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Outline

I will describe a characterization for groups elementarily equivalent to
the group Tn(R) of all invertible upper triangular n × n matrices,
where n ≥ 3 and R is a characteristic zero integral domain.

In particular I describe both necessary and sufficient conditions for a
group being elementarily equivalent to Tn(R) where R is a
characteristic zero algebraically closed field, a real closed field, a
number field, or the ring of integers of a number field.
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Elementary theories

Definition

The elementary theory Th(A) of a group A (or a ring, or an arbitrary
structure) in a language L is the set of all first-order sentences in L that
are true in A.

Definition

Two groups (rings) A and B are elementarily equivalent in a language L
(A ≡ B) if Th(A) = Th(B).

In this talk I will use L to denote the language of groups.
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Motivation

Tarski type problems

Given an algebraic structure U one can ask if the first-order theory of U is
decidable, or what are the structures (perhaps under some restrictions)
which have the same first-order theory as U. A. Tarski posed several
problems of this nature in the 1950’s.

Tarski-type problems on groups, rings, and other algebraic structures were
very inspirational and led to some important developments in modern
algebra and model theory.
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Indeed, it suffices to mention here results on first-order theories of

algebraically closed fields, real closed fields (Tarski)

the fields of p-adic numbers (Ax-Kochen, Ershov),

abelian groups and modules (Szmielewa, Baur),

boolean algebras (Tarski, Ershov),

free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).
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Some specific Tarski-type problems

Problem 1

Given a classical linear group Gm(K ) over a field K , where
G ∈ {GL,SL,PGL,PSL, } and m ≥ 2, characterize all groups elementarily
equivalent to Gm(K ) .

Problem 2

Given a (connected) solvable linear algebraic group G characterize all
groups elementarily equivalent to G .

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups
elementarily equivalent to G .
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What is already known

Malcev proved that Gm(K1) ≡ Gn(K2) if and only if m = n and
K1 ≡ K2, where K1,K2 are fields of characteristic zero.

In a series of papers Bunina and Mikhalev extended Malcev’s results
for other rings and groups.

C. Lasserre and F. Oger (2014) give a criterion for elementary
equivalence of two polycyclic groups.

O. Belegradek (1999) described groups elementarily equivalent to a
given nilpotent group UTn(Z)

Myasnikov-Sohrabi (2011) described all groups elementarily
equivalent to a free nilpotent group of finite rank.

Myasnikov-Sohrabi (2014) developed techniques which seems to be
useful in tackling Problem 3 in the nilpotent case.

O. Frécon (preprint) considers the problem of elementary equivalence
and description of abstract isomorphisms of algebraic groups over
algebraically closed fields.
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Our work’s contribution

Our work contributes to the study of the above problems in the follwoing
ways.

First, we present a framework to approach these and similar problems
via nilpotent radicals in solvable groups.

Secondly, we solve these problems for the group of all invertible n × n
upper triangular matrices Tn(R) over a ring R which are model
groups for linear solvable groups.

The groups Tn(R), as they are, play an important part in the study of
model theory of groups Gm(K ) from Problem 1.
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Abelian extensions and Ext

Symmetric 2-cocycles

Assume A and B are abelian groups. A function

f : B × B → A

satisfying

f (xy , z)f (x , y) = f (x , yz)f (y , z), ∀x , y , z ∈ B,

f (1, x) = f (x , 1) = 1, ∀x ∈ B,

f (x , y) = f (y , x) ∀x , y ∈ B.

is called a symmetric 2-cocycle.
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The symmetric 2-cocycles form a group S2(B,A) under point-wise
multiplication. A 2-coboundary f ∈ S2(B,A) is a 2-cocycle staisfying:

ψ(xy) = f (x , y)ψ(x)ψ(y), ∀x , y ∈ B,

for some function ψ : B → A. Those elements of S2(B,A) which are
coboundaries form a subgroup B2(B,A).

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

1→ A
µ−→ E

ν−→ B → 1,

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group
Ext(B,A) = S2(B,A)/B2(B,A) and equivalence classes of abelian
extensions of A by B.
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The structure of Tn

The group G = Tn(R) is a semi-direct product

Tn(R) = Dn(R)nφn,R UTn(R),

where
I Dn(R) is the subgroup of all diagonal matrices in Tn(R),
I UTn(R) denotes the subgroup of all upper unitriangular matrices (i.e.

upper triangular with 1’s on the diagonal),
I and the homomorphism φn,R : Dn(R)→ Aut(UTn(R)) describes the

action of Dn(R) on UTn(R) by conjugation.

