Groups elementarily equivalent to a group of upper triangular matrices $T_{n}(R)$

Mahmood Sohrabi (Stevens Institute)
Joint work with Alexei G. Myasnikov (Stevens Institute)

Oct. 08, 2015
(ACC Webinar)

Outline

- I will describe a characterization for groups elementarily equivalent to the group $T_{n}(R)$ of all invertible upper triangular $n \times n$ matrices, where $n \geq 3$ and R is a characteristic zero integral domain.
group being elementarily equivalent to $T_{n}(R)$ where R is a characteristic zero algebraically closed field, a real closed field, a number field, or the ring of integers of a number field.

Outline

- I will describe a characterization for groups elementarily equivalent to the group $T_{n}(R)$ of all invertible upper triangular $n \times n$ matrices, where $n \geq 3$ and R is a characteristic zero integral domain.
- In particular I describe both necessary and sufficient conditions for a group being elementarily equivalent to $T_{n}(R)$ where R is a characteristic zero algebraically closed field, a real closed field, a number field, or the ring of integers of a number field.

Elementary theories

```
Definition
The elementary theory Th(A) of a group \mathcal{A (or a ring, or an arbitrary}
structure) in a language L is the set of all first-order sentences in L that
are true in }\mathcal{A}\mathrm{ .
Definition
Two groups (rings) A and }\mathcal{B}\mathrm{ are elementarily equivalent in a language }
(\mathcal{A \equiv\mathcal{B}) if Th(\mathcal{A})=\operatorname{Th}(\mathcal{B}).}.0.0.
```

In this talk I will use L to denote the language of groups.

Elementary theories

Definition

The elementary theory $\operatorname{Th}(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A}.

Definition
Two groups (rings) \mathcal{A} and \mathcal{B} are elementarily equivalent in a language L
$(\mathcal{A} \equiv \mathcal{B})$ if $\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$.
In this talk I will use L to denote the language of groups.

Elementary theories

Definition

The elementary theory $\operatorname{Th}(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A}.

$$
\begin{aligned}
& \text { Definition } \\
& \text { Two groups (rings) } \mathcal{A} \text { and } \mathcal{B} \text { are elementarily equivalent in a language } L \\
& (\mathcal{A} \equiv \mathcal{B}) \text { if } \operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B}) \text {. }
\end{aligned}
$$

In this talk I will use L to denote the language of groups.

Elementary theories

Definition

The elementary theory $\operatorname{Th}(\mathcal{A})$ of a group \mathcal{A} (or a ring, or an arbitrary structure) in a language L is the set of all first-order sentences in L that are true in \mathcal{A}.

```
Definition
Two groups (rings) \mathcal{A and \mathcal{B}}\mathrm{ are elementarily equivalent in a language L} \((\mathcal{A} \equiv \mathcal{B})\) if \(\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})\).
```

In this talk I will use L to denote the language of groups.

Motivation

> Tarski type problems Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U}. A. Tarski posed several problems of this nature in the 1950's.

Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

Motivation

Tarski type problems

Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U}. A. Tarski posed several problems of this nature in the 1950's.

> Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

Motivation

Tarski type problems

Given an algebraic structure \mathfrak{U} one can ask if the first-order theory of \mathfrak{U} is decidable, or what are the structures (perhaps under some restrictions) which have the same first-order theory as \mathfrak{U}. A. Tarski posed several problems of this nature in the 1950's.

Tarski-type problems on groups, rings, and other algebraic structures were very inspirational and led to some important developments in modern algebra and model theory.

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Indeed, it suffices to mention here results on first-order theories of

- algebraically closed fields, real closed fields (Tarski)
- the fields of p-adic numbers (Ax-Kochen, Ershov),
- abelian groups and modules (Szmielewa, Baur),
- boolean algebras (Tarski, Ershov),
- free and hyperbolic groups (Kharlampovich-Myasnikov, Sela).

Some specific Tarski-type problems

```
Problem 1
Given a classical linear group }\mp@subsup{G}{m}{}(K)\mathrm{ over a field K, where
G\in{GL,SL,PGL,PSL,} and m\geq2, characterize all groups elementarily
equivalent to }\mp@subsup{G}{m}{}(K
```

```
Problem 2
```

Given a (connected) solvable linear algebraic group G characterize all
groups elementarily equivalent to G.
Problem 3
Given an arbitrary polycyclic-by-finite group G characterize all groups
elementarily equivalent to G.

