# Infinitely presented graphical small cancellation groups 

Dominik Gruber<br>Université de Neuchâtel<br>Stevens Group Theory International Webinar

December 10, 2015

UNIVERSITĖ DE
NEUCHÂTEL

## Motivation

## Graphical small cancellation theory (Gromov 2003)

Tool for constructing finitely generated groups with prescribed subgraphs in their Cayley graphs.

Gromov's monsters (Gromov '03, Arzhantseva-Delzant '08, Osajda '14)

- Contain expanders (infinite sequences of sparse highly connected finite graphs) in a "good" way.
- Do not coarsely embed into Hilbert space.
- Only known counterexamples to the Baum-Connes conjecture with coefficients.

Today: most general combinatorial interpretation of the theory!

## Plan

1 Graphical small cancellation theory

2 Coarse embedding theorem

3 Acylindrical hyperbolicity theorem

## Group defined by a labelled graph

## Labelled graph

Graph 「 where every edge has orientation and label in $S$

## Group defined by $\Gamma$

$$
G(\Gamma):=\langle S| \text { labels of closed paths in } \Gamma\rangle
$$

Example: $\left\langle a, b, c \mid a^{2} c^{-1} b^{-2} a^{-1} b^{-1}, a^{2} b^{-1} c^{-2} a^{-1} c^{-1}, \ldots\right\rangle$


Dominik Gruber (Neuchâtel)

## Group defined by a labelled graph

## Labelled graph

Graph $\Gamma$ where every edge has orientation and label in $S$

## Group defined by $\Gamma$

$$
G(\Gamma):=\langle S| \text { labels of closed paths in } \Gamma\rangle
$$

Example: $\left\langle a, b, c \mid a^{2} c^{-1} b^{-2} a^{-1} b^{-1}, a^{2} b^{-1} c^{-2} a^{-1} c^{-1}, \ldots\right\rangle$


Dominik Gruber (Neuchâtel)

## Group defined by a labelled graph

## Labelled graph

Graph $\Gamma$ where every edge has orientation and label in $S$
Group defined by $\Gamma$

$$
G(\Gamma):=\langle S| \text { labels of closed paths in } \Gamma\rangle
$$

Labelling induces map $\Gamma \rightarrow \operatorname{Cay}(G(\Gamma), S)$
$\Gamma_{0}$ connected component, choose image of a base vertex. Map:

$$
\Gamma_{0} \rightarrow \operatorname{Cay}(G(\Gamma), S) .
$$

Well-defined since closed paths are sent to closed paths.
Caution! Map is not necessarily injective, quasi-isometric, ...
Dominik Gruber (Neuchâtel)

## Graphical $\operatorname{Gr}(k)$ small cancellation condition

## Piece

Reduced path $p$ s.t. there exist paths $p_{1}$ and $p_{2}$ in $\Gamma$ with the same label as $p$ s.t. for every automorphism $\phi$ of $\Gamma$ we have $\phi\left(p_{1}\right) \neq p_{2}$.

- pieces: $\xrightarrow[{\xrightarrow{b}}]{\xrightarrow{a}}$
- $\operatorname{girth}(\Gamma)=7$
-「 satisfies $\operatorname{Gr}(7)$-condition



## Graphical $\operatorname{Gr}(k)$-condition

- No simple closed path is concatenation of fewer than $k$ pieces.
- The labelling is reduced (no: $\xrightarrow{s} \cdot \stackrel{s}{\longleftrightarrow}, \stackrel{s}{\longleftrightarrow} \cdot \stackrel{s}{\longleftrightarrow}$ ).


## Example: classical $C(k)$-presentations

Classical small cancellation = graphical over cycle graphs
$\langle S \mid R\rangle$ presentation, for $r \in R$, let $\gamma_{r}$ be cycle graph labelled by $r$.

$$
\Gamma_{R}:=\bigsqcup_{r \in R} \gamma_{r}
$$

$\langle S \mid R\rangle$ classical $C(k) \Longleftrightarrow \Gamma_{R}$ graphical $\operatorname{Gr}(k)$.


Classical pieces correspond to graphical pieces!

