Groups elementarily equivalent to a group of upper triangular matrices $T_n(R)$

Mahmood Sohrabi (Stevens Institute) Joint work with Alexei G. Myasnikov (Stevens Institute)

> Oct. 08, 2015 (ACC Webinar)

Outline

- I will describe a characterization for groups elementarily equivalent to the group $T_n(R)$ of all invertible upper triangular $n \times n$ matrices, where $n \ge 3$ and R is a characteristic zero integral domain.
- In particular I describe both necessary and sufficient conditions for a group being elementarily equivalent to $T_n(R)$ where R is a characteristic zero algebraically closed field, a real closed field, a number field, or the ring of integers of a number field.

(人間) システン イラン

Outline

- I will describe a characterization for groups elementarily equivalent to the group $T_n(R)$ of all invertible upper triangular $n \times n$ matrices, where $n \ge 3$ and R is a characteristic zero integral domain.
- In particular I describe both necessary and sufficient conditions for a group being elementarily equivalent to $T_n(R)$ where R is a characteristic zero algebraically closed field, a real closed field, a number field, or the ring of integers of a number field.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

The elementary theory $Th(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A} .

Definition

Two groups (rings) \mathcal{A} and \mathcal{B} are elementarily equivalent in a language L $(\mathcal{A} \equiv \mathcal{B})$ if $Th(\mathcal{A}) = Th(\mathcal{B})$.

In this talk I will use L to denote the language of groups.

< 回 > < 三 > < 三 >

Definition

The elementary theory $Th(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A} .

Definition

Two groups (rings) \mathcal{A} and \mathcal{B} are elementarily equivalent in a language L $(\mathcal{A} \equiv \mathcal{B})$ if $Th(\mathcal{A}) = Th(\mathcal{B})$.

In this talk I will use L to denote the language of groups.

くほと くほと くほと

Definition

The elementary theory $Th(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A} .

Definition

Two groups (rings) A and B are elementarily equivalent in a language L $(A \equiv B)$ if Th(A) = Th(B).

In this talk I will use *L* to denote the language of groups.

・ 同 ト ・ 三 ト ・ 三 ト

Definition

The elementary theory $Th(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A} .

Definition

Two groups (rings) A and B are elementarily equivalent in a language L $(A \equiv B)$ if Th(A) = Th(B).

In this talk I will use L to denote the language of groups.

過 ト イヨ ト イヨト

Motivation

Tarski type problems

Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U} . A. Tarski posed several problems of this nature in the 1950's.

Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

Motivation

Tarski type problems

Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U} . A. Tarski posed several problems of this nature in the 1950's.

Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

< 同 ト く ヨ ト く ヨ ト

Motivation

Tarski type problems

Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U} . A. Tarski posed several problems of this nature in the 1950's.

Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

A B M A B M

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

- algebraically closed fields, real closed fields (Tarski)
- the fields of *p*-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Problem 1

Given a classical linear group $G_m(K)$ over a field K, where $G \in \{GL, SL, PGL, PSL, \}$ and $m \ge 2$, characterize all groups elementarily equivalent to $G_m(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

- 4 同 6 4 日 6 4 日 6

Problem 1

Given a classical linear group $G_m(K)$ over a field K, where $G \in \{GL, SL, PGL, PSL, \}$ and $m \ge 2$, characterize all groups elementarily equivalent to $G_m(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

(人間) システン イラン

Problem 1

Given a classical linear group $G_m(K)$ over a field K, where $G \in \{GL, SL, PGL, PSL, \}$ and $m \ge 2$, characterize all groups elementarily equivalent to $G_m(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

(人間) システン イラン

Problem 1

Given a classical linear group $G_m(K)$ over a field K, where $G \in \{GL, SL, PGL, PSL, \}$ and $m \ge 2$, characterize all groups elementarily equivalent to $G_m(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

(日) (同) (三) (三)

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

(日) (周) (三) (三)

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

(日) (周) (三) (三)

3

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

イロト イポト イヨト イヨト

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

・ロン ・四 ・ ・ ヨン ・ ヨン

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

- Malcev proved that $G_m(K_1) \equiv G_n(K_2)$ if and only if m = n and $K_1 \equiv K_2$, where K_1, K_2 are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group UT_n(Z)
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

イロト 不得下 イヨト イヨト

Our work contributes to the study of the above problems in the following ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups.
- The groups $T_n(R)$, as they are, play an important part in the study of model theory of groups $G_m(K)$ from Problem 1.

< 回 > < 三 > < 三 >

Our work contributes to the study of the above problems in the following ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups.
- The groups $T_n(R)$, as they are, play an important part in the study of model theory of groups $G_m(K)$ from Problem 1.

A B A A B A

Our work contributes to the study of the above problems in the following ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups.
- The groups T_n(R), as they are, play an important part in the study of model theory of groups G_m(K) from Problem 1.

(4) E (4) E (4)

Our work contributes to the study of the above problems in the following ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups.
- The groups T_n(R), as they are, play an important part in the study of model theory of groups G_m(K) from Problem 1.

Abelian extensions and Ext

Symmetric 2-cocycles

Assume A and B are abelian groups. A function

 $f: B \times B \to A$

satisfying

•
$$f(xy,z)f(x,y) = f(x,yz)f(y,z), \quad \forall x, y, z \in B$$

•
$$f(1,x) = f(x,1) = 1$$
, $\forall x \in B$,

•
$$f(x, y) = f(y, x) \quad \forall x, y \in B.$$

is called a *symmetric 2-cocycle*.

A D A D A D A

Abelian extensions and Ext

Symmetric 2-cocycles

Assume A and B are abelian groups. A function

$$f: B \times B \to A$$

satisfying

•
$$f(xy,z)f(x,y) = f(x,yz)f(y,z), \quad \forall x, y, z \in B$$

•
$$f(1,x) = f(x,1) = 1, \ \forall x \in B$$

•
$$f(x,y) = f(y,x) \quad \forall x, y \in B.$$

is called a symmetric 2-cocycle.