Some specific Tarski-type problems

Problem 1

Given a classical linear group $G_{m}(K)$ over a field K, where $G \in\{G L, S L, P G L, P S L$,$\} and m \geq 2$, characterize all groups elementarily equivalent to $G_{m}(K)$.

\square
Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

Some specific Tarski-type problems

Problem 1

Given a classical linear group $G_{m}(K)$ over a field K, where
$G \in\{G L, S L, P G L, P S L$,$\} and m \geq 2$, characterize all groups elementarily equivalent to $G_{m}(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.
\square
Problem 3
Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

Some specific Tarski-type problems

Problem 1

Given a classical linear group $G_{m}(K)$ over a field K, where
$G \in\{G L, S L, P G L, P S L$,$\} and m \geq 2$, characterize all groups elementarily equivalent to $G_{m}(K)$.

Problem 2

Given a (connected) solvable linear algebraic group G characterize all groups elementarily equivalent to G.

Problem 3

Given an arbitrary polycyclic-by-finite group G characterize all groups elementarily equivalent to G.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily
equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

What is already known

- Malcev proved that $G_{m}\left(K_{1}\right) \equiv G_{n}\left(K_{2}\right)$ if and only if $m=n$ and $K_{1} \equiv K_{2}$, where K_{1}, K_{2} are fields of characteristic zero.
- In a series of papers Bunina and Mikhalev extended Malcev's results for other rings and groups.
- C. Lasserre and F. Oger (2014) give a criterion for elementary equivalence of two polycyclic groups.
- O. Belegradek (1999) described groups elementarily equivalent to a given nilpotent group $U T_{n}(\mathbb{Z})$
- Myasnikov-Sohrabi (2011) described all groups elementarily equivalent to a free nilpotent group of finite rank.
- Myasnikov-Sohrabi (2014) developed techniques which seems to be useful in tackling Problem 3 in the nilpotent case.
- O. Frécon (preprint) considers the problem of elementary equivalence and description of abstract isomorphisms of algebraic groups over algebraically closed fields.

Our work's contribution

Our work contributes to the study of the above problems in the follwoing ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups.
- The groups $T_{n}(R)$, as they are, play an important part in the study of model theory of groups $G_{m}(K)$ from Problem 1.

Our work's contribution

Our work contributes to the study of the above problems in the follwoing ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups.
- The groups $T_{n}(R)$, as they are, play an important part in the study of model theory of groups $G_{m}(K)$ from Problem 1.

Our work's contribution

Our work contributes to the study of the above problems in the follwoing ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups.
model theory of groups $G_{m}(K)$ from Problem 1.

Our work's contribution

Our work contributes to the study of the above problems in the follwoing ways.

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups.
- The groups $T_{n}(R)$, as they are, play an important part in the study of model theory of groups $G_{m}(K)$ from Problem 1.

Abelian extensions and Ext

```
Symmetric 2-cocycles
Assume A and B are abelian groups. A function
f:B\timesB->A
```


satisfying

```
- \(f^{\prime}(x y, z) f(x, y)=f(x, y z) f(y, z), \quad \forall x, y, z \in B\).
- \(f(1, x)=f(x, 1)=1, \forall x \in B\),
- \(f(x, y)=f(y, x) \quad \forall x, y \in R\) is called a symmetric 2-cocycle.
```


Abelian extensions and Ext

Symmetric 2-cocycles
Assume A and B are abelian groups. A function

$$
f: B \times B \rightarrow A
$$

satisfying

- $f(x y, z) f(x, y)=f(x, y z) f(y, z), \quad \forall x, y, z \in B$,
- $f(1, x)=f(x, 1)=1, \forall x \in B$,
- $f(x, y)=f(y, x) \quad \forall x, y \in B$.
is called a symmetric 2-cocycle.

The symmetric 2-cocycles form a group $S^{2}(B, A)$ under point-wise multiplication. A 2 -coboundary $f \in S^{2}(B, A)$ is a 2-cocycle staisfying:

$$
\psi(x y)=f(x, y) \psi(x) \psi(y), \quad \forall x, y \in B
$$

for some function $\psi: B \rightarrow A$. Those elements of $S^{2}(B, A)$ which are coboundaries form a subgroup $B^{2}(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$
1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1 .
$$

where E is abelian.
Fact
There is 1-1 correspondence between the quotient group
$\operatorname{Ext}(B, A)=S^{2}(B, A) / B^{2}(B, A)$ and equivalence classes of abelian
extensions of A by B.

