kampen lemma (G 2012)

 Γ a Gr(6)-graph, w trivial in $G(\Gamma)$. Then, if D is a diagram for w over $\langle S |$ labels of *simple* closed paths in $\Gamma \rangle$ with a minimal number of edges, then all interior arcs of D are pieces.

Maps

- If maps are distinct, then p is a piece.
 - If maps coincide, then q₁q₂⁻¹ is image of a closed path in Γ. Remove p and fold edges in diagram to decompose into images of simple closed paths.

Graphical van Kampen lemma (G 2012)

 Γ a Gr(6)-graph, w trivial in $G(\Gamma)$. Then, if D is a diagram for w over $\langle S |$ labels of *simple* closed paths in $\Gamma \rangle$ with a minimal number of edges, then all interior arcs of D are pieces.

Maps

 $\begin{array}{ccc} \partial \Pi_1 \longrightarrow & \Gamma \\ \swarrow & & & \\ \rho & & \\ \partial \Pi_2 \longrightarrow & \Gamma \end{array}$

- If maps are distinct, then p is a piece.
- If maps coincide, then q₁q₂⁻¹ is image of a closed path in Γ. Remove p and fold edges in diagram to decompose into images of simple closed paths.

Graphical van Kampen lemma (G 2012)

 Γ a Gr(6)-graph, w trivial in $G(\Gamma)$. Then, if D is a diagram for w over $\langle S |$ labels of *simple* closed paths in $\Gamma \rangle$ with a minimal number of edges, then all interior arcs of D are pieces.

Maps

 $\begin{array}{ccc} \partial \Pi_1 \longrightarrow & \Gamma \\ \swarrow & & & \\ \rho & & \\ & & & \\ \partial \Pi_2 \longrightarrow & \Gamma \end{array}$

- If maps are distinct, then p is a piece.
- If maps coincide, then q₁q₂⁻¹ is image of a closed path in Γ. Remove p and fold edges in diagram to decompose into images of simple closed paths.

Graphical van Kampen lemma (G 2012)

 Γ a Gr(6)-graph, w trivial in $G(\Gamma)$. Then, if D is a diagram for w over $\langle S |$ labels of *simple* closed paths in $\Gamma \rangle$ with a minimal number of edges, then all interior arcs of D are pieces.

 Γ a Gr(k)-graph for $k \ge 6$. Then every interior face of D has at least k arcs.

Application: Gromov hyperbolicity

Theorem (G 2012)

 Γ a finite Gr(7)-labelled graph, S finite. Then $G(\Gamma)$ is hyperbolic.

Diagrams where all interior faces have \geq 7 arcs satisfy

 $|\mathsf{faces}(D)| \leq 8|\partial D|.$

Thus, $G(\Gamma)$ has finite presentation satisfying linear isoperimetric inequality.

Image author: Tomruen (Wikipedia); colors have been altered

Application: asphericity

Theorem (G 2012)

 Γ a Gr(6)-labelled graph with no non-trivial label-preserving automorphisms. Then $G(\Gamma)$ has an aspherical presentation complex and, hence, is torsion-free.

Idea: Diagrams where all faces have \geq 6 arcs cannot tessellate the 2-sphere.

Remark. If $\Gamma = \Gamma_R$ with $\langle S \mid R \rangle$ classical C(6), then no automorphisms in $\Gamma_R \leftrightarrow$ no proper powers in R.

Finitely presented graphical small cancellation groups

New torsion-free hyperbolic groups

- Property (T) groups (Gromov '03, Silberman '03, Ollivier-Wise '07).
- Non-unique product groups (Rips-Segev '87, Steenbock '15, G-Martin-Steenbock '15).

Plan

2 Coarse embedding theorem

3 Acylindrical hyperbolicity theorem

Coarse embedding theorem

Theorem (G 2012)

 $\Gamma = \sqcup_{n \in \mathbb{N}} \Gamma_n$ a Gr(6)-graph, S finite, each Γ_n finite. Then Γ coarsely embeds into $Cay(G(\Gamma), S)$.

Coarse embedding

A map $f : \sqcup_{n \in \mathbb{N}} X_n \to Y$, where X_n , Y are metric spaces, is a CE if for all sequences $(x_k, x'_k) \in \sqcup_{n \in \mathbb{N}} X_n \times X_n$ we have

$$d(x_k, x'_k) \to \infty \iff d(f(x_k), f(x'_k)) \to \infty$$

Applications

- F.g. group with CE expander is a counterexample to Baum-Connes conjecture with coefficients, does not CE into *H*.
- F.g. group with CE large girth sequence of 3-regular graphs is not coarsely amenable.