A B F A B F

A 🕨

The symmetric 2-cocycles form a group $S^2(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^2(B, A)$ is a 2-cocycle staisfying:

$$\psi(xy) = f(x, y)\psi(x)\psi(y), \quad \forall x, y \in B,$$

for some function $\psi: B \to A$. Those elements of $S^2(B, A)$ which are coboundaries form a subgroup $B^2(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$1 \to A \xrightarrow{\mu} E \xrightarrow{\nu} B \to 1,$$

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group $Ext(B, A) = S^2(B, A)/B^2(B, A)$ and equivalence classes of abelian extensions of A by B.

The symmetric 2-cocycles form a group $S^2(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^2(B, A)$ is a 2-cocycle staisfying:

$$\psi(xy) = f(x, y)\psi(x)\psi(y), \quad \forall x, y \in B,$$

for some function $\psi: B \to A$. Those elements of $S^2(B, A)$ which are coboundaries form a subgroup $B^2(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1,$$

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group $Ext(B, A) = S^2(B, A)/B^2(B, A)$ and equivalence classes of abelian extensions of A by B.

The symmetric 2-cocycles form a group $S^2(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^2(B, A)$ is a 2-cocycle staisfying:

$$\psi(xy) = f(x, y)\psi(x)\psi(y), \quad \forall x, y \in B,$$

for some function $\psi: B \to A$. Those elements of $S^2(B, A)$ which are coboundaries form a subgroup $B^2(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1,$$

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group $Ext(B, A) = S^2(B, A)/B^2(B, A)$ and equivalence classes of abelian extensions of A by B.
The symmetric 2-cocycles form a group $S^2(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^2(B, A)$ is a 2-cocycle staisfying:

$$\psi(xy) = f(x, y)\psi(x)\psi(y), \quad \forall x, y \in B,$$

for some function $\psi: B \to A$. Those elements of $S^2(B, A)$ which are coboundaries form a subgroup $B^2(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1,$$

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group $Ext(B, A) = S^2(B, A)/B^2(B, A)$ and equivalence classes of abelian extensions of A by B.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup $D_n(R)$ is a direct product $(R^{\times})^n$ of *n* copies of the multiplicative group of units R^{\times} of *R*.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

where

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup D_n(R) is a direct product (R[×])ⁿ of n copies of the multiplicative group of units R[×] of R.

• The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.

• Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup D_n(R) is a direct product (R[×])ⁿ of n copies of the multiplicative group of units R[×] of R.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.

• Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

• The group $G = T_n(R)$ is a semi-direct product

$$T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R),$$

- $D_n(R)$ is the subgroup of all diagonal matrices in $T_n(R)$,
- ► UT_n(R) denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- ▶ and the homomorphism $\phi_{n,R} : D_n(R) \to Aut(UT_n(R))$ describes the action of $D_n(R)$ on $UT_n(R)$ by conjugation.
- The subgroup $UT_n(R)$ is the so-called *unipotent radical of G*, i.e. the subgroup consisting of all unipotent matrices in *G*.
- The subgroup D_n(R) is a direct product (R[×])ⁿ of n copies of the multiplicative group of units R[×] of R.
- The center Z(G) of G consists of diagonal scalar matrices $Z(G) = \{ \alpha I_n : \alpha \in R^{\times} \} \cong R^{\times}$, where I_n is the identity matrix.
- Again it is standard knowledge that Z(G) is a direct factor of $D_n(R)$.

Now we define a new group just by deforming the multiplication on D_n .

• Let $E_n = E_n(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$ by $D_n/Z(G) \cong (R^{\times})^{n-1}$. As it is customary in extension theory we can assume $E_n = D_n = B \times Z(G)$ as sets (*B* is complement of Z(G) in D_n), while the product on E_n is defined as follows:

 $(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2 f(x_1, x_2)),$

for a symmetric 2-cocycle $f \in S^2(B, Z(G))$.

• Next define a map $\psi_{n,R}: E_n \to Aut(UT_n(R))$ by

 $\psi_{n,R}((x,y)) \stackrel{\text{def}}{=} \phi_{n,R}((x,y)), \quad (x,y) \in B \times Z(G).$

• The definition actually makes sense since $ker(\phi_{n,R}) = Z(G)$ and it is easy to verify that $\psi_{n,R}$ is indeed a homomorphism.

(日) (同) (日) (日) (日)

Now we define a new group just by deforming the multiplication on D_n .

• Let $E_n = E_n(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$ by $D_n/Z(G) \cong (R^{\times})^{n-1}$. As it is customary in extension theory we can assume $E_n = D_n = B \times Z(G)$ as sets (*B* is complement of Z(G) in D_n), while the product on E_n is defined as follows:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2 f(x_1, x_2)),$$

for a symmetric 2-cocycle $f \in S^2(B, Z(G))$.

• Next define a map $\psi_{n,R}: E_n \rightarrow Aut(UT_n(R))$ by

 $\psi_{n,R}((x,y)) \stackrel{\text{def}}{=} \phi_{n,R}((x,y)), \quad (x,y) \in B \times Z(G).$

• The definition actually makes sense since $ker(\phi_{n,R}) = Z(G)$ and it is easy to verify that $\psi_{n,R}$ is indeed a homomorphism.

イロン イボン イヨン イヨン 三日

Now we define a new group just by deforming the multiplication on D_n .

• Let $E_n = E_n(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$ by $D_n/Z(G) \cong (R^{\times})^{n-1}$. As it is customary in extension theory we can assume $E_n = D_n = B \times Z(G)$ as sets (*B* is complement of Z(G) in D_n), while the product on E_n is defined as follows:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2 f(x_1, x_2)),$$

for a symmetric 2-cocycle $f \in S^2(B, Z(G))$.

• Next define a map $\psi_{n,R}: E_n \to Aut(UT_n(R))$ by

$$\psi_{n,R}((x,y)) \stackrel{\text{def}}{=} \phi_{n,R}((x,y)), \ (x,y) \in B \times Z(G).$$

• The definition actually makes sense since $ker(\phi_{n,R}) = Z(G)$ and it is easy to verify that $\psi_{n,R}$ is indeed a homomorphism.

イロン イボン イヨン イヨン 三日

Now we define a new group just by deforming the multiplication on D_n .