## Method: van Kampen diagrams

## Van Kampen diagram $D$ over $\langle S \mid R\rangle$

Finite connected $S$-labelled graph embedded in $\mathbb{R}^{2}$ s.t. every bounded region (face) has boundary word in $R$. Boundary word of $D$ is the word on the boundary of the unbounded region.

## Van Kampen's Lemma

$w$ is trivial in $G . \Longleftrightarrow$ There exists $D$ with boundary word $w$.


$$
\begin{aligned}
& \langle S \mid R\rangle=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle \\
& w=b^{-1} a^{4} b^{2} a^{-2} b^{-2} a^{-1} b a^{-1}
\end{aligned}
$$

## Method: van Kampen diagrams

## Van Kampen diagram $D$ over $\langle S \mid R\rangle$

Finite connected $S$-labelled graph embedded in $\mathbb{R}^{2}$ s.t. every bounded region (face) has boundary word in $R$. Boundary word of $D$ is the word on the boundary of the unbounded region.

## Van Kampen's Lemma

$w$ is trivial in $G . \Longleftrightarrow$ There exists $D$ with boundary word $w$.

## Arc in a diagram

Path where all vertices except the endpoints have degree 2.


## Small cancellation diagrams

## Graphical van Kampen lemma (G 2012)

$\Gamma$ a $G r(6)$-graph, $w$ trivial in $G(\Gamma)$. Then, if $D$ is a diagram for $w$ over $\langle S|$ labels of simple closed paths in $\Gamma\rangle$ with a minimal number of edges, then all interior arcs of $D$ are pieces.


Maps
$\partial \Pi_{1} \longrightarrow$ ■ If maps are distinct, then $p$ is a piece.


- If maps coincide, then $q_{1} q_{2}^{-1}$ is image of a closed path in $\Gamma$. Remove $p$ and fold edges in diagram to decompose into images of simple closed paths.


## Small cancellation diagrams

## Graphical van Kampen lemma (G 2012)

「 a $G r(6)$-graph, $w$ trivial in $G(\Gamma)$. Then, if $D$ is a diagram for $w$ over $\langle S|$ labels of simple closed paths in $\Gamma\rangle$ with a minimal number of edges, then all interior arcs of $D$ are pieces.


Maps
$\partial \Pi_{1} \longrightarrow$ ■ If maps are distinct, then $p$ is a piece.


- If maps coincide, then $q_{1} q_{2}^{-1}$ is image of a closed path in $\Gamma$. Remove $p$ and fold edges in diagram to decompose into images of simple closed paths.


## Small cancellation diagrams

## Graphical van Kampen lemma (G 2012)

「 a $G r(6)$-graph, $w$ trivial in $G(\Gamma)$. Then, if $D$ is a diagram for $w$ over $\langle S|$ labels of simple closed paths in $\Gamma\rangle$ with a minimal number of edges, then all interior arcs of $D$ are pieces.


Maps
$\partial \Pi_{1} \longrightarrow$ ■ If maps are distinct, then $p$ is a piece.


- If maps coincide, then $q_{1} q_{2}^{-1}$ is image of a closed path in $\Gamma$. Remove $p$ and fold edges in diagram to decompose into images of simple closed paths.


## Small cancellation diagrams

## Graphical van Kampen lemma (G 2012)

$\Gamma$ a $G r(6)$-graph, $w$ trivial in $G(\Gamma)$. Then, if $D$ is a diagram for $w$ over $\langle S|$ labels of simple closed paths in $\Gamma\rangle$ with a minimal number of edges, then all interior arcs of $D$ are pieces.
$\Gamma$ a $\operatorname{Gr}(k)$-graph for $k \geq 6$. Then every interior face of $D$ has at least $k$ arcs.


## Application: Gromov hyperbolicity

## Theorem (G 2012)

$\Gamma$ a finite $G r(7)$-labelled graph, $S$ finite. Then $G(\Gamma)$ is hyperbolic.

Diagrams where all interior faces have $\geq 7$ arcs satisfy

$$
|\operatorname{faces}(D)| \leq 8|\partial D|
$$

Thus, $G(\Gamma)$ has finite presentation satisfying linear isoperimetric inequality.