The subgroup UTn(R) is the so-called unipotent radical of G , i.e. the
subgroup consisting of all unipotent matrices in G .

The subgroup Dn(R) is a direct product (R×)n of n copies of the
multiplicative group of units R× of R.

The center Z (G ) of G consists of diagonal scalar matrices
Z (G ) = {αIn : α ∈ R×} ∼= R×, where In is the identity matrix.

Again it is standard knowledge that Z (G ) is a direct factor of Dn(R).
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I UTn(R) denotes the subgroup of all upper unitriangular matrices (i.e.

upper triangular with 1’s on the diagonal),
I and the homomorphism φn,R : Dn(R)→ Aut(UTn(R)) describes the

action of Dn(R) on UTn(R) by conjugation.

The subgroup UTn(R) is the so-called unipotent radical of G , i.e. the
subgroup consisting of all unipotent matrices in G .

The subgroup Dn(R) is a direct product (R×)n of n copies of the
multiplicative group of units R× of R.

The center Z (G ) of G consists of diagonal scalar matrices
Z (G ) = {αIn : α ∈ R×} ∼= R×, where In is the identity matrix.

Again it is standard knowledge that Z (G ) is a direct factor of Dn(R).
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A new structure on Tn

Now we define a new group just by deforming the multiplication on Dn.

Let En = En(R) be an arbitrary abelian extension of Z (G ) ∼= R× by
Dn/Z (G ) ∼= (R×)n−1. As it is customary in extension theory we can
assume En = Dn = B × Z (G ) as sets (B is complement of Z (G ) in
Dn), while the product on En is defined as follows:

(x1, y1) · (x2, y2) = (x1x2, y1y2f (x1, x2)),

for a symmetric 2-cocycle f ∈ S2(B,Z (G )).

Next define a map ψn,R : En → Aut(UTn(R)) by

ψn,R((x , y))
def
= φn,R((x , y)), (x , y) ∈ B × Z (G ).

The definition actually makes sense since ker(φn,R) = Z (G ) and it is
easy to verify that ψn,R is indeed a homomorphism.
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Definition of abelian deformations of Tn

Now define a new group structure H on the base set of G by

H
def
= En nψn,R

UTn(R).

We call such a group H an abelian deformation of Tn(R).

Indeed any abelian extension En of R× by (R×)n−1, due to the fact that
Ext((R×)n−1,R×) ∼=

∏n−1
i=1 Ext(R×,R×), is uniquely determined by some

symmetric 2-cocycles fi ∈ S2(R×,R×), i = 1, . . . , n − 1 up to equivalence
of extensions. So we denote H by Tn(R, f1, . . . , fn−1) or Tn(R, f̄ ).
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The main results

Theorem (M.S., A. Myasnikov)

Let G = Tn(R) be the group of invertible n × n upper triangular matrices
over a characteristic zero integral domain R. Then

H ≡ G ⇒ H ∼= Tn(S , f1, . . . , fn−1),

for some ring S ≡ R and symmetric 2-cocycles fi ∈ S2(S×, S×).
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Theorem (M.S., A. Myasnikov)

Assume R is an integral domain of characteristic zero where the maximal
torsion subgroup T (R×) of R× is finite. Then for a group H

Tn(R) ≡ H ⇔ H ∼= Tn(S , f̄ ),

for some ring S ≡ R and some CoT 2-cocycles fi ∈ S2(S×, S×),
i = 1, . . . , n − 1.

Definition of CoT 2-cocycles

Given a ring R as in the statement of the theorem above a symmetric
2-cocycle f : R× × R× → R× is said to be coboundarious on torsion or
CoT if the restriction g : T ×T → R×, where T = T (R×), of f to T ×T
is a 2-coboundary.
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Considering the fact that T (R×) is finite if R is a number field or the ring
of integers of a number field the following result is immediate.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then
H ≡ Tn(R) if and only if H ∼= Tn(S , f̄ ) where each fi is CoT.

In case that R is a characteristic zero algebraically closed field or a real
closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed
field. Then

H ≡ Tn(F )⇔ H ∼= Tn(K ),

for some field K ≡ F .
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As for the necessity of introducing abelian deformations we prove the
following theorems.