• Let $E_n = E_n(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$ by $D_n/Z(G) \cong (R^{\times})^{n-1}$. As it is customary in extension theory we can assume $E_n = D_n = B \times Z(G)$ as sets (*B* is complement of Z(G) in D_n), while the product on E_n is defined as follows:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1 y_2 f(x_1, x_2)),$$

for a symmetric 2-cocycle $f \in S^2(B, Z(G))$.

• Next define a map $\psi_{n,R}: E_n \rightarrow Aut(UT_n(R))$ by

$$\psi_{n,R}((x,y)) \stackrel{\text{def}}{=} \phi_{n,R}((x,y)), \quad (x,y) \in B \times Z(G).$$

• The definition actually makes sense since $ker(\phi_{n,R}) = Z(G)$ and it is easy to verify that $\psi_{n,R}$ is indeed a homomorphism.

(人間) とうき くうとう う

Definition of abelian deformations of T_n

Now define a new group structure H on the base set of G by

$$H \stackrel{\text{def}}{=} E_n \ltimes_{\psi_{n,R}} UT_n(R).$$

We call such a group H an abelian deformation of $T_n(R)$.

Indeed any abelian extension E_n of R^{\times} by $(R^{\times})^{n-1}$, due to the fact that $Ext((R^{\times})^{n-1}, R^{\times}) \cong \prod_{i=1}^{n-1} Ext(R^{\times}, R^{\times})$, is uniquely determined by some symmetric 2-cocycles $f_i \in S^2(R^{\times}, R^{\times})$, i = 1, ..., n-1 up to equivalence of extensions. So we denote H by $T_n(R, f_1, ..., f_{n-1})$ or $T_n(R, \overline{f})$.

Definition of abelian deformations of T_n

Now define a new group structure H on the base set of G by

$$H \stackrel{\mathrm{def}}{=} E_n \ltimes_{\psi_{n,R}} UT_n(R).$$

We call such a group H an abelian deformation of $T_n(R)$.

Indeed any abelian extension E_n of R^{\times} by $(R^{\times})^{n-1}$, due to the fact that $Ext((R^{\times})^{n-1}, R^{\times}) \cong \prod_{i=1}^{n-1} Ext(R^{\times}, R^{\times})$, is uniquely determined by some symmetric 2-cocycles $f_i \in S^2(R^{\times}, R^{\times})$, i = 1, ..., n-1 up to equivalence of extensions. So we denote H by $T_n(R, f_1, ..., f_{n-1})$ or $T_n(R, \overline{f})$.

< 同 ト く ヨ ト く ヨ ト

Definition of abelian deformations of T_n

Now define a new group structure H on the base set of G by

$$H \stackrel{\mathrm{def}}{=} E_n \ltimes_{\psi_{n,R}} UT_n(R).$$

We call such a group H an abelian deformation of $T_n(R)$.

Indeed any abelian extension E_n of R^{\times} by $(R^{\times})^{n-1}$, due to the fact that $Ext((R^{\times})^{n-1}, R^{\times}) \cong \prod_{i=1}^{n-1} Ext(R^{\times}, R^{\times})$, is uniquely determined by some symmetric 2-cocycles $f_i \in S^2(R^{\times}, R^{\times})$, i = 1, ..., n-1 up to equivalence of extensions. So we denote H by $T_n(R, f_1, ..., f_{n-1})$ or $T_n(R, \bar{f})$.

過 ト イヨ ト イヨト

Let $G = T_n(R)$ be the group of invertible $n \times n$ upper triangular matrices over a characteristic zero integral domain R. Then

 $H \equiv G \Rightarrow H \cong T_n(S, f_1, \ldots, f_{n-1}),$

for some ring $S \equiv R$ and symmetric 2-cocycles $f_i \in S^2(S^{\times}, S^{\times})$.

→ Ξ →

Let $G = T_n(R)$ be the group of invertible $n \times n$ upper triangular matrices over a characteristic zero integral domain R. Then

$$H \equiv G \Rightarrow H \cong T_n(S, f_1, \ldots, f_{n-1}),$$

for some ring $S \equiv R$ and symmetric 2-cocycles $f_i \in S^2(S^{\times}, S^{\times})$.

A B < A B <</p>

Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T(R^{\times})$ of R^{\times} is finite. Then for a group H

 $T_n(R) \equiv H \Leftrightarrow H \cong T_n(S, \overline{f}),$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_i \in S^2(S^{\times}, S^{\times})$, i = 1, ..., n - 1.

Definition of CoT 2-cocycles

Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f : R^{\times} \times R^{\times} \to R^{\times}$ is said to be *coboundarious on torsion* or *CoT* if the restriction $g : T \times T \to R^{\times}$, where $T = T(R^{\times})$, of f to $T \times T$ is a 2-coboundary.

Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T(R^{\times})$ of R^{\times} is finite. Then for a group H

 $T_n(R) \equiv H \Leftrightarrow H \cong T_n(S, \overline{f}),$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_i \in S^2(S^{\times}, S^{\times})$, i = 1, ..., n-1.

Definition of CoT 2-cocycles

Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f : R^{\times} \times R^{\times} \to R^{\times}$ is said to be *coboundarious on torsion* or *CoT* if the restriction $g : T \times T \to R^{\times}$, where $T = T(R^{\times})$, of f to $T \times T$ is a 2-coboundary.

イロト イポト イヨト イヨト 二日

Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T(R^{\times})$ of R^{\times} is finite. Then for a group H

 $T_n(R) \equiv H \Leftrightarrow H \cong T_n(S, \overline{f}),$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_i \in S^2(S^{\times}, S^{\times})$, i = 1, ..., n-1.

Definition of CoT 2-cocycles

Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f : R^{\times} \times R^{\times} \to R^{\times}$ is said to be *coboundarious on torsion* or *CoT* if the restriction $g : T \times T \to R^{\times}$, where $T = T(R^{\times})$, of f to $T \times T$ is a 2-coboundary.

