Conjugacy growth and hyperbolicity

Laura Ciobanu

University of Neuchâtel, Switzerland

Webinar, December 3, 2015

- 2. Conjugacy growth series in groups
- 3. Rivin's conjecture for hyperbolic groups
- 4. Conjugacy representatives in acylindrically hyperbolic groups

Counting conjugacy classes

Let G be a group with finite generating set X.

• Denote by [g] the conjugacy class of $g \in G$

Counting conjugacy classes

Let G be a group with finite generating set X.

▶ Denote by [g] the conjugacy class of g ∈ G and by |g|_c the conjugacy length of [g], where |g|_c is the length of the shortest h ∈ [g], with respect to X.

Counting conjugacy classes

Let G be a group with finite generating set X.

▶ Denote by [g] the conjugacy class of g ∈ G and by |g|_c the conjugacy length of [g], where |g|_c is the length of the shortest h ∈ [g], with respect to X.

The conjugacy growth function is then

$$\sigma_{G,X}(n) := \sharp\{[g] \in G \mid |g|_c = n\}.$$

► Guba-Sapir (2010): asymptotics of the conjugacy growth function for BS(1, n), the Heisenberg group on two generators, diagram groups, some HNN extensions.

- Guba-Sapir (2010): asymptotics of the conjugacy growth function for BS(1, n), the Heisenberg group on two generators, diagram groups, some HNN extensions.
- Conjecture (Guba-Sapir): most (excluding the Osin or Ivanov type 'monsters') groups of standard exponential growth should have exponential conjugacy growth.

- Guba-Sapir (2010): asymptotics of the conjugacy growth function for BS(1, n), the Heisenberg group on two generators, diagram groups, some HNN extensions.
- Conjecture (Guba-Sapir): most (excluding the Osin or Ivanov type 'monsters') groups of standard exponential growth should have exponential conjugacy growth.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): uniform exponential conjugacy growth for f.g. linear (non virt. nilpotent) groups.

- Guba-Sapir (2010): asymptotics of the conjugacy growth function for BS(1, n), the Heisenberg group on two generators, diagram groups, some HNN extensions.
- Conjecture (Guba-Sapir): most (excluding the Osin or Ivanov type 'monsters') groups of standard exponential growth should have exponential conjugacy growth.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): uniform exponential conjugacy growth for f.g. linear (non virt. nilpotent) groups.
- Hull-Osin (2013): conjugacy growth not quasi-isometry invariant. Also, it is possible to construct groups with a prescribed conjugacy growth function.

A slight modification of the conjugacy growth function (including only the non-powers) appears in geometry:

A slight modification of the conjugacy growth function (including only the non-powers) appears in geometry:

- counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives,

A slight modification of the conjugacy growth function (including only the non-powers) appears in geometry:

- counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives, via quasi-isometries, good (exponential) asymptotics for $\sigma(n)$ for the fundamental group of M (Margulis, ...).

Let G be a group with finite generating set X.

► The conjugacy growth series of G with respect to X records the number of conjugacy classes of every length. It is

$$\widetilde{\sigma}_{(G,X)}(z) := \sum_{n=0}^{\infty} \sigma_{(G,X)}(n) z^n,$$

where $\sigma_{(G,X)}(n)$ is the number of conjugacy classes of length *n*.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

 \Rightarrow

Theorem (Antolín-C., 2015)

If G is non-elementary hyperbolic, then the conjugacy growth series is transcendental.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

 \Rightarrow

Theorem (Antolín-C., 2015)

If G is non-elementary hyperbolic, then the conjugacy growth series is transcendental.

 \Leftarrow

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is rational.

NB: Both results hold for all symmetric generating sets of G.

In order to determine the conjugacy growth series, we need a set of minimal length conjugacy representatives,

In order to determine the conjugacy growth series, we need a set of minimal length conjugacy representatives, i.e. for each conjugacy class [g] in G pick exactly one word $w \in X^*$ such that

1. $\pi(w) \in [g]$, where $\pi \colon X^* \to G$ the natural projection, and

In order to determine the conjugacy growth series, we need a set of minimal length conjugacy representatives, i.e. for each conjugacy class [g] in G pick exactly one word $w \in X^*$ such that

1. $\pi(w) \in [g]$, where $\pi \colon X^* \to G$ the natural projection, and

2. $I(w) = |\pi(w)| = |\pi(w)|_c$ is of minimal length in [g], where

- I(w) := word length of $w \in X^*$
- ▶ $|g| = |g|_X$:= the (group) length of $g \in G$ with respect to X.