Theorem (M.S., A. Myasnikov)

There is a field K , K ≡ Q and there are some fi ∈ S2(K×,K×) such that
Tn(Q) ≡ Tn(K , f̄ ) but Tn(K , f̄ ) � Tn(K ′) for any field K ′.

Theorem (M.S., A. Myasnikov)

Assume O is the ring of integers of an algebraic number field.

1 If O× is finite, then a group H is elementarily equivalent to Tn(O) if
and only if H ∼= Tn(R) for some ring R ≡ O.

2 If O× is infinite, then there exit R ≡ O and some fi ∈ S2(R×,R×)
such that Tn(O) ≡ Tn(R, f̄ ) but Tn(R, f̄ ) � Tn(S) for any ring S.
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How should one approach these problems

To prove the necessity statements ideally one wants to prove that

UTn(R) is uniformly definable in G ,

Dn(R) is uniformly definable in G ,

The action of Dn(R) on UTn(R) can be described using L-formulas

We will see to what extent any of these could be achieved.
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Some special elements of Tn(R) = Dn(R)n UTn(R)

let eij , i < j , be the matrix with ij ’th entry 1 and every other entry 0, and
let tij = In + eij , where In is the n × n identity matrix. Let also
tij(α) = In + αeij , for α ∈ R. These matrices are called transvections and
they generate UTn(R).

Let diag [α1, . . . , αn] be the n × n diagonal matrix with ii ’th entry
αi ∈ R×. The group Dn(R) consists of these elements as the αi range
over R×. Now consider the following diagonal matrices

di (α)
def
= diag [1, . . . , α︸︷︷︸

i ′th

, . . . , 1],

and let us set
di

def
= di (−1).

Clearly the di (α) generate Dn(F ) as α ranges over R×.
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Recovering the unipotent radical

Fitting Subgroups

By the Fitting subgroup of a group G , denoted by Fitt(G ), we mean the
subgroup generated by all normal nilpotent subgroups of G .

Denote by P the class of groups G where the Fitting subgroup is itself
nilpotent. For example every polycyclic-by-finite group is in P. Also Tn(R)
for any commutative associative ring R with unit is in P.

Lemma (A. Myasnikov, V. Romankov, M.S. )

Assume G is a group in P. There is a formula that defines Fitt(G ) in G
uniformly with respect to Th(G ). In particular the class P is an
elementary class.

Lemma

The derived subgroup of G ′ of G = Tn(R) is definable in G .
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There is a problem though. In general for G = Tn(R) where R is a
characteristic zero integral domain

Fitt(G ) = UTn(R)× Z (G ),

G ′ is the subgroup of G generated by

X = {ti ,i+1((1− α)β), tkl(β) : α ∈ R×, β ∈ R}.

Indeed UTn(R) is not necessarily a definable subgroup of G . However we
can prove the following

Lemma

Assume G = Tn(R) and H ≡ G . Then Z (H) contains a unique element of
order 2 denoted by −In. Therefore the subgroup UTn(R)× {±In} is
definable in G.
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But we face another problem:

Lemma (O. Belegradek)

Consider the group N = UTn(R), where R is a commutative associative
ring with unit. Then for each 1 ≤ i < j ≤ n the one-parameter subgroups
Tij = {tij(α) : α ∈ R} are definable in N, unless j = i + 1. If j = i + 1
then the subgroup Cij = Tij · Z (N) is definable in N. The Ti ,i+1 are not in
general definable in N.

Theorem (O. Belegradek)

There is a ring R and H such that H ≡ UTn(R) but H � UTn(S) for any
ring S.
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One can improve Belegradek’s lemma as follows:

Lemma

The R-module structure of each Tij is interpretable in N if j > i + 1. If
j = i + 1 then the R-module Ci ,i+1 is interpretable in N.

The good thing is the following fact:

[d2,±C12] = 〈t12(2α) : α ∈ R〉,

which is close enough to T12.
So indeed using these first-order equations we can recover all the ±Ti ,i+1.
With a little bit of effort we can prove now that

Proposition

If H ≡ Tn(R) for a characteristic zero integral domain R then there exists
a ring S ≡ R and an abelian subgroup En ≡ Dn(R) of H such that

H ∼= En n UTn(S).
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If we can encode the fact that Dn
∼= (R×)n then we are basically done.