イロト イポト イヨト イヨト 二日

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_n(R)$ if and only if $H \cong T_n(S, \overline{f})$ where each f_i is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$H \equiv T_n(F) \Leftrightarrow H \cong T_n(K),$$

for some field $K \equiv F$.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_n(R)$ if and only if $H \cong T_n(S, \overline{f})$ where each f_i is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$H \equiv T_n(F) \Leftrightarrow H \cong T_n(K),$$

for some field $K \equiv F$.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_n(R)$ if and only if $H \cong T_n(S, \overline{f})$ where each f_i is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$H \equiv T_n(F) \Leftrightarrow H \cong T_n(K),$$

for some field $K \equiv F$.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_n(R)$ if and only if $H \cong T_n(S, \overline{f})$ where each f_i is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$H \equiv T_n(F) \Leftrightarrow H \cong T_n(K),$$

for some field $K \equiv F$.

As for the necessity of introducing abelian deformations we prove the following theorems.

Theorem (M.S., A. Myasnikov)

There is a field K, $K \equiv \mathbb{Q}$ and there are some $f_i \in S^2(K^{\times}, K^{\times})$ such that $T_n(\mathbb{Q}) \equiv T_n(K, \overline{f})$ but $T_n(K, \overline{f}) \ncong T_n(K')$ for any field K'.

Theorem (M.S., A. Myasnikov)

Assume \mathcal{O} is the ring of integers of an algebraic number field.

If \mathcal{O}^{\times} is finite, then a group H is elementarily equivalent to $T_n(\mathcal{O})$ if and only if $H \cong T_n(R)$ for some ring $R \equiv \mathcal{O}$.

② If \mathcal{O}^{\times} is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_i \in S^2(R^{\times}, R^{\times})$ such that $T_n(\mathcal{O}) \equiv T_n(R, \overline{f})$ but $T_n(R, \overline{f}) \cong T_n(S)$ for any ring S.

As for the necessity of introducing abelian deformations we prove the following theorems.

Theorem (M.S., A. Myasnikov)

There is a field K, $K \equiv \mathbb{Q}$ and there are some $f_i \in S^2(K^{\times}, K^{\times})$ such that $T_n(\mathbb{Q}) \equiv T_n(K, \overline{f})$ but $T_n(K, \overline{f}) \ncong T_n(K')$ for any field K'.

Theorem (M.S., A. Myasnikov)

Assume \mathcal{O} is the ring of integers of an algebraic number field.

If \mathcal{O}^{\times} is finite, then a group H is elementarily equivalent to $T_n(\mathcal{O})$ if and only if $H \cong T_n(R)$ for some ring $R \equiv \mathcal{O}$.

② If \mathcal{O}^{\times} is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_i \in S^2(R^{\times}, R^{\times})$ such that $T_n(\mathcal{O}) \equiv T_n(R, \overline{f})$ but $T_n(R, \overline{f}) \ncong T_n(S)$ for any ring S.

As for the necessity of introducing abelian deformations we prove the following theorems.

Theorem (M.S., A. Myasnikov)

There is a field K, $K \equiv \mathbb{Q}$ and there are some $f_i \in S^2(K^{\times}, K^{\times})$ such that $T_n(\mathbb{Q}) \equiv T_n(K, \overline{f})$ but $T_n(K, \overline{f}) \ncong T_n(K')$ for any field K'.

Theorem (M.S., A. Myasnikov)

Assume \mathcal{O} is the ring of integers of an algebraic number field.

• If \mathcal{O}^{\times} is finite, then a group H is elementarily equivalent to $T_n(\mathcal{O})$ if and only if $H \cong T_n(R)$ for some ring $R \equiv \mathcal{O}$.

② If \mathcal{O}^{\times} is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_i \in S^2(R^{\times}, R^{\times})$ such that $T_n(\mathcal{O}) \equiv T_n(R, \overline{f})$ but $T_n(R, \overline{f}) \ncong T_n(S)$ for any ring S.

イロト イポト イヨト イヨト 二日

How should one approach these problems

To prove the necessity statements ideally one wants to prove that

- $UT_n(R)$ is uniformly definable in G,
- $D_n(R)$ is uniformly definable in G,
- The action of $D_n(R)$ on $UT_n(R)$ can be described using L-formulas

We will see to what extent any of these could be achieved.

Some special elements of $T_n(R) = D_n(R) \ltimes UT_n(R)$

let e_{ij} , i < j, be the matrix with ij'th entry 1 and every other entry 0, and let $t_{ij} = I_n + e_{ij}$, where I_n is the $n \times n$ identity matrix. Let also $t_{ij}(\alpha) = I_n + \alpha e_{ij}$, for $\alpha \in R$. These matrices are called transvections and they generate $UT_n(R)$.

Let $diag[\alpha_1, \ldots, \alpha_n]$ be the $n \times n$ diagonal matrix with *ii*'th entry $\alpha_i \in R^{\times}$. The group $D_n(R)$ consists of these elements as the α_i range over R^{\times} . Now consider the following diagonal matrices

$$d_i(\alpha) \stackrel{\text{def}}{=} diag[1, \dots, \underbrace{\alpha}_{i' \text{th}}, \dots, 1],$$

and let us set

$$d_i \stackrel{\text{def}}{=} d_i(-1).$$

Clearly the $d_i(\alpha)$ generate $D_n(F)$ as α ranges over R^{\times} .

Some special elements of $T_n(R) = D_n(R) \ltimes UT_n(R)$

let e_{ij} , i < j, be the matrix with ij'th entry 1 and every other entry 0, and let $t_{ij} = I_n + e_{ij}$, where I_n is the $n \times n$ identity matrix. Let also $t_{ij}(\alpha) = I_n + \alpha e_{ij}$, for $\alpha \in R$. These matrices are called transvections and they generate $UT_n(R)$.

Let $diag[\alpha_1, \ldots, \alpha_n]$ be the $n \times n$ diagonal matrix with *ii*'th entry $\alpha_i \in R^{\times}$. The group $D_n(R)$ consists of these elements as the α_i range over R^{\times} . Now consider the following diagonal matrices

$$d_i(\alpha) \stackrel{\text{def}}{=} diag[1, \dots, \underbrace{\alpha}_{i' \text{th}}, \dots, 1],$$

and let us set

$$d_i \stackrel{\text{def}}{=} d_i(-1).$$

Clearly the $d_i(\alpha)$ generate $D_n(F)$ as α ranges over R^{\times} .