Conjugacy growth series in virt. cyclic groups: $\mathbb{Z},\,\mathbb{Z}_2*\mathbb{Z}_2$

In $\ensuremath{\mathbb{Z}}$ the conjugacy growth series is the same as the standard one:

$$\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z)=1+2z+2z^2+\cdots=rac{1+z}{1-z}$$

Conjugacy growth series in virt. cyclic groups: \mathbb{Z} , $\mathbb{Z}_2 * \mathbb{Z}_2$

In ${\mathbb Z}$ the conjugacy growth series is the same as the standard one:

$$\widetilde{\sigma}_{(\mathbb{Z},\{1,-1\})}(z) = 1 + 2z + 2z^2 + \cdots = \frac{1+z}{1-z}$$

In $\mathbb{Z}_2 * \mathbb{Z}_2$ a set of conjugacy representatives is $1, a, b, ab, abab, \ldots$, so

$$\widetilde{\sigma}_{(\mathbb{Z}_{2}*\mathbb{Z}_{2},\{a,b\})}(z) = 1 + 2z + z^{2} + z^{4} + z^{6} \cdots = rac{1 + 2z - 2z^{3}}{1 - z^{2}}$$

Conjugacy growth series in free groups: $F_2 = \langle a, b \rangle$

Set $a < b < a^{-1} < b^{-1}$ and choose as conjugacy representative the smallest shortlex rep. in each conjugacy class, so the language is

$$\{a^{\pm k}, b^{\pm k}, ab, ab^{-1}, ba^{-1}, a^{-1}b^{-1}, a^{2}b, aba, \cdots\}$$

Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is $(2k-1)^n + 1 + (k-1)[1 + (-1)^n]$, and divide by n.

Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is $(2k-1)^n + 1 + (k-1)[1 + (-1)^n]$, and divide by n.

Coornaert, 2005: For the free group F_k , the primitive (non-powers) conjugacy growth function is given by

$$\sigma_p(n)\sim rac{(2k-1)^{n+1}}{2(k-1)n}=Crac{e^{\mathbf{h}n}}{n}$$

where $C = \frac{2k-1}{2(k-1)}, h = \log(2k-1).$

Asymptotics of conjugacy growth in the free group

Idea: take all cyclically reduced words of length n, whose number

is $(2k-1)^n + 1 + (k-1)[1 + (-1)^n]$, and divide by n.

Coornaert, 2005: For the free group F_k , the primitive (non-powers) conjugacy growth function is given by

$$\sigma_p(n)\sim rac{(2k-1)^{n+1}}{2(k-1)n}=Crac{{
m e}^{{
m h}n}}{n},$$
 where $C=rac{2k-1}{2(k-1)},$ $h=\log(2k-1).$

In general, when powers are included, one cannot divide by *n*.

The conjugacy growth series in free groups

• Rivin (2000, 2010): the conjugacy growth series of F_k is not rational:

$$\widetilde{\sigma}(z)=\int_{0}^{z}rac{\mathcal{H}(t)}{t}dt, ext{ where }$$

$$\mathcal{H}(x) = 1 + (k-1)\frac{x^2}{(1-x^2)^2} + \sum_{d=1}^{\infty} \phi(d) \left(\frac{1}{1-(2k-1)x^d} - 1\right).$$

Theorem (C. - Hermiller, 2012)

For A, B finite groups with generating sets $X_A = A \setminus 1_A$, $X_B = B \setminus 1_B$,

and A * B with generating set $X = X_A \cup X_B$.

Theorem (C. - Hermiller, 2012)

For A, B finite groups with generating sets $X_A = A \setminus 1_A$, $X_B = B \setminus 1_B$,

and A * B with generating set $X = X_A \cup X_B$.