But all we know are the following first-order equations:

dk(α−1)tij(β)dk(α) =


tij(β) if k 6= i , k 6= j
tij(α

−1β) if k = i
tij(αβ) if k = j

By the way, Dn is defined in G as the centralizer CG ({di : i = 1, . . . n}).
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We can coordinatize Dn using the equations above but everything will be
modulo the center. So we have proved that

Proposition

Let G = Tn(R), and H is a group H ≡ G . Then

(a) For each 1 ≤ i ≤ n the subgroup ∆i (R)
def
= di (R×) · Z (G ) is

first-order definable in Dn = Dn(R) by an L-formula. Moreover there
exists a ring S ≡ R and for each i = 1, . . . , n a subgroup Λi < En of
H defined in H by the same formula that defines ∆i in Dn such that
Λi/Z (H) ∼= S×.

(b) Dn = ∆1 · · ·∆n. Therefore En = Λ1 · · ·Λn.

(c) Z (G ) =
n⋂

i=1

∆i and Z (G ) is definably isomorphic to R×. Similarly

one has Z (H) =
n⋂

i=1

Λi and Z (H) ∼= S×.

(d) Therefore En is isomorphic to an abelian extension of Z (H) ∼= S× by
En/Z (H) ∼= (S×)n−1.
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one has Z (H) =
n⋂

i=1

Λi and Z (H) ∼= S×.

(d) Therefore En is isomorphic to an abelian extension of Z (H) ∼= S× by
En/Z (H) ∼= (S×)n−1.
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So we proved that for a characteristic zero integral domain R

Theorem

H ≡ (Tn(R) = Dn(R)nφn,R UTn(R)) then

H ∼= En(S)nψn,S
UTn(S),

where S ≡ R and En is an abelian extension of Z (H) ∼= S× by (S×)n−1

and ψn,s ≈ φn,s .
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The sufficient conditions

Question: Are all Tn(S , f̄ ) elementarily equivalent to Tn(R) if R ≡ S?

Answer: No!

Recall that for ring R a 2-cocycle f : R× × R× → R× is said to be
CoT if the restriction g : T × T → R×, where T = T (R×) is the
torsion subgroup of R×, of f to T × T is a 2-coboundary.

Assume A is abelian extension of A1 = R× by A2 = R×, and T2 is
the copy of T in A2. Then f is CoT if and only if the subgroup H of
A generated by A1 and any preimage of T2 in A splits over A1, i.e.
H ∼= A1 × T2.

Note that if ∆i = di (R×)× Z (G ) the fact that the corresponding
2-cocycle fi is CoT is a first-order property.
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Lemma

Assume R is a characteristic zero integral domain so that the maximal
torsion subgroup of R× is finite. Assume f ∈ S2(R×,R×) is CoT and
(I ,D) is an ultra-filter so that ultraproduct (R×)∗ of R× over D is
ℵ1-saturated. Then the 2-cocycle f ∗ ∈ S2((R×)∗, (R×)∗) induced by f is a
2-coboundary.

Theorem

Under the conditions of the lemma above

H ≡ Tn(R)⇔ H ∼= Tn(S , f̄ ),

For S ≡ R and CoT 2-cocycles fi .
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Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let
φ : Tn(R, f̄ )→ Tn(S) be an isomorphism of abstract groups. Then R ∼= S
as rings and all the symmetric 2-cocycles fi are 2-coboundaries.

Proposition

For any ring O of integers with infinite O× of a number field F there
exists a ring S ≡ O where Ext(S×,S×) 6= 1.

Using Romanovskii-Robinson we can prove that λZ ≤ O×, where λ is any
element of a definable subgroup B of finite index in O×, with the
corresponding ring structure is interpretable in O×nO and thus in Tn(O).
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Theorem

Assume O is the ring of integers of an algebraic number field.

1 If O× is finite, then

H ≡ Tn(O)⇔ H ∼= Tn(R)

for some ring R ≡ O.

2 If O× is infinite, then there exit R ≡ O and some fi ∈ S2(R×,R×)
such that

Tn(O) ≡ Tn(R, f̄ )

but
Tn(R, f̄ ) � Tn(S)

for any ring S.
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Our work’s contribution in studying Problems 1-3

Our work contributes to the study of Problems 1-3 in the follwoing ways:

First, we present a framework to approach these and similar problems
via nilpotent radicals in solvable groups.

Secondly, we solve these problems for the group of all invertible n × n
upper triangular matrices Tn(R) over a ring R which are model
groups for linear solvable groups

The groups Tn(R), as they are, play an important part in the study of
model theory of groups Gm(K ) from Problem 1.
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