Some special elements of $T_n(R) = D_n(R) \ltimes UT_n(R)$

let e_{ij} , i < j, be the matrix with ij'th entry 1 and every other entry 0, and let $t_{ij} = I_n + e_{ij}$, where I_n is the $n \times n$ identity matrix. Let also $t_{ij}(\alpha) = I_n + \alpha e_{ij}$, for $\alpha \in R$. These matrices are called transvections and they generate $UT_n(R)$.

Let $diag[\alpha_1, \ldots, \alpha_n]$ be the $n \times n$ diagonal matrix with *ii*'th entry $\alpha_i \in R^{\times}$. The group $D_n(R)$ consists of these elements as the α_i range over R^{\times} . Now consider the following diagonal matrices

$$d_i(\alpha) \stackrel{\text{def}}{=} diag[1, \dots, \underbrace{\alpha}_{i'\text{th}}, \dots, 1],$$

and let us set

$$d_i \stackrel{\mathsf{def}}{=} d_i(-1).$$

Clearly the $d_i(\alpha)$ generate $D_n(F)$ as α ranges over R^{\times} .

Recovering the unipotent radical

Fitting Subgroups

By the *Fitting subgroup* of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P} . Also $T_n(R)$ for any commutative associative ring R with unit is in \mathcal{P} .

Lemma (A. Myasnikov, V. Romankov, M.S.)

Assume G is a group in \mathcal{P} . There is a formula that defines Fitt(G) in G uniformly with respect to Th(G). In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G' of $G = T_n(R)$ is definable in G.

(日) (周) (三) (三)

Recovering the unipotent radical

Fitting Subgroups

By the *Fitting subgroup* of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P} . Also $T_n(R)$ for any commutative associative ring R with unit is in \mathcal{P} .

Lemma (A. Myasnikov, V. Romankov, M.S.)

Assume G is a group in \mathcal{P} . There is a formula that defines Fitt(G) in G uniformly with respect to Th(G). In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G' of $G = T_n(R)$ is definable in G.

(日) (周) (三) (三)

Recovering the unipotent radical

Fitting Subgroups

By the *Fitting subgroup* of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P} . Also $T_n(R)$ for any commutative associative ring R with unit is in \mathcal{P} .

Lemma (A. Myasnikov, V. Romankov, M.S.)

Assume G is a group in \mathcal{P} . There is a formula that defines Fitt(G) in G uniformly with respect to Th(G). In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G' of $G = T_n(R)$ is definable in G.

イロト イポト イヨト イヨト
Recovering the unipotent radical

Fitting Subgroups

By the *Fitting subgroup* of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P} . Also $T_n(R)$ for any commutative associative ring R with unit is in \mathcal{P} .

Lemma (A. Myasnikov, V. Romankov, M.S.)

Assume G is a group in \mathcal{P} . There is a formula that defines Fitt(G) in G uniformly with respect to Th(G). In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G' of $G = T_n(R)$ is definable in G.

イロン 不聞と 不同と 不同と

- 3

Recovering the unipotent radical

Fitting Subgroups

By the *Fitting subgroup* of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P} . Also $T_n(R)$ for any commutative associative ring R with unit is in \mathcal{P} .

Lemma (A. Myasnikov, V. Romankov, M.S.)

Assume G is a group in \mathcal{P} . There is a formula that defines Fitt(G) in G uniformly with respect to Th(G). In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G' of $G = T_n(R)$ is definable in G.

・ロン ・四 ・ ・ ヨン ・ ヨン

3

- $Fitt(G) = UT_n(R) \times Z(G)$,
- G' is the subgroup of G generated by

 $X = \{t_{i,i+1}((1-\alpha)\beta), t_{kl}(\beta) : \alpha \in R^{\times}, \beta \in R\}.$

Indeed $UT_n(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G = T_n(R)$ and $H \equiv G$. Then Z(H) contains a unique element of order 2 denoted by $-I_n$. Therefore the subgroup $UT_n(R) \times \{\pm I_n\}$ is definable in G.

イロト 不得下 イヨト イヨト

• $Fitt(G) = UT_n(R) \times Z(G)$,

• G' is the subgroup of G generated by

 $X = \{t_{i,i+1}((1-\alpha)\beta), t_{kl}(\beta) : \alpha \in \mathbb{R}^{\times}, \beta \in \mathbb{R}\}.$

Indeed $UT_n(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G = T_n(R)$ and $H \equiv G$. Then Z(H) contains a unique element of order 2 denoted by $-I_n$. Therefore the subgroup $UT_n(R) \times \{\pm I_n\}$ is definable in G.

イロト 不得下 イヨト イヨト

•
$$Fitt(G) = UT_n(R) \times Z(G)$$
,

• G' is the subgroup of G generated by

$$X = \{t_{i,i+1}((1-\alpha)\beta), t_{kl}(\beta) : \alpha \in \mathbb{R}^{\times}, \beta \in \mathbb{R}\}.$$

Indeed $UT_n(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G = T_n(R)$ and $H \equiv G$. Then Z(H) contains a unique element of order 2 denoted by $-I_n$. Therefore the subgroup $UT_n(R) \times \{\pm I_n\}$ is definable in G.

(4月) (4日) (4日)

•
$$Fitt(G) = UT_n(R) \times Z(G)$$
,

• G' is the subgroup of G generated by

$$X = \{t_{i,i+1}((1-\alpha)\beta), t_{kl}(\beta) : \alpha \in \mathbb{R}^{\times}, \beta \in \mathbb{R}\}.$$

Indeed $UT_n(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G = T_n(R)$ and $H \equiv G$. Then Z(H) contains a unique element of order 2 denoted by $-I_n$. Therefore the subgroup $UT_n(R) \times \{\pm I_n\}$ is definable in G.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

•
$$Fitt(G) = UT_n(R) \times Z(G)$$
,

• G' is the subgroup of G generated by

$$X = \{t_{i,i+1}((1-\alpha)\beta), t_{kl}(\beta) : \alpha \in \mathbb{R}^{\times}, \beta \in \mathbb{R}\}.$$

Indeed $UT_n(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G = T_n(R)$ and $H \equiv G$. Then Z(H) contains a unique element of order 2 denoted by $-I_n$. Therefore the subgroup $UT_n(R) \times \{\pm I_n\}$ is definable in G.