Then $\tilde{\sigma}(A * B, X)$ is rational iff $A = B = \mathbb{Z}/2\mathbb{Z}$, i.e. $A * B = D_{\infty}$.

Rational, algebraic, transcendental

A generating function f(z) is

- ▶ rational if there exist polynomials P(z), Q(z) with integer coefficients such that $f(z) = \frac{P(z)}{Q(z)}$;
- algebraic if there exists a polynomial P(x, y) with integer coefficients such that P(z, f(z)) = 0;
- transcendental otherwise.

If G is non-elementary hyperbolic, then the conjugacy growth series $\tilde{\sigma}$ is not rational.

If G is non-elementary hyperbolic, then the conjugacy growth series $\tilde{\sigma}$ is not rational.

Proof. (Antolín-C., 2015)

- Recall: $\sigma(n) := \#\{[g] \in G \mid |g|_c = n\}$ is the strict conjugacy growth.
- Let $\phi(n) := \sharp\{[g] \in G \mid |g|_c \le n\}$ be the cumulative conjugacy growth.

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{e^{\mathsf{h}n}}{n} \le \phi(n) \le B\frac{e^{\mathsf{h}n}}{n}$$

for all $n \ge n_0$, where **h** is the growth rate of *G*, i.e. $e^{hn} = |Ball(n)|$.

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{e^{hn}}{n} \le \phi(n) \le B\frac{e^{hn}}{n}$$

for all $n \ge n_0$, where **h** is the growth rate of G, i.e. $e^{hn} = |Ball(n)|$.

MESSAGE:.

The number of conjugacy classes in the ball of radius n is asymptotically the number of elements in the ball of radius n divided by n.

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{e^{\mathsf{h}n}}{n} \le \phi(n) \le B\frac{e^{\mathsf{h}n}}{n}$$

for all $n \ge n_0$, where **h** is the growth rate of G, i.e. $e^{hn} = |Ball(n)|$.

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{e^{\mathsf{h}n}}{n} \leq \phi(n) \leq B\frac{e^{\mathsf{h}n}}{n}$$

for all $n \ge n_0$, where **h** is the growth rate of G, i.e. $e^{hn} = |Ball(n)|$.

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A, B, \mathbf{h} and an integer $n_0 \ge 0$ s.t.

$$Arac{e^{hn}}{n} \leq a_n \leq Brac{e^{hn}}{n}$$

for all $n \ge n_0$. Then the power series $\sum_{i=0}^{\infty} a_n z^n$ is not algebraic.

Bounds for the conjugacy growth

Let $\phi_p(n) := \sharp \{ \text{primitive } [g] \in G \mid |g|_c \leq n \}$ be the primitive cumulative conjugacy growth.

Bounds for the conjugacy growth

Let $\phi_p(n) := \sharp \{ \text{primitive } [g] \in G \mid |g|_c \leq n \}$ be the primitive cumulative conjugacy growth.

Theorem.(Coornaert and Knieper, GAFA 2002) Let G be a non-elementary word hyperbolic. Then there are positive constants A and n_0 such that for all $n \ge n_0$

$$A\frac{\mathrm{e}^{\mathbf{h}n}}{n} \leq \phi_{\mathbf{p}}(n).$$

Bounds for the conjugacy growth

Let $\phi_p(n) := \sharp \{ \text{primitive } [g] \in G \mid |g|_c \leq n \}$ be the primitive cumulative conjugacy growth.

Theorem.(Coornaert and Knieper, GAFA 2002) Let G be a non-elementary word hyperbolic. Then there are positive constants A and n_0 such that for all $n \ge n_0$

$$A\frac{e^{\mathbf{n}n}}{n} \leq \phi_p(n).$$

Theorem. (Coornaert and Knieper, IJAC 2004)

Let G be a torsion-free non-elementary word hyperbolic group. Then there are positive constants B and n_1 such that for all $n \ge n_1$

$$\phi_p(n) \leq B \frac{e^{hn}}{n}.$$

Rivin's conjecture \Rightarrow : Proof

- 1. Drop torsion requirement from upper bound of Coornaert and Knieper:
 - (i) use the fact that there exists m < ∞ such that all finite subgroups F ≤ G satisfy |F| ≤ m.
- (ii) most (≥ n/m) cyclic permutations of a primitive conjugacy representative of length n correspond to different elements of length n in G.