Image author: Tomruen (Wikipedia); colors have been altered

## Application: asphericity

## Theorem (G 2012)

「 a $\operatorname{Gr}(6)$-labelled graph with no non-trivial label-preserving automorphisms. Then $G(\Gamma)$ has an aspherical presentation complex and, hence, is torsion-free.

Idea: Diagrams where all faces have $\geq 6$ arcs cannot tessellate the 2 -sphere.

Remark. If $\Gamma=\Gamma_{R}$ with $\langle S \mid R\rangle$ classical $C(6)$, then no automorphisms in $\Gamma_{R} \leftrightarrow$ no proper powers in $R$.


Finitely presented graphical small cancellation groups

New torsion-free hyperbolic groups

- Property (T) groups (Gromov '03, Silberman '03, Ollivier-Wise '07).
■ Non-unique product groups (Rips-Segev '87, Steenbock '15, G-Martin-Steenbock '15).


## Plan

1 Graphical small cancellation theory
2. Coarse embedding theorem

## 3 Acylindrical hyperbolicity theorem

Dominik Gruber (Neuchâtel)
$15 / 30$

## Coarse embedding theorem

## Theorem (G 2012)

$\Gamma=\sqcup_{n \in \mathbb{N}} \Gamma_{n}$ a $G r(6)$-graph, $S$ finite, each $\Gamma_{n}$ finite. Then $\Gamma$ coarsely embeds into $\operatorname{Cay}(G(\Gamma), S)$.

## Coarse embedding

A map $f: \sqcup_{n \in \mathbb{N}} X_{n} \rightarrow Y$, where $X_{n}, Y$ are metric spaces, is a CE if for all sequences $\left(x_{k}, x_{k}^{\prime}\right) \in \sqcup_{n \in \mathbb{N}} X_{n} \times X_{n}$ we have

$$
d\left(x_{k}, x_{k}^{\prime}\right) \rightarrow \infty \Longleftrightarrow d\left(f\left(x_{k}\right), f\left(x_{k}^{\prime}\right)\right) \rightarrow \infty
$$

## Applications

- F.g. group with CE expander is a counterexample to BaumConnes conjecture with coefficients, does not CE into $\mathcal{H}$.
- F.g. group with CE large girth sequence of 3-regular graphs is not coarsely amenable.


## Greendlinger's lemma

## Lemma

$D$ a diagram with at least 2 faces s.t. every interior face has at least 6 arcs. Then $D$ has at least 2 faces that each intersect $\partial D$ in a (connected!) arc and each have at most 3 interior arcs.

Proof: rewrite Euler characteristic $V-E+F=1$.


## Step 1: each component injects

## Lemma (G 2012)

Let $\Gamma_{0}$ be a connected component of $\operatorname{Gr}(6)$-graph $\Gamma$. Then any label-preserving map $f: \Gamma_{0} \rightarrow \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with $f(x)=f(y)$. Let $p$ path $x \rightarrow y$ s.t. $\exists$ diag. $D$ for $\ell(p)$ whose number of edges is minimal among all choices for $p$.

$\Pi$ face with arc $q=\Pi \cap \partial D$ subpath of $\partial D$. Maps $q \rightarrow p \rightarrow \Gamma$ and $q \rightarrow \partial \Pi \rightarrow \Gamma$. If maps are distinct, $q$ is a piece. If maps coincide, remove $q$ and replace it by $q^{\prime}$ in $D \rightarrow$ another path $p^{\prime}: x \rightarrow y$, contradicting minimality. $\Rightarrow q$ piece \& $\Pi$ more than 3 interior arcs.

## Step 1: each component injects

## Lemma (G 2012)

Let $\Gamma_{0}$ be a connected component of $\operatorname{Gr}(6)$-graph $\Gamma$. Then any label-preserving map $f: \Gamma_{0} \rightarrow \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with $f(x)=f(y)$. Let $p$ path $x \rightarrow y$ s.t. $\exists$ diag. $D$ for $\ell(p)$ whose number of edges is minimal among all choices for $p$.