くほう くほう くほう 二日

But we face another problem:

Lemma (O. Belegradek)

Consider the group $N = UT_n(R)$, where R is a commutative associative ring with unit. Then for each $1 \le i < j \le n$ the one-parameter subgroups $T_{ij} = \{t_{ij}(\alpha) : \alpha \in R\}$ are definable in N, unless j = i + 1. If j = i + 1then the subgroup $C_{ij} = T_{ij} \cdot Z(N)$ is definable in N. The $T_{i,i+1}$ are not in general definable in N.

Theorem (O. Belegradek)

There is a ring R and H such that $H \equiv UT_n(R)$ but $H \ncong UT_n(S)$ for any ring S.

→ Ξ →

But we face another problem:

Lemma (O. Belegradek)

Consider the group $N = UT_n(R)$, where R is a commutative associative ring with unit. Then for each $1 \le i < j \le n$ the one-parameter subgroups $T_{ij} = \{t_{ij}(\alpha) : \alpha \in R\}$ are definable in N, unless j = i + 1. If j = i + 1 then the subgroup $C_{ij} = T_{ij} \cdot Z(N)$ is definable in N. The $T_{i,i+1}$ are not in general definable in N.

Theorem (O. Belegradek)

There is a ring R and H such that $H \equiv UT_n(R)$ but $H \ncong UT_n(S)$ for any ring S.

But we face another problem:

Lemma (O. Belegradek)

Consider the group $N = UT_n(R)$, where R is a commutative associative ring with unit. Then for each $1 \le i < j \le n$ the one-parameter subgroups $T_{ij} = \{t_{ij}(\alpha) : \alpha \in R\}$ are definable in N, unless j = i + 1. If j = i + 1 then the subgroup $C_{ij} = T_{ij} \cdot Z(N)$ is definable in N. The $T_{i,i+1}$ are not in general definable in N.

Theorem (O. Belegradek)

There is a ring R and H such that $H \equiv UT_n(R)$ but $H \ncong UT_n(S)$ for any ring S.

・ 同 ト ・ 三 ト ・ 三 ト

Lemma

The *R*-module structure of each T_{ij} is interpretable in *N* if j > i + 1. If j = i + 1 then the *R*-module $C_{i,i+1}$ is interpretable in *N*.

The good thing is the following fact:

$$[d_2,\pm C_{12}] = \langle t_{12}(2\alpha) : \alpha \in R \rangle,$$

which is close enough to T_{12} .

So indeed using these first-order equations we can recover all the $\pm T_{i,i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_n(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_n \equiv D_n(R)$ of H such that

$$H \cong E_n \ltimes UT_n(S).$$

A (10) A (10) A (10)

Lemma

The R-module structure of each T_{ij} is interpretable in N if j > i + 1. If j = i + 1 then the R-module $C_{i,i+1}$ is interpretable in N.

The good thing is the following fact:

$$[d_2,\pm C_{12}] = \langle t_{12}(2\alpha) : \alpha \in R \rangle,$$

which is close enough to T_{12} .

So indeed using these first-order equations we can recover all the $\pm T_{i,i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_n(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_n \equiv D_n(R)$ of H such that

$$H \cong E_n \ltimes UT_n(S).$$

Lemma

The *R*-module structure of each T_{ij} is interpretable in *N* if j > i + 1. If j = i + 1 then the *R*-module $C_{i,i+1}$ is interpretable in *N*.

The good thing is the following fact:

$$[d_2,\pm C_{12}] = \langle t_{12}(2\alpha) : \alpha \in R \rangle,$$

which is close enough to T_{12} .

So indeed using these first-order equations we can recover all the $\pm T_{i,i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_n(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_n \equiv D_n(R)$ of H such that

$$H \cong E_n \ltimes UT_n(S).$$

< 回 > < 三 > < 三 >

Lemma

The *R*-module structure of each T_{ij} is interpretable in *N* if j > i + 1. If j = i + 1 then the *R*-module $C_{i,i+1}$ is interpretable in *N*.

The good thing is the following fact:

$$[d_2, \pm C_{12}] = \langle t_{12}(2\alpha) : \alpha \in R \rangle,$$

which is close enough to T_{12} .

So indeed using these first-order equations we can recover all the $\pm T_{i,i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_n(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_n \equiv D_n(R)$ of H such that

$$H \cong E_n \ltimes UT_n(S).$$

< 回 > < 三 > < 三 >

Lemma

The *R*-module structure of each T_{ij} is interpretable in *N* if j > i + 1. If j = i + 1 then the *R*-module $C_{i,i+1}$ is interpretable in *N*.

The good thing is the following fact:

$$[d_2,\pm C_{12}] = \langle t_{12}(2\alpha) : \alpha \in R \rangle,$$

which is close enough to T_{12} .

So indeed using these first-order equations we can recover all the $\pm T_{i,i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_n(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_n \equiv D_n(R)$ of H such that

$$H \cong E_n \ltimes UT_n(S).$$

< 回 > < 三 > < 三 >

If we can encode the fact that $D_n \cong (R^{\times})^n$ then we are basically done. But all we know are the following first-order equations:

$$d_k(\alpha^{-1})t_{ij}(\beta)d_k(\alpha) = \begin{cases} t_{ij}(\beta) & \text{if } k \neq i, k \neq j \\ t_{ij}(\alpha^{-1}\beta) & \text{if } k = i \\ t_{ij}(\alpha\beta) & \text{if } k = j \end{cases}$$

By the way, D_n is defined in G as the centralizer $C_G(\{d_i : i = 1, ..., n\})$.