Rivin's conjecture \Rightarrow : Proof

- 1. Drop torsion requirement from upper bound of Coornaert and Knieper:
 - (i) use the fact that there exists m < ∞ such that all finite subgroups F ≤ G satisfy |F| ≤ m.
- (ii) most (≥ n/m) cyclic permutations of a primitive conjugacy representative of length n correspond to different elements of length n in G.
- 2. Find conjugacy growth upper bound for all conjugacy classes, i.e. include the non-primitive classes in the count.

Next steps: generalize

1. Rivin's conjecture for relatively hyperbolic groups?

- 1. Rivin's conjecture for relatively hyperbolic groups?
 - (a) we need sharp bounds for the standard growth function [Yang] \surd
 - (b) we need sharp bounds for the conjugacy growth function.

Next steps: generalize

- 1. Rivin's conjecture for relatively hyperbolic groups?
 - (a) we need sharp bounds for the standard growth function [Yang] \surd
 - (b) we need sharp bounds for the conjugacy growth function.
- 2. Rivin's conjecture for acylindrically hyperbolic groups:

Is the conjugacy growth series of a f.g. acylindrically hyperbolic group transcendental?

Conjugacy representatives in acylindrically hyperbolic groups

Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set $L \subset X^*$ of words.

Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set $L \subset X^*$ of words.

Formal languages and their algebraic complexity

Let $L \subset X^*$ be a language.

• The growth function $f_L : \mathbb{N} \to \mathbb{N}$ of L is:

 $f_L(n) = \sharp \{ w \in L \mid w \text{ of length } n \}.$

► The growth series of *L* is

$$\mathcal{S}_L(z) = \sum_{n=0}^{\infty} f_L(n) z^n.$$

Formal languages and their algebraic complexity

Let $L \subset X^*$ be a language.

• The growth function $f_L : \mathbb{N} \to \mathbb{N}$ of L is:

 $f_L(n) = \sharp \{ w \in L \mid w \text{ of length } n \}.$

► The growth series of *L* is

$$\mathcal{S}_L(z) = \sum_{n=0}^{\infty} f_L(n) z^n.$$

Theorem

Regular languages have RATIONAL growth series.

Formal languages and their algebraic complexity

Let $L \subset X^*$ be a language.

• The growth function $f_L : \mathbb{N} \to \mathbb{N}$ of L is:

 $f_L(n) = \sharp \{ w \in L \mid w \text{ of length } n \}.$

► The growth series of *L* is

$$\mathcal{S}_L(z)=\sum_{n=0}^{\infty}f_L(n)z^n.$$

Theorem

- Regular languages have RATIONAL growth series.
- Unambiguous context-free languages have ALGEBRAIC growth series. (Chomsky-Schützenberger)

Consequences of the Rivin conjecture

Corollary. [AC]

Let G be a non-elementary hyperbolic group, X a finite generating set and \mathcal{L}_c any set of minimal length representatives of conjugacy classes.

Then \mathcal{L}_c is not regular.

Consequences of the Rivin conjecture

Corollary. [AC]

Let G be a non-elementary hyperbolic group, X a finite generating set and \mathcal{L}_c any set of minimal length representatives of conjugacy classes.

Then \mathcal{L}_c is not regular.

By Chomsky-Schüzenberger, \mathcal{L}_c is not unambiguous context-free (UCF).

Acylindrically hyperbolic groups

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and \mathcal{L}_c be a set containing one minimal length representative of each conjugacy class.

Then \mathcal{L}_c is not unambiguous context-free, so not regular.

Main Theorem [AC, 2015]

Let G be an acylindrically hyperbolic group, X any finite generating set, and \mathcal{L}_c be a set containing one minimal length representative of each primitive conjugacy class/commensurating class.

Then \mathcal{L}_c is not unambiguous context-free, so not regular.

Examples of acylindrically hyperbolic groups

(Dahmani, Guirardel, Osin, Hamenstädt, Bowditch, Fujiwara, Minasyan ...)