$\Pi$ face with arc $q=\Pi \cap \partial D$ subpath of $\partial D$. Maps $q \rightarrow p \rightarrow \Gamma$ and $q \rightarrow \partial \Pi \rightarrow \Gamma$. If maps are distinct, $q$ is a piece. If maps coincide, remove $q$ and replace it by $q^{\prime}$ in $D \rightarrow$ another path $p^{\prime}: x \rightarrow y$, contradicting minimality. $\Rightarrow q$ piece \& $\Pi$ more than 3 interior arcs.

## Step 1: each component injects

## Lemma (G 2012)

Let $\Gamma_{0}$ be a connected component of $\operatorname{Gr}(6)$-graph $\Gamma$. Then any label-preserving map $f: \Gamma_{0} \rightarrow \operatorname{Cay}(G(\Gamma), S)$ is injective.

Assume $x \neq y$ with $f(x)=f(y)$. Let $p$ path $x \rightarrow y$ s.t. $\exists$ diag. $D$ for $\ell(p)$ whose number of edges is minimal among all choices for $p$.

■ $D$ has at least 1 face because the labelling of $\Gamma$ is reduced.

- Every face with $\Pi \cap \partial D$ connected has more than 3 interior arcs. (In particular, $D$ has more than 1 face.)
- Contradiction to Greendlinger's lemma $\Rightarrow x$ and $y$ do not exist $\Rightarrow f$ is injective.


## Step 2: prove coarse embedding

## Theorem (G 2012)

$\Gamma=\sqcup_{n \in \mathbb{N}} \Gamma_{n}$ a $\operatorname{Gr}(6)$-graph, $S$ finite, each $\Gamma_{n}$ finite. Then $\Gamma$ coarsely embeds into $\operatorname{Cay}(G(\Gamma), S)$.

Embedded does not necessarily imply coarsely embedded:


Arguments as before show that diagrams $D$ have no faces.

## $\operatorname{Gr}(k)$-labellings exist

## Theorem (Osajda 2014)

Let $k \geq 0$ and $\left(\Gamma_{i}\right)_{i \in \mathbb{N}}$ be a sequence of finite connected graphs with vertex degree $\leq d$ such that

- $\left|\Gamma_{i}\right| \rightarrow \infty$,
- $\operatorname{diam}\left(\Gamma_{i}\right) / \operatorname{girth}\left(\Gamma_{i}\right)<C$ for some $C<\infty$

Then there exist a finite set $S$ and an infinite subsequence $\left(\Gamma_{j_{i}}\right)_{i \in \mathbb{N}}$ such that $\sqcup_{i \in I} \Gamma_{j_{i}}$ admits a $\operatorname{Gr}(k)$-labelling by $S$.

## This produces

- Only known groups with coarsely embedded expanders, some even isometrically embedded (Ollivier '06).
- Only known non-coarsely amenable groups with the Haagerup property (Arzhantseva-Osajda '14).


## Coarse embedding theorem

## Theorem (G 2012)

$\Gamma=\sqcup_{n \in \mathbb{N}} \Gamma_{n}$ a $G r(6)$-graph, $S$ finite, each $\Gamma_{n}$ finite. Then $\Gamma$ coarsely embeds into $\operatorname{Cay}(G(\Gamma), S)$.

Research directions.

- $\operatorname{Gr}(6)$-condition weakest possible condition to get coarse embedding $\rightsquigarrow$ explicit Gromov's monsters?
■ New approach: use graphs with many automorphisms, e.g. sequences of finite Cayley graphs.


## Plan

1 Graphical small cancellation theory

2 Coarse embedding theorem

3 Acylindrical hyperbolicity theorem

## Acylindrical hyperbolicity theorem

## Theorem (G-Sisto 2014)

Let $\Gamma$ be a $\operatorname{Gr}(7)$-labelled graph whose components are finite. Then $G(\Gamma)$ is either acylindrically hyperbolic or virtually cyclic.

Some consequences of acylindrical hyperbolicity

- $G$ is $S Q$-universal.
- All asymptotic cones of $G$ have cut-points.
- $C_{\text {red }}^{*}(G)$ is simple if $G$ has no finite normal subgroups.