< 同 ト く ヨ ト く ヨ ト

If we can encode the fact that $D_n \cong (R^{\times})^n$ then we are basically done. But all we know are the following first-order equations:

$$d_k(\alpha^{-1})t_{ij}(\beta)d_k(\alpha) = \begin{cases} t_{ij}(\beta) & \text{if } k \neq i, k \neq j \\ t_{ij}(\alpha^{-1}\beta) & \text{if } k = i \\ t_{ij}(\alpha\beta) & \text{if } k = j \end{cases}$$

By the way, D_n is defined in G as the centralizer $C_G(\{d_i : i = 1, ..., n\})$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{\text{def}}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

(b)
$$D_n = \Delta_1 \cdots \Delta_n$$
. Therefore $E_n = \Lambda_1 \cdots \Lambda_n$.

(c) $Z(G) = \bigcap_{i=1} \Delta_i$ and Z(G) is definably isomorphic to \mathbb{R}^{\times} . Similarly

one has
$$Z(H) = \bigcap_{i=1} \Lambda_i$$
 and $Z(H) \cong S^{\times}$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{def}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

(b)
$$D_n = \Delta_1 \cdots \Delta_n$$
. Therefore $E_n = \Lambda_1 \cdots \Lambda_n$.

(c) $Z(G) = \bigcap_{i=1}^{n} \Delta_i$ and Z(G) is definably isomorphic to R^{\times} . Similarly

one has
$$Z(H) = \bigcap_{i=1} \Lambda_i$$
 and $Z(H) \cong S^{\times}$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{\text{def}}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

(b)
$$D_n = \Delta_1 \cdots \Delta_n$$
. Therefore $E_n = \Lambda_1 \cdots \Lambda_n$.

(c) $Z(G) = \bigcap_{i=1}^{n} \Delta_i$ and Z(G) is definably isomorphic to R^{\times} . Similarly

one has
$$Z(H) = \bigcap_{i=1} \Lambda_i$$
 and $Z(H) \cong S^{\times}$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{\text{def}}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

(b)
$$D_n = \Delta_1 \cdots \Delta_n$$
. Therefore $E_n = \Lambda_1 \cdots \Lambda_n$.

(c) $Z(G) = \bigcap_{i=1} \Delta_i$ and Z(G) is definably isomorphic to R^{\times} . Similarly

one has
$$Z(H) = \bigcap_{i=1} \Lambda_i$$
 and $Z(H) \cong S^{\times}$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

i=1

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{\text{def}}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

Proposition

Let $G = T_n(R)$, and H is a group $H \equiv G$. Then

(a) For each $1 \le i \le n$ the subgroup $\Delta_i(R) \stackrel{\text{def}}{=} d_i(R^{\times}) \cdot Z(G)$ is first-order definable in $D_n = D_n(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each i = 1, ..., n a subgroup $\Lambda_i < E_n$ of H defined in H by the same formula that defines Δ_i in D_n such that $\Lambda_i/Z(H) \cong S^{\times}$.

(b)
$$D_n = \Delta_1 \cdots \Delta_n$$
. Therefore $E_n = \Lambda_1 \cdots \Lambda_n$.
(c) $Z(G) = \bigcap_{i=1}^n \Delta_i$ and $Z(G)$ is definably isomorphic to R^{\times} . Similarly

one has
$$Z(H) = \bigcap_{i=1}^{N} \Lambda_i$$
 and $Z(H) \cong S^{\times}$.

So we proved that for a characteristic zero integral domain R

Theorem (T, (P), P, (P))

 $H \equiv (T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R)) \text{ then}$

 $H\cong E_n(S)\ltimes_{\psi_{n,S}}UT_n(S),$

where $S \equiv R$ and E_n is an abelian extension of $Z(H) \cong S^{\times}$ by $(S^{\times})^{n-1}$ and $\psi_{n,s} \approx \phi_{n,s}$.

→ 3 → 4 3

So we proved that for a characteristic zero integral domain R

Theorem $H \equiv (T_n(R) = D_n(R) \ltimes_{\phi_{n,R}} UT_n(R)) \text{ then}$ $H \cong E_n(S) \ltimes_{\psi_{n,S}} UT_n(S),$ where $S \equiv R$ and E_n is an abelian extension of $Z(H) \cong S^{\times}$ by $(S^{\times})^{n-1}$ and $\psi_{n,s} \approx \phi_{n,s}.$

- Question: Are all T_n(S, f) elementarily equivalent to T_n(R) if R ≡ S?
 Answer: No!
- Recall that for ring R a 2-cocycle f : R[×] × R[×] → R[×] is said to be CoT if the restriction g : T × T → R[×], where T = T(R[×]) is the torsion subgroup of R[×], of f to T × T is a 2-coboundary.
- Assume A is abelian extension of A₁ = R[×] by A₂ = R[×], and T₂ is the copy of T in A₂. Then f is CoT if and only if the subgroup H of A generated by A₁ and any preimage of T₂ in A splits over A₁, i.e. H ≅ A₁ × T₂.
- Note that if $\Delta_i = d_i(R^{\times}) \times Z(G)$ the fact that the corresponding 2-cocycle f_i is CoT is a first-order property.

(人間) トイヨト イヨト

- Question: Are all T_n(S, f) elementarily equivalent to T_n(R) if R ≡ S?
 Answer: No!
- Recall that for ring R a 2-cocycle f : R[×] × R[×] → R[×] is said to be CoT if the restriction g : T × T → R[×], where T = T(R[×]) is the torsion subgroup of R[×], of f to T × T is a 2-coboundary.
- Assume A is abelian extension of A₁ = R[×] by A₂ = R[×], and T₂ is the copy of T in A₂. Then f is CoT if and only if the subgroup H of A generated by A₁ and any preimage of T₂ in A splits over A₁, i.e. H ≅ A₁ × T₂.
- Note that if $\Delta_i = d_i(R^{\times}) \times Z(G)$ the fact that the corresponding 2-cocycle f_i is CoT is a first-order property.

- 4 週 ト - 4 三 ト - 4 三 ト

- Question: Are all $T_n(S, \overline{f})$ elementarily equivalent to $T_n(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle f : R[×] × R[×] → R[×] is said to be CoT if the restriction g : T × T → R[×], where T = T(R[×]) is the torsion subgroup of R[×], of f to T × T is a 2-coboundary.
- Assume A is abelian extension of A₁ = R[×] by A₂ = R[×], and T₂ is the copy of T in A₂. Then f is CoT if and only if the subgroup H of A generated by A₁ and any preimage of T₂ in A splits over A₁, i.e. H ≅ A₁ × T₂.
- Note that if $\Delta_i = d_i(R^{\times}) \times Z(G)$ the fact that the corresponding 2-cocycle f_i is CoT is a first-order property.