- relatively hyperbolic groups,
- ▶ all but finitely many mapping class groups of punctured closed surfaces,
- $\operatorname{Out}(F_n)$ for $n \geq 2$,
- directly indecomposable right-angled Artin groups,
- one-relator groups with at least 3 generators,
- most 3-manifold groups,
- lots of groups acting on trees,
- $C'(\frac{1}{6})$ small cancellation groups.

An action \circ of a group G on a metric space (S, d) is called acylindrical if for every $\epsilon > 0$ there exist $R \ge 0$ and $N \ge 0$ such that for every two points $x, y \in S$ with $d(x, y) \ge R$ there are at most N elements of G satisfying

 $d(x, g \circ x) \leq \epsilon$ and $d(y, g \circ y) \leq \epsilon$.

An action \circ of a group G on a metric space (S, d) is called acylindrical if for every $\epsilon > 0$ there exist $R \ge 0$ and $N \ge 0$ such that for every two points $x, y \in S$ with $d(x, y) \ge R$ there are at most N elements of G satisfying

 $d(x, g \circ x) \leq \epsilon$ and $d(y, g \circ y) \leq \epsilon$.

A group G is called acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space,

An action \circ of a group G on a metric space (S, d) is called acylindrical if for every $\epsilon > 0$ there exist $R \ge 0$ and $N \ge 0$ such that for every two points $x, y \in S$ with $d(x, y) \ge R$ there are at most N elements of G satisfying

 $d(x, g \circ x) \leq \epsilon$ and $d(y, g \circ y) \leq \epsilon$.

A group G is called acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic space, where non-elementary is equivalent to G being non-virtually cyclic and the action having unbounded orbits.

A group is acylindrically hyperbolic if and only if it has a non-degenerate hyperbolically embedded subgroup in the sense of Dahmani, Guirardel and Osin.

Properties of a hyperbolically embedded subgroup:

- finitely generated,
- Morse (for any λ ≥ 1, c ≥ 0 there exists κ = κ(λ, c) s. t. every (λ, c)-quasi-geodesic in Γ(G, X) with end points in H lies in the κ-neighborhood of H),
- almost malnormal,
- quasi-isometrically embedded.

Idea of proof:

 use the fact that conjugacy representatives in hyperbolic groups are not regular (not UCF),

Idea of proof:

- use the fact that conjugacy representatives in hyperbolic groups are not regular (not UCF),
- (2) there is a hyperbolic subgroup H that hyperbolically embeds in G,

Idea of proof:

- use the fact that conjugacy representatives in hyperbolic groups are not regular (not UCF),
- (2) there is a hyperbolic subgroup H that hyperbolically embeds in G,
- (3) conjugators of conjugacy geodesics can be uniformly bounded*, and

Idea of proof:

- use the fact that conjugacy representatives in hyperbolic groups are not regular (not UCF),
- (2) there is a hyperbolic subgroup H that hyperbolically embeds in G,
- (3) conjugators of conjugacy geodesics can be uniformly bounded*, and
- (4) transform the language (1) for H into a language of conjugacy reps in G via regular operations using (3).

BCD: Bounded Conjugacy Diagrams

A group (G, X) satisfies K-(BCD) if there is a constant K > 0 such that for any pair of cyclic geodesic words U and V over X representing conjugate elements either

(a) $max\{|U|, |V|\} \le K$,

or

(b) there is a word C over X, $|C| \le K$, with $CU'C^{-1} =_G V'$, where U' and V' are cyclic shifts of U and V.

BCD: Bounded Conjugacy Diagrams

A group (G, X) satisfies K-(BCD) if there is a constant K > 0 such that for any pair of cyclic geodesic words U and V over X representing conjugate elements either

(a) $max\{|U|, |V|\} \le K$,

or

(b) there is a word C over X, $|C| \le K$, with $CU'C^{-1} =_G V'$, where U' and V' are cyclic shifts of U and V.

BCD appears in Bridson & Haefliger's book *Metric spaces of non-positive curvature*; they show that hyperbolic groups have BCD.

Short conjugator of U and V after cyclic permutations

Let H be a subgroup of a group G and X a finite generating set of G.