The symmetric 2-cocycles form a group $S^{2}(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^{2}(B, A)$ is a 2-cocycle staisfying:

$$
\psi(x y)=f(x, y) \psi(x) \psi(y), \quad \forall x, y \in B
$$

for some function $\psi: B \rightarrow A$. Those elements of $S^{2}(B, A)$ which are coboundaries form a subgroup $B^{2}(B, A)$.

Abelian extensions
where E is abelian.

extensions of A by B.

The symmetric 2-cocycles form a group $S^{2}(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^{2}(B, A)$ is a 2-cocycle staisfying:

$$
\psi(x y)=f(x, y) \psi(x) \psi(y), \quad \forall x, y \in B
$$

for some function $\psi: B \rightarrow A$. Those elements of $S^{2}(B, A)$ which are coboundaries form a subgroup $B^{2}(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$
1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1,
$$

where E is abelian.

There is 1-1 correspondence between the quotient group
$\operatorname{Ext}(B, A)=S^{2}(B, A) / B^{2}(B, A)$ and equivalence classes of abelian
extensions of A by B.

The symmetric 2-cocycles form a group $S^{2}(B, A)$ under point-wise multiplication. A 2-coboundary $f \in S^{2}(B, A)$ is a 2-cocycle staisfying:

$$
\psi(x y)=f(x, y) \psi(x) \psi(y), \quad \forall x, y \in B
$$

for some function $\psi: B \rightarrow A$. Those elements of $S^{2}(B, A)$ which are coboundaries form a subgroup $B^{2}(B, A)$.

Abelian extensions

An abelian extension of A by B we mean a short exact sequence of groups

$$
1 \rightarrow A \xrightarrow{\mu} E \xrightarrow{\nu} B \rightarrow 1,
$$

where E is abelian.

Fact

There is 1-1 correspondence between the quotient group
$\operatorname{Ext}(B, A)=S^{2}(B, A) / B^{2}(B, A)$ and equivalence classes of abelian extensions of A by B.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- UT $T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.
- The center $Z(G)$ of G consists of diagonal scalar matrices $Z(G)=\left\{\alpha I_{n}: \alpha \in R^{\times}\right\} \cong R^{\times}$, where I_{n} is the identity matrix.
- Again it is standard knowledge that $Z(G)$ is a direct factor of $D_{n}(R)$.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where
$\rightarrow D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,

- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1 's on the diagonal).
\rightarrow and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation
- The subgroup UT (R) is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.
- The center $Z(G)$ of G consists of diagonal scalar matrices $Z(G)=\left\{\alpha I_{n}: \alpha \in R^{\times}\right\} \cong R^{\times}$, where I_{n} is the identity matrix.
- Again it is standard knowledge that $Z(G)$ is a direct factor of $D_{n}(R)$

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.
- The center $Z(G)$ of G consists of diagonal scalar matrices $Z(G)=\left\{\alpha I_{n}: \alpha \in R^{\times}\right\} \cong R^{\times}$, where I_{n} is the identity matrix
- Again it is standard knowledge that $Z(G)$ is a direct factor of $D_{n}(R)$

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal), action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.
- The center $Z(G)$ of G consists of diagonal scalar matrices $Z(G)=\left\{\alpha I_{n}: \alpha \in R^{\times}\right\} \cong R^{\times}$, where I_{n} is the identity matrix.

The structure of T_{n}

- The group $G=T_{n}(R)$ is a semi-direct product

$$
T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R),
$$

where

- $D_{n}(R)$ is the subgroup of all diagonal matrices in $T_{n}(R)$,
- $U T_{n}(R)$ denotes the subgroup of all upper unitriangular matrices (i.e. upper triangular with 1's on the diagonal),
- and the homomorphism $\phi_{n, R}: D_{n}(R) \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ describes the action of $D_{n}(R)$ on $U T_{n}(R)$ by conjugation.
- The subgroup $U T_{n}(R)$ is the so-called unipotent radical of G, i.e. the subgroup consisting of all unipotent matrices in G.
- The subgroup $D_{n}(R)$ is a direct product $\left(R^{\times}\right)^{n}$ of n copies of the multiplicative group of units R^{\times}of R.
- The center $Z(G)$ of G consists of diagonal scalar matrices $Z(G)=\left\{\alpha I_{n}: \alpha \in R^{\times}\right\} \cong R^{\times}$, where I_{n} is the identity matrix.
- Again it is standard knowledge that $Z(G)$ is a direct factor of $D_{n}(R)$.