イロト 不得下 イヨト イヨト

- 32

- Question: Are all $T_n(S, \overline{f})$ elementarily equivalent to $T_n(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle f : R[×] × R[×] → R[×] is said to be CoT if the restriction g : T × T → R[×], where T = T(R[×]) is the torsion subgroup of R[×], of f to T × T is a 2-coboundary.
- Assume A is abelian extension of A₁ = R[×] by A₂ = R[×], and T₂ is the copy of T in A₂. Then f is CoT if and only if the subgroup H of A generated by A₁ and any preimage of T₂ in A splits over A₁, i.e. H ≅ A₁ × T₂.
- Note that if $\Delta_i = d_i(R^{\times}) \times Z(G)$ the fact that the corresponding 2-cocycle f_i is CoT is a first-order property.

イロト イポト イヨト イヨト 二日

- Question: Are all $T_n(S, \overline{f})$ elementarily equivalent to $T_n(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle f : R[×] × R[×] → R[×] is said to be CoT if the restriction g : T × T → R[×], where T = T(R[×]) is the torsion subgroup of R[×], of f to T × T is a 2-coboundary.
- Assume A is abelian extension of A₁ = R[×] by A₂ = R[×], and T₂ is the copy of T in A₂. Then f is CoT if and only if the subgroup H of A generated by A₁ and any preimage of T₂ in A splits over A₁, i.e. H ≅ A₁ × T₂.
- Note that if $\Delta_i = d_i(R^{\times}) \times Z(G)$ the fact that the corresponding 2-cocycle f_i is CoT is a first-order property.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times} is finite. Assume $f \in S^2(R^{\times}, R^{\times})$ is CoT and (I, D) is an ultra-filter so that ultraproduct $(R^{\times})^*$ of R^{\times} over D is \aleph_1 -saturated. Then the 2-cocycle $f^* \in S^2((R^{\times})^*, (R^{\times})^*)$ induced by f is a 2-coboundary.

Theorem

Under the conditions of the lemma above

$$H \equiv T_n(R) \Leftrightarrow H \cong T_n(S, \overline{f}),$$

For $S \equiv R$ and CoT 2-cocycles f_i .

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times} is finite. Assume $f \in S^2(R^{\times}, R^{\times})$ is CoT and (I, D) is an ultra-filter so that ultraproduct $(R^{\times})^*$ of R^{\times} over D is \aleph_1 -saturated. Then the 2-cocycle $f^* \in S^2((R^{\times})^*, (R^{\times})^*)$ induced by f is a 2-coboundary.

Theorem

Under the conditions of the lemma above

 $H \equiv T_n(R) \Leftrightarrow H \cong T_n(S, \overline{f}),$

For $S \equiv R$ and CoT 2-cocycles f_i .

A B A A B A

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times} is finite. Assume $f \in S^2(R^{\times}, R^{\times})$ is CoT and (I, D) is an ultra-filter so that ultraproduct $(R^{\times})^*$ of R^{\times} over D is \aleph_1 -saturated. Then the 2-cocycle $f^* \in S^2((R^{\times})^*, (R^{\times})^*)$ induced by f is a 2-coboundary.

Theorem

Under the conditions of the lemma above

$$H \equiv T_n(R) \Leftrightarrow H \cong T_n(S, \overline{f}),$$

For $S \equiv R$ and CoT 2-cocycles f_i .

A 12 N A 12 N

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi : T_n(R, \overline{f}) \to T_n(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_i are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times} of a number field F there exists a ring $S \equiv \mathcal{O}$ where $Ext(S^{\times}, S^{\times}) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times} , with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_n(\mathcal{O})$.

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi : T_n(R, \overline{f}) \to T_n(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_i are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times} of a number field F there exists a ring $S \equiv \mathcal{O}$ where $Ext(S^{\times}, S^{\times}) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times} , with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_n(\mathcal{O})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi : T_n(R, \overline{f}) \to T_n(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_i are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times} of a number field F there exists a ring $S \equiv \mathcal{O}$ where $Ext(S^{\times}, S^{\times}) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times} , with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_n(\mathcal{O})$.

(本間) (本語) (本語) (語)
Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi : T_n(R, \overline{f}) \to T_n(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_i are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times} of a number field F there exists a ring $S \equiv \mathcal{O}$ where $Ext(S^{\times}, S^{\times}) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times} , with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $\mathcal{T}_n(\mathcal{O})$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem

Assume O is the ring of integers of an algebraic number field.
If O[×] is finite, then

$$H \equiv T_n(\mathcal{O}) \Leftrightarrow H \cong T_n(R)$$

for some ring $R \equiv \mathcal{O}$.

② If \mathcal{O}^{\times} is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_i \in S^2(R^{\times}, R^{\times})$ such that

$$T_n(\mathcal{O}) \equiv T_n(R,\bar{f})$$

but

$$T_n(R,\bar{f}) \ncong T_n(S)$$

< 🗗 🕨

for any ring S.

Our work contributes to the study of Problems 1-3 in the following ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups
- The groups $T_n(R)$, as they are, play an important part in the study of model theory of groups $G_m(K)$ from Problem 1.

Our work contributes to the study of Problems 1-3 in the following ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups
- The groups $T_n(R)$, as they are, play an important part in the study of model theory of groups $G_m(K)$ from Problem 1.

(人間) トイヨト イヨト

Our work contributes to the study of Problems 1-3 in the following ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups
- The groups T_n(R), as they are, play an important part in the study of model theory of groups G_m(K) from Problem 1.

- 4 週 ト - 4 三 ト - 4 三 ト

Our work contributes to the study of Problems 1-3 in the following ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_n(R)$ over a ring R which are model groups for linear solvable groups
- The groups T_n(R), as they are, play an important part in the study of model theory of groups G_m(K) from Problem 1.

< 回 > < 三 > < 三 > .