Let H be a subgroup of a group G and X a finite generating set of G.

We say that (G, X) has BCD relative to H if there is a $K \ge 0$ such that for any conjugacy geodesic U conjugate to an element in H we can find $g \in B_X(K)$ and a cyclic permutation U' of U so that $U' =_G g^{-1}Vg$, where $V \in H$. Suppose G is finitely generated by X and $H \leq G$ is a hyperbolic group, quasi-isometrically embedded in G, almost malnormal and Morse. (*) Suppose G is finitely generated by X and $H \leq G$ is a hyperbolic group, quasi-isometrically embedded in G, almost malnormal and Morse. (*)

Suppose $\exists K > 0$ such that G has K-BCD relative to H. (**)

Suppose G is finitely generated by X and $H \leq G$ is a hyperbolic group, quasi-isometrically embedded in G, almost malnormal and Morse. (*)

Suppose $\exists K > 0$ such that G has K-BCD relative to H. (**)

Then any language of conjugacy representatives in G is not regular (UCF).

Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite symmetric generating set.

Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite symmetric generating set.

There exist

• (DGO) a virtually free group H that is hyperbolically embedded in G, and

Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite symmetric generating set.

There exist

- (DGO) a virtually free group H that is hyperbolically embedded in G, and
- $K \ge 0$ such that G has K-BCD relative to H.

Result 2 (about AH groups)

Let G be a finitely generated acylindrically hyperbolic group and X any finite symmetric generating set.

There exist

- \triangleright (DGO) a virtually free group H that is hyperbolically embedded in G, and
- $K \ge 0$ such that G has K-BCD relative to H.

Remark: In other words, acylindrically hyperbolic groups satisfy the conditions (*) and (**) in Result 1.

Result 1 (about languages)

 $G = \langle X \rangle$

Suppose

(*) $H \leq G$ is hyperbolic, qi embedded in G, almost malnormal and Morse.

(**) G has BCD relative to H.

Then any language of conjugacy representatives in G is not regular (UCF).

Result 1: idea of proof

0. Remove all torsion conjugacy classes (finitely many) from the discussion.

0'. Today assume torsion-free G.

Sketch of proof - Step 1: strengthen the BCD condition

Construct a generating set Y for H s.t. to every conjugacy geodesic U over X, $U \in H^G$, we can associate a conj. geod. V over Y, where $V = g^{-1}Ug$ and

(a) the length of the conjugator g is uniformly bounded, and

(b) U and V 'fellow travel'.

Sketch of proof - Step 1: strengthen the BCD condition

Construct a generating set Y for H s.t. to every conjugacy geodesic U over X, $U \in H^G$, we can associate a conj. geod. V over Y, where $V = g^{-1}Ug$ and

(a) the length of the conjugator g is uniformly bounded, and

(b) U and V 'fellow travel'.

Remarks:

- (1) Call such a pair (U, V) a BCD pair.
- (2) The fellow traveler property is non-standard, as U and V are words over different alphabets.

Step 1: The formal setup

Let G be generated by Z; all distances are wrt to Z.

Let G be generated by Z; all distances are wrt to Z.

Let $B := (X \cup \$) \times (Y \cup \$)$ and suppose there are maps

 $X \mapsto G, Y \mapsto G$ with $\$ \mapsto 1_G$.

Def. A pair $(U, V) \in B^*$ is a BCD pair with constant K if $V = g^{-1}Ug$,

(a) $|g|_Z \leq K$,

(b) U and V synchronously K-fellow travel wrt Z.

Let G be generated by Z; all distances are wrt to Z.

Let $B := (X \cup \$) \times (Y \cup \$)$ and suppose there are maps

 $X \mapsto G, Y \mapsto G$ with $\$ \mapsto 1_G$.

Def. A pair $(U, V) \in B^*$ is a BCD pair with constant K if $V = g^{-1}Ug$,

(a) $|g|_Z \leq K$,

(b) U and V synchronously K-fellow travel wrt Z.

Sketch of proof

Lemma.