A new structure on T_{n}

Now we define a new group just by deforming the multiplication on D_{n}.

- Let $E_{n}=E_{n}(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$by
$D_{n} / Z(G) \cong\left(R^{\times}\right)^{n-1}$. As it is customary in extension theory we can
assume $E_{n}=D_{n}=B \times Z(G)$ as sets (B is complement of $Z(G)$ in
D_{n}), while the product on E_{n} is defined as follows:

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2} f\left(x_{1}, x_{2}\right)\right),
$$

for a symmetric 2-cocycle $f \in S^{2}(B, Z(G))$.

- Next define a map $\psi_{n R}: E_{n} \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ by

$$
\psi_{n, R}((x, y)) \stackrel{\text { def }}{=} \phi_{n, R}((x, y)), \quad(x, y) \in B \times Z(G)
$$

- The definition actually makes sense since $\operatorname{ker}\left(\phi_{n, R}\right)=Z(G)$ and it is easy to verify that $\psi_{n, R}$ is indeed a homomorphism.

A new structure on T_{n}

Now we define a new group just by deforming the multiplication on D_{n}.

- Let $E_{n}=E_{n}(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$by $D_{n} / Z(G) \cong\left(R^{\times}\right)^{n-1}$. As it is customary in extension theory we can assume $E_{n}=D_{n}=B \times Z(G)$ as sets (B is complement of $Z(G)$ in D_{n}), while the product on E_{n} is defined as follows:

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2} f\left(x_{1}, x_{2}\right)\right)
$$

for a symmetric 2-cocycle $f \in S^{2}(B, Z(G))$.
Next define a map $\psi_{n, R}: E_{n} \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ by
$\psi_{n, R}((x, y)) \stackrel{\text { def }}{=} \phi_{n, R}((x, y)), \quad(x, y) \in B \times Z(G)$.

- The definition actually makes sense since $\operatorname{ker}\left(\phi_{n, R}\right)=Z(G)$ and it is easy to verify that $\psi_{n, R}$ is indeed a homomorphism.

A new structure on T_{n}

Now we define a new group just by deforming the multiplication on D_{n}.

- Let $E_{n}=E_{n}(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$by $D_{n} / Z(G) \cong\left(R^{\times}\right)^{n-1}$. As it is customary in extension theory we can assume $E_{n}=D_{n}=B \times Z(G)$ as sets (B is complement of $Z(G)$ in D_{n}), while the product on E_{n} is defined as follows:

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2} f\left(x_{1}, x_{2}\right)\right)
$$

for a symmetric 2-cocycle $f \in S^{2}(B, Z(G))$.

- Next define a map $\psi_{n, R}: E_{n} \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ by

$$
\psi_{n, R}((x, y)) \stackrel{\text { def }}{=} \phi_{n, R}((x, y)), \quad(x, y) \in B \times Z(G)
$$

A new structure on T_{n}

Now we define a new group just by deforming the multiplication on D_{n}.

- Let $E_{n}=E_{n}(R)$ be an arbitrary abelian extension of $Z(G) \cong R^{\times}$by $D_{n} / Z(G) \cong\left(R^{\times}\right)^{n-1}$. As it is customary in extension theory we can assume $E_{n}=D_{n}=B \times Z(G)$ as sets (B is complement of $Z(G)$ in D_{n}), while the product on E_{n} is defined as follows:

$$
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2} f\left(x_{1}, x_{2}\right)\right)
$$

for a symmetric 2-cocycle $f \in S^{2}(B, Z(G))$.

- Next define a map $\psi_{n, R}: E_{n} \rightarrow \operatorname{Aut}\left(U T_{n}(R)\right)$ by

$$
\psi_{n, R}((x, y)) \stackrel{\text { def }}{=} \phi_{n, R}((x, y)), \quad(x, y) \in B \times Z(G)
$$

- The definition actually makes sense since $\operatorname{ker}\left(\phi_{n, R}\right)=Z(G)$ and it is easy to verify that $\psi_{n, R}$ is indeed a homomorphism.

Definition of abelian deformations of T_{n}

Now define a new group structure H on the base set of G by

$$
H \stackrel{\text { def }}{=} E_{n} \ltimes_{\psi_{n, R}} U T_{n}(R) .
$$

We call such a group H an abelian deformation of $T_{n}(R)$.