## Acylindrical hyperbolicity

$G$ is acylindrically hyperbolic if it is not virtually cyclic and acts by isometries on a Gromov hyperbolic space s.t. there exists a WPD element $g \in G$.

## The hyperbolic space $Y$

## Theorem (GS 2014)

「 a $\operatorname{Gr}(7)$-labelled graph, $W=$ all words read on $\Gamma$. Then $Y:=\operatorname{Cay}(G(\Gamma), S \cup W)$ is Gromov hyperbolic.



## Proposition (GS 2014)

$G=\langle S \mid R\rangle, W=\{$ subwords of elements of $R\}$. If $x \in F(S)$, let $|x| s \cup w$ least $k$ s.t. $x=w_{1}^{ \pm 1} w_{2}^{ \pm 1} \ldots w_{k}^{ \pm 1}, w_{i} \in S \cup W$. If $\exists C>0$ :
$\forall x \in F(S)$ representing $1 \in G: \operatorname{Area}_{R}(x)<C|x|_{S \cup W}$, then $\operatorname{Cay}(G, S \cup W)$ is hyperbolic.

## The WPD element

## WPD element

$g$ is a WPD element for the action of $G$ on $Y$ if:
$\square g$ is hyperbolic, i.e. $\mathbb{Z} \rightarrow Y, z \mapsto g^{z}$ is a QI-embedding.

- $g$ satisfies the WPD condition, i.e. for every $K>0$ there exists $N_{0}>0$ such that for all $N \geq N_{0}$ :

$$
\left\{h \in G \mid d_{Y}(h, 1)<K, d_{Y}\left(g^{-N} h g^{N}, 1\right)<K\right\} \text { is finite. }
$$

## The WPD element: hyperbolicity

## Sketch: definition of the WPD element $g$ <br> $\Gamma_{1}$ and $\Gamma_{2}$ distinct components of $\Gamma$, $p_{1}$ path in $\Gamma_{1}$ and $p_{2}$ path in <br> $\Gamma_{2}$ such that both are not pieces. Define $g:=\ell\left(p_{1}\right) \ell\left(p_{2}\right)$.

Sketch: hyperbolicity of $g$.
$\ell\left(p_{1}\right) \ell\left(p_{2}\right)$ cannot be read on any component of $\Gamma . \Rightarrow$ A path in Cay $(G(\Gamma), S)$ labelled by $\left(\ell\left(p_{1}\right) \ell\left(p_{2}\right)\right)^{N}$ is not contained in $\ll N$ embedded components of $\Gamma$. Metric in $Y$ counts how many embedded components of $\Gamma$ one has to go through. $\Rightarrow$ $d\left(1, g^{N}\right)_{Y} \approx N$.

## The WPD condition

To prove WPD condition, study quadrangular diagrams:


## Acylindrical hyperbolicity theorem

## Theorem (GS 2014)

Let $\Gamma$ be a $\operatorname{Gr}(7)$-labelled graph whose components are finite. Then $G(\Gamma)$ is acylindrically hyperbolic or virtually cyclic.

## Research directions.

- Action of Gromov's monsters on cone-off space $\rightsquigarrow$ positive result about Baum-Connes?
- Study cone-off space for other limits of hyperbolic groups.

■ Use (graphical) small cancellation groups to study class of acylindrically hyperbolic groups.

## Conclusion

## Graphical small cancellation theory

- General tool for constructing groups with prescribed (coarsely) embedded infinite subgraphs and, hence, extreme analytic properties.
- Lets us study these groups through actions on concrete hyperbolic spaces.
- Provides new examples for studying the class of acylindrically hyperbolic groups.


## Further reading

目 D. Gruber, Groups with graphical $C(6)$ and $C(7)$ small cancellation presentations, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2051-2078.

R D. Gruber, Infinitely presented $C(6)$-groups are $S Q$-universal, J. London Math. Soc. 92 (2015), no. 1, 178-201.
D. Gruber, A. Martin, and M. Steenbock, Finite index subgroups without unique product in graphical small cancellation groups, Bull. London Math. Soc. 47 (2015), no. 4, 631-638.
圊 D. Gruber and A. Sisto, Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, arXiv:1408.4488 (2014).