Let $K \ge 0$. The following set is a regular language:

 $\mathcal{M} = \{(U, V) \in B^* \mid (U, V) \text{ is a BCD pair with constant } K\}.$

Step 1. Associate to each conjugacy geodesic U (over X) some V (over Y) such that (U, V) is a BCD pair.

Sketch of proof

Lemma.

Let $K \ge 0$. The following set is a regular language:

 $\mathcal{M} = \{(U, V) \in B^* \mid (U, V) \text{ is a BCD pair with constant } K\}.$

Step 1. Associate to each conjugacy geodesic U (over X) some V (over Y) such that (U, V) is a BCD pair. This is not a map, since there might be more than one V for each U.

Step 2. Build a well-defined map Δ such that $\Delta(U) = V$.

Step 2. Build a well-defined map Δ such that $\Delta(U) = V$.

Standard Lemma.

The set $\mathcal{M}_1 = \{(V_1, V_2) \in (Y^{\$} \times Y^{\$})^* \mid V_1 <_{\mathsf{lex}} V_2\}$ is regular.

Step 2. Build a well-defined map Δ such that $\Delta(U) = V$.

Standard Lemma.

The set $\mathcal{M}_1 = \{(V_1, V_2) \in (Y^{\$} \times Y^{\$})^* \mid V_1 <_{\mathsf{lex}} V_2\}$ is regular.

Lemma. The language

$$\mathcal{M}_2 = \{(U, V) \in B^* \mid V \equiv \min_{\leq_{\text{lex}}} (V' \mid (U, V') \text{ is a BCD pair})\}$$

is regular.

Define the map Δ by $\Delta(U) = V$, where V is such that $(U, V) \in \mathcal{M}_2$.

We picked V, the lexicographically least word conjugate to U among the BCD pairs (U, V) with fixed U. By definition V is unique and conjugate to U.

We picked V, the lexicographically least word conjugate to U among the BCD pairs (U, V) with fixed U. By definition V is unique and conjugate to U.

Let \mathcal{L} be a language of conjugacy representatives for G and define

$$\mathcal{R} := \Delta(\mathcal{L} \cap H^{\mathsf{G}}) \subseteq H.$$

We picked V, the lexicographically least word conjugate to U among the BCD pairs (U, V) with fixed U. By definition V is unique and conjugate to U.

Let \mathcal{L} be a language of conjugacy representatives for G and define

$$\mathcal{R} := \Delta(\mathcal{L} \cap H^{\mathsf{G}}) \subseteq H.$$

Corollary. If \mathcal{L} is regular (UCF) then \mathcal{R} is regular (UCF).

Finally, use the malnormality of H:

$$h^H = h^G \cap H.$$

Finally, use the malnormality of H:

$$h^H = h^G \cap H.$$

By construction \mathcal{R} contains an *H*-representative of each *G*-conjugacy class. By malnormality \mathcal{R} contains exactly one representative of each *H*-conjugacy class.

 $\implies \mathcal{R}$ is a language of conjugacy representatives for the hyperbolic group H.

So if \mathcal{L} (= the conjugacy reps for G) were UCF, then \mathcal{R} (= the conjugacy reps. for H) would be UCF.

This contradicts Rivin's conjecture, because H is hyperbolic.

So if \mathcal{L} (= the conjugacy reps for G) were UCF, then \mathcal{R} (= the conjugacy reps. for H) would be UCF.

This contradicts Rivin's conjecture, because H is hyperbolic. Thus conjugacy representatives in acylindrically hyperbolic groups cannot be unambiguous context-free.

Question: What type of language are they?

Thank you!

Rivin's conjecture \Leftarrow

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the language of shortlex conjugacy representatives ConjSL is regular and hence the conjugacy growth series is rational.

Proof: We may assume that *G* is infinite.

- ▶ $\exists H \trianglelefteq G$, $H = \langle x \rangle \cong \mathbb{Z}$, with G/H finite.
- Let $C := C_G(H)$ be the centralizer of H in G.

Rivin's conjecture \Leftarrow

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the language of shortlex conjugacy representatives ConjSL is regular and hence the conjugacy growth series is rational.

Proof: We may assume that *G* is infinite.