Indeed any abelian extension E_{n} of R^{\times}by $\left(R^{\times}\right)^{n-1}$, due to the fact that $\operatorname{Ext}\left(\left(R^{\times}\right)^{n-1}, R^{\times}\right) \cong \prod_{i=1}^{n-1} \operatorname{Ext}\left(R^{\times}, R^{\times}\right)$, is uniquely determined by some symmetric 2 -cocycles $f_{i} \in S^{2}\left(R^{\times}, R^{x}\right), i=1, \ldots, n-1$ up to equivalence of extensions. So we denote H by $T_{n}\left(R, f_{1}, \ldots, f_{n-1}\right)$ or $T_{n}(R, \bar{f})$.

Definition of abelian deformations of T_{n}

Now define a new group structure H on the base set of G by

$$
H \stackrel{\text { def }}{=} E_{n} \ltimes_{\psi_{n, R}} U T_{n}(R)
$$

We call such a group H an abelian deformation of $T_{n}(R)$.

Definition of abelian deformations of T_{n}

Now define a new group structure H on the base set of G by

$$
H \stackrel{\text { def }}{=} E_{n} \ltimes_{\psi_{n, R}} U T_{n}(R)
$$

We call such a group H an abelian deformation of $T_{n}(R)$.

Indeed any abelian extension E_{n} of R^{\times}by $\left(R^{\times}\right)^{n-1}$, due to the fact that $\operatorname{Ext}\left(\left(R^{\times}\right)^{n-1}, R^{\times}\right) \cong \prod_{i=1}^{n-1} \operatorname{Ext}\left(R^{\times}, R^{\times}\right)$, is uniquely determined by some symmetric 2 -cocycles $f_{i} \in S^{2}\left(R^{\times}, R^{\times}\right), i=1, \ldots, n-1$ up to equivalence of extensions. So we denote H by $T_{n}\left(R, f_{1}, \ldots, f_{n-1}\right)$ or $T_{n}(R, \bar{f})$.

The main results

```
Theorem (M.S., A. Myasnikov)
Let G}=\mp@subsup{T}{n}{\prime}(R)\mathrm{ be the group of invertible n }\times\mathrm{ n upper triangular matrices
over a characteristic zero integral domain R. Then
H\equivG=>H\cong}\mp@subsup{T}{n}{}(S,\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{n-1}{})
for some ring S 三R and symmetric 2-cocycles }\mp@subsup{f}{i}{}\in\mp@subsup{S}{}{2}(\mp@subsup{S}{}{*},\mp@subsup{S}{}{*})\mathrm{ .
```


The main results

Theorem (M.S., A. Myasnikov)

Let $G=T_{n}(R)$ be the group of invertible $n \times n$ upper triangular matrices over a characteristic zero integral domain R. Then

$$
H \equiv G \Rightarrow H \cong T_{n}\left(S, f_{1}, \ldots, f_{n-1}\right)
$$

for some ring $S \equiv R$ and symmetric 2-cocycles $f_{i} \in S^{2}\left(S^{\times}, S^{\times}\right)$.

Theorem (M.S., A. Myasnikov)

Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T\left(R^{\times}\right)$of R^{\times}is finite. Then for a group H

$$
T_{n}(R) \equiv H \Leftrightarrow H \cong T_{n}(S, \bar{f}),
$$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_{i} \in S^{2}\left(S^{\times}, S^{\times}\right)$,
$i=1, \ldots, n-1$.

Definition of CoT 2-cocycles
Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be coboundarious on torsion or Co T if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$, of f to $T \times T$ is a 2-coboundary.

Theorem (M.S., A. Myasnikov)
Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T\left(R^{\times}\right)$of R^{\times}is finite. Then for a group H

$$
T_{n}(R) \equiv H \Leftrightarrow H \cong T_{n}(S, \bar{f}),
$$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_{i} \in S^{2}\left(S^{\times}, S^{\times}\right)$, $i=1, \ldots, n-1$.

Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be coboundarious on torsion or CoT if the restriction g is a 2-coboundary.

Theorem (M.S., A. Myasnikov)

Assume R is an integral domain of characteristic zero where the maximal torsion subgroup $T\left(R^{\times}\right)$of R^{\times}is finite. Then for a group H

$$
T_{n}(R) \equiv H \Leftrightarrow H \cong T_{n}(S, \bar{f}),
$$

for some ring $S \equiv R$ and some CoT 2-cocycles $f_{i} \in S^{2}\left(S^{\times}, S^{\times}\right)$, $i=1, \ldots, n-1$.