Greendlinger's lemma

Lemma

D a diagram with at least 2 faces s.t. every interior face has at least 6 arcs. Then *D* has at least 2 faces that each intersect ∂D in a (connected!) arc and each have at most 3 interior arcs.

Proof: rewrite Euler characteristic V - E + F = 1.

Step 1: each component injects

Lemma (G 2012)

Let Γ_0 be a connected component of Gr(6)-graph Γ . Then any label-preserving map $f : \Gamma_0 \to \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with f(x) = f(y). Let p path $x \rightarrow y$ s.t. \exists diag. D for $\ell(p)$ whose number of edges is minimal among all choices for p.

 $\begin{array}{l} \Pi \mbox{ face with arc } q = \Pi \cap \partial D \mbox{ subpath of } \partial D. \mbox{ Maps } q \to p \to \Gamma \mbox{ and } q \to \partial \Pi \to \Gamma. \mbox{ If maps are distinct, } q \mbox{ is a piece. If maps coincide, } remove q and replace it by q' in D \to another path p' : $x \to y$, contradicting minimality. $\Rightarrow q piece & Π more than 3 interior arcs. \\ \mbox{Dominik Gruber (Neuchâtel)} & 18/30 \end{array}$

Step 1: each component injects

Lemma (G 2012)

Let Γ_0 be a connected component of Gr(6)-graph Γ . Then any label-preserving map $f : \Gamma_0 \to \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with f(x) = f(y). Let p path $x \rightarrow y$ s.t. \exists diag. D for $\ell(p)$ whose number of edges is minimal among all choices for p.

 $\begin{array}{l} \Pi \mbox{ face with arc } q = \Pi \cap \partial D \mbox{ subpath of } \partial D. \mbox{ Maps } q \to p \to \Gamma \mbox{ and } q \to \partial \Pi \to \Gamma. \mbox{ If maps are distinct, } q \mbox{ is a piece. If maps coincide, } remove q and replace it by q' in D \to another path p' : $x \to y$, contradicting minimality. $\Rightarrow q piece & Π more than 3 interior arcs. \\ \mbox{Dominik Gruber (Neuchâtel)} & 18/30 \end{array}$

Step 1: each component injects

Lemma (G 2012)

Let Γ_0 be a connected component of Gr(6)-graph Γ . Then any label-preserving map $f : \Gamma_0 \to \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with f(x) = f(y). Let p path $x \rightarrow y$ s.t. \exists diag. D for $\ell(p)$ whose number of edges is minimal among all choices for p.

- D has at least 1 face because the labelling of Γ is reduced.
- Every face with ∏ ∩ ∂D connected has more than 3 interior arcs. (In particular, D has more than 1 face.)
- Contradiction to Greendlinger's lemma ⇒ x and y do not exist ⇒ f is injective.

Step 2: prove coarse embedding

Theorem (G 2012)

 $\Gamma = \sqcup_{n \in \mathbb{N}} \Gamma_n$ a Gr(6)-graph, S finite, each Γ_n finite. Then Γ coarsely embeds into $Cay(G(\Gamma), S)$.

Embedded does not necessarily imply coarsely embedded:

Arguments as before show that diagrams D have no faces.

Gr(k)-labellings exist

Theorem (Osajda 2014)

Let $k \ge 0$ and $(\Gamma_i)_{i \in \mathbb{N}}$ be a sequence of finite connected graphs with vertex degree $\le d$ such that

- $|\Gamma_i| \to \infty$,
- diam (Γ_i) /girth (Γ_i) < C for some C < ∞

Then there exist a finite set S and an infinite subsequence $(\Gamma_{j_i})_{i \in \mathbb{N}}$ such that $\sqcup_{i \in I} \Gamma_{j_i}$ admits a Gr(k)-labelling by S.

This produces

- Only known groups with coarsely embedded expanders, some even isometrically embedded (Ollivier '06).
- Only known non-coarsely amenable groups with the Haagerup property (Arzhantseva-Osajda '14).

Coarse embedding theorem

Theorem (G 2012)

 $\Gamma = \sqcup_{n \in \mathbb{N}} \Gamma_n$ a Gr(6)-graph, S finite, each Γ_n finite. Then Γ coarsely embeds into $Cay(G(\Gamma), S)$.