- ▶ $\exists H \trianglelefteq G$, $H = \langle x \rangle \cong \mathbb{Z}$, with G/H finite.
- Let $C := C_G(H)$ be the centralizer of H in G.
- The conjugation action of G on H defines a map G → Aut(Z) with kernel C and so |G : C| ≤ 2.

Rivin's conjecture \Leftarrow

Theorem (C., Hermiller, Holt, Rees, 2014)

Let G be a virtually cyclic group. Then for all generating sets of G the language of shortlex conjugacy representatives ConjSL is regular and hence the conjugacy growth series is rational.

Proof: We may assume that *G* is infinite.

- ▶ $\exists H \trianglelefteq G$, $H = \langle x \rangle \cong \mathbb{Z}$, with G/H finite.
- Let $C := C_G(H)$ be the centralizer of H in G.
- The conjugation action of G on H defines a map G → Aut(Z) with kernel C and so |G : C| ≤ 2.
- For g ∈ G \ C, we have gxg⁻¹ = x⁻¹ ⇒ x⁻¹gx = gx², and hence the coset Hg is either a single conjugacy class in ⟨H,g⟩ (if G ≅ Z) or the union [g] ∪ [gx] (because gx^k = x⁻¹(gx^{k-2})x).

- So $G \setminus C$ consists of finitely many conjugacy classes of G.
- Since |ConjSL ∩ (G \ C)| < ∞, to prove regularity of ConjSL it is enough to show that ConjSL ∩ C is regular.

- So $G \setminus C$ consists of finitely many conjugacy classes of G.
- Since |ConjSL ∩ (G \ C)| < ∞, to prove regularity of ConjSL it is enough to show that ConjSL ∩ C is regular.
- For g ∈ C, |G : C_G(g)| < ∞, so C is a union of infinitely many finite conjugacy classes.</p>

- So $G \setminus C$ consists of finitely many conjugacy classes of G.
- Since |ConjSL ∩ (G \ C)| < ∞, to prove regularity of ConjSL it is enough to show that ConjSL ∩ C is regular.
- For g ∈ C, |G : C_G(g)| < ∞, so C is a union of infinitely many finite conjugacy classes.</p>
- Let T be a transversal of H in G.
- Then for each c ∈ C, the conjugacy class of c is {t⁻¹ct | t ∈ T}, and hence any word w with π(w) = c is in ConjSL ⇔ there does not exist t ∈ T for which t⁻¹wt has a representative v with v <_{sl} w.

- So $G \setminus C$ consists of finitely many conjugacy classes of G.
- Since |ConjSL ∩ (G \ C)| < ∞, to prove regularity of ConjSL it is enough to show that ConjSL ∩ C is regular.
- For g ∈ C, |G : C_G(g)| < ∞, so C is a union of infinitely many finite conjugacy classes.</p>
- Let T be a transversal of H in G.
- Then for each c ∈ C, the conjugacy class of c is {t⁻¹ct | t ∈ T}, and hence any word w with π(w) = c is in ConjSL ⇔ there does not exist t ∈ T for which t⁻¹wt has a representative v with v <_{st} w.

• G hyperbolic \implies

$$L_1(t) := \{(u, v) : u, v \in \text{Geo}, \quad \pi(v) = \pi(t^{-1}ut)\}$$

is regular for any $t \in T$, as is the set Geo.

• Any word w with $\pi(w) = c$ is in ConjSL if and only if there does not exist $t \in T$ for which $t^{-1}wt$ has a representative v with $v <_{sl} w$.

• G hyperbolic \implies

$$L_1(t) := \{(u, v) : u, v \in \text{Geo}, \quad \pi(v) = \pi(t^{-1}ut)\}$$

is regular for any $t \in T$, as is the set Geo.

• So ConjSL \cap *C* is the intersection of $\pi^{-1}(C)$ with

 $\mathsf{Geo} \setminus \cup_{t \in \mathcal{T}} (\{u \in \mathsf{Geo} : \exists v \in \mathsf{Geo} \text{ such that } (u, v) \in L_1(t), v <_{s'} u\}).$

• |G : C| finite implies that $\pi^{-1}(C)$ is regular, so ConjSL $\cap C$ is also regular.