Definition of CoT 2-cocycles

Given a ring R as in the statement of the theorem above a symmetric 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be coboundarious on torsion or Co T if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$, of f to $T \times T$ is a 2-coboundary.

Considering the fact that $T\left(R^{\times}\right)$is finite if R is a number field or the ring of integers of a number field the following result is immediate.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$
H \equiv T_{n}(F) \Leftrightarrow H \cong T_{n}(K),
$$

for some field $K \equiv F$

Considering the fact that $T\left(R^{\times}\right)$is finite if R is a number field or the ring of integers of a number field the following result is immediate.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_{n}(R)$ if and only if $H \cong T_{n}(S, \bar{f})$ where each f_{i} is CoT.

for some field $K \equiv F$

Considering the fact that $T\left(R^{\times}\right)$is finite if R is a number field or the ring of integers of a number field the following result is immediate.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_{n}(R)$ if and only if $H \cong T_{n}(S, \bar{f})$ where each f_{i} is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

for some field $K \equiv F$

Considering the fact that $T\left(R^{\times}\right)$is finite if R is a number field or the ring of integers of a number field the following result is immediate.

Corollary (M.S., A. Myasnikov)

Assume R is a number field or the ring of integers of a number field. Then $H \equiv T_{n}(R)$ if and only if $H \cong T_{n}(S, \bar{f})$ where each f_{i} is CoT.

In case that R is a characteristic zero algebraically closed field or a real closed field the introduction of abelian deformations is not necessary.

Theorem (M.S., A. Myasnikov)

Assume F is a characteristic zero algebraically closed field or a real closed field. Then

$$
H \equiv T_{n}(F) \Leftrightarrow H \cong T_{n}(K)
$$

for some field $K \equiv F$.

As for the necessity of introducing abelian deformations we prove the following theorems.

Assume \mathcal{O} is the ring of integers of an algebraic number field.
(1) If \mathcal{O}^{\times}is finite then a groun H is elementarily equivalent to $T_{n}(O)$ if and only if $H \cong T_{n}(R)$ for some ring $R \equiv \mathcal{O}$
(2) If \mathcal{O}^{\times}is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_{i} \in S^{2}\left(R^{\times}, R^{\times}\right)$ such that $T_{n}(\mathcal{O}) \equiv T_{n}(R, \bar{f})$ but $T_{n}(R, \bar{f}) \nexists T_{n}(S)$ for any ring S.

As for the necessity of introducing abelian deformations we prove the following theorems.

Theorem (M.S., A. Myasnikov)
There is a field $K, K \equiv \mathbb{Q}$ and there are some $f_{i} \in S^{2}\left(K^{\times}, K^{\times}\right)$such that $T_{n}(\mathbb{Q}) \equiv T_{n}(K, \bar{f})$ but $T_{n}(K, \bar{f}) \nexists T_{n}\left(K^{\prime}\right)$ for any field K^{\prime}.

Assume \mathcal{O} is the ring of integers of an algebraic number field.
(1) If \mathcal{O}^{\times}is finite, then a group H is elementarily equivalent to $T_{n}(O)$ if and only if $H \cong T_{n}(R)$ for some ring $R \equiv \mathcal{O}$

As for the necessity of introducing abelian deformations we prove the following theorems.

Theorem (M.S., A. Myasnikov)

There is a field $K, K \equiv \mathbb{Q}$ and there are some $f_{i} \in S^{2}\left(K^{\times}, K^{\times}\right)$such that $T_{n}(\mathbb{Q}) \equiv T_{n}(K, \bar{f})$ but $T_{n}(K, \bar{f}) \nexists T_{n}\left(K^{\prime}\right)$ for any field K^{\prime}.

Theorem (M.S., A. Myasnikov)

Assume \mathcal{O} is the ring of integers of an algebraic number field.
(1) If \mathcal{O}^{\times}is finite, then a group H is elementarily equivalent to $T_{n}(\mathcal{O})$ if and only if $H \cong T_{n}(R)$ for some ring $R \equiv \mathcal{O}$.
(2) If \mathcal{O}^{\times}is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_{i} \in S^{2}\left(R^{\times}, R^{\times}\right)$ such that $T_{n}(\mathcal{O}) \equiv T_{n}(R, \bar{f})$ but $T_{n}(R, \bar{f}) \not \not T_{n}(S)$ for any ring S.