Research directions.

- *Gr*(6)-condition weakest possible condition to get coarse embedding ~→ explicit Gromov's monsters?
- New approach: use graphs with many automorphisms, e.g. sequences of finite Cayley graphs.

Plan

2 Coarse embedding theorem

Acylindrical hyperbolicity theorem

Theorem (G-Sisto 2014)

Let Γ be a Gr(7)-labelled graph whose components are finite. Then $G(\Gamma)$ is either acylindrically hyperbolic or virtually cyclic.

Some consequences of acylindrical hyperbolicity

- G is SQ-universal.
- All asymptotic cones of *G* have cut-points.
- $C^*_{red}(G)$ is simple if G has no finite normal subgroups.

Acylindrical hyperbolicity

G is acylindrically hyperbolic if it is not virtually cyclic and acts by isometries on a Gromov hyperbolic space s.t. there exists a WPD element $g \in G$.

The hyperbolic space Y

Theorem (GS 2014)

Γ a Gr(7)-labelled graph, W = all words read on Γ. Then $Y := Cay(G(Γ), S \cup W)$ is Gromov hyperbolic.

Proposition (GS 2014)

 $G = \langle S|R \rangle$, $W = \{$ subwords of elements of $R \}$. If $x \in F(S)$, let $|x|_{S \cup W}$ least k s.t. $x = w_1^{\pm 1} w_2^{\pm 1} \dots w_k^{\pm 1}$, $w_i \in S \cup W$. If $\exists C > 0$:

 $\forall x \in F(S)$ representing $1 \in G$: Area_R(x) < C|x|_{S \cup W},

then $Cay(G, S \cup W)$ is hyperbolic.

The WPD element

WPD element

g is a WPD element for the action of G on Y if:

- g is hyperbolic, i.e. $\mathbb{Z} \to Y, z \mapsto g^z$ is a QI-embedding.
- g satisfies the WPD condition, i.e. for every K > 0 there exists $N_0 > 0$ such that for all $N \ge N_0$:

 $\{h \in G \mid d_Y(h,1) < K, d_Y(g^{-N}hg^N,1) < K\}$ is finite.

The WPD element: hyperbolicity

Sketch: definition of the WPD element g

 Γ_1 and Γ_2 distinct components of Γ , p_1 path in Γ_1 and p_2 path in Γ_2 such that both are not pieces. Define $g := \ell(p_1)\ell(p_2)$.

Sketch: hyperbolicity of g.

 $\ell(p_1)\ell(p_2)$ cannot be read on any component of Γ . \Rightarrow A path in Cay($G(\Gamma), S$) labelled by $(\ell(p_1)\ell(p_2))^N$ is not contained in $\ll N$ embedded components of Γ . Metric in Y counts how many embedded components of Γ one has to go through. \Rightarrow $d(1, g^N)_Y \approx N$.

The WPD condition

To prove WPD condition, study quadrangular diagrams:

Acylindrical hyperbolicity theorem

Theorem (GS 2014)

Let Γ be a Gr(7)-labelled graph whose components are finite. Then $G(\Gamma)$ is acylindrically hyperbolic or virtually cyclic.

Research directions.

- Action of Gromov's monsters on cone-off space → positive result about Baum-Connes?
- Study cone-off space for other limits of hyperbolic groups.
- Use (graphical) small cancellation groups to study class of acylindrically hyperbolic groups.

Conclusion

Graphical small cancellation theory

- General tool for constructing groups with prescribed (coarsely) embedded infinite subgraphs and, hence, extreme analytic properties.
- Lets us study these groups through actions on concrete hyperbolic spaces.
- Provides new examples for studying the class of acylindrically hyperbolic groups.

Further reading

- D. Gruber, Groups with graphical C(6) and C(7) small cancellation presentations, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051–2078.
- D. Gruber, *Infinitely presented C*(6)-*groups are SQ-universal*, J. London Math. Soc. **92** (2015), no. 1, 178–201.
- D. Gruber, A. Martin, and M. Steenbock, Finite index subgroups without unique product in graphical small cancellation groups, Bull. London Math. Soc. 47 (2015), no. 4, 631–638.
- D. Gruber and A. Sisto, *Infinitely presented graphical small cancellation groups are acylindrically hyperbolic*, arXiv:1408.4488 (2014).