How should one approach these problems

To prove the necessity statements ideally one wants to prove that

- $U T_{n}(R)$ is uniformly definable in G,
- $D_{n}(R)$ is uniformly definable in G,
- The action of $D_{n}(R)$ on $U T_{n}(R)$ can be described using L-formulas We will see to what extent any of these could be achieved.

Some special elements of $T_{n}(R)=D_{n}(R) \ltimes U T_{n}(R)$

> let $e_{i j}, i<j$, be the matrix with $i j$ 'th entry 1 and every other entry 0 , and let $t_{i j}=I_{n}+e_{i j}$, where I_{n} is the $n \times n$ identity matrix. Let also $t_{i j}(\alpha)=I_{n}+\alpha e_{i j}$, for $\alpha \in R$. These matrices are called transvections and they generate $U T_{n}(R)$.

Let $\operatorname{diag}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be the $n \times n$ diagonal matrix with ii'th entry $\alpha_{i} \in R^{\times}$. The group $D_{n}(R)$ consists of these elements as the α_{i} range over R^{\times}. Now consider the following diagonal matrices

and let us set

$$
d_{i} \stackrel{\text { def }}{=} d_{i}(-1) .
$$

Clearly the $d_{i}(\alpha)$ generate $D_{n}(F)$ as α ranges over R^{\times}

Some special elements of $T_{n}(R)=D_{n}(R) \ltimes U T_{n}(R)$

let $e_{i j}, i<j$, be the matrix with $i j$ 'th entry 1 and every other entry 0 , and let $t_{i j}=I_{n}+e_{i j}$, where I_{n} is the $n \times n$ identity matrix. Let also $t_{i j}(\alpha)=I_{n}+\alpha e_{i j}$, for $\alpha \in R$. These matrices are called transvections and they generate $U T_{n}(R)$.
\square

and let us set

Clearly the $d_{i}(\alpha)$ generate $D_{n}(F)$ as α ranges over R^{\times}

Some special elements of $T_{n}(R)=D_{n}(R) \ltimes U T_{n}(R)$

let $e_{i j}, i<j$, be the matrix with $i j$ 'th entry 1 and every other entry 0 , and let $t_{i j}=I_{n}+e_{i j}$, where I_{n} is the $n \times n$ identity matrix. Let also $t_{i j}(\alpha)=I_{n}+\alpha e_{i j}$, for $\alpha \in R$. These matrices are called transvections and they generate $U T_{n}(R)$.

Let $\operatorname{diag}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be the $n \times n$ diagonal matrix with ii'th entry $\alpha_{i} \in R^{\times}$. The group $D_{n}(R)$ consists of these elements as the α_{i} range over R^{\times}. Now consider the following diagonal matrices

$$
d_{i}(\alpha) \stackrel{\text { def }}{=} \operatorname{diag}[1, \ldots, \underbrace{\alpha}_{i^{\prime} \text { th }}, \ldots, 1]
$$

and let us set

$$
d_{i} \stackrel{\text { def }}{=} d_{i}(-1)
$$

Clearly the $d_{i}(\alpha)$ generate $D_{n}(F)$ as α ranges over R^{\times}.

Recovering the unipotent radical

Fitting Subgroups
By the Fitting subgroup of a group G, denoted by Fitt (G), we mean thesubgroup generated by all normal nilpotent subgroups of G.
Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself
nilpotent. For example every polycyclic-by-finite group is in \mathcal{P}. Also $T_{n}(R)$for any commutative associative ring R with unit is in \mathcal{P}.
Lemma (A. Myasnikov, V. Romankov, M.S.)
Assume G is a groun in \mathcal{P}. There is a formula that defines Fitt(G) in Guniformly with respect to $\operatorname{Th}(\mathrm{G})$. In particular the class \mathcal{P} is anelementary class.
Lemma
The derived subgroup of G^{\prime} of $G=T_{n}(R)$ is definable in G

Recovering the unipotent radical

Fitting Subgroups

By the Fitting subgroup of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Lemma
The derived subgroup of G^{\prime} of $G=T_{n}(R)$ is definable in G

Recovering the unipotent radical

Fitting Subgroups

By the Fitting subgroup of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P}. Also $T_{n}(R)$ for any commutative associative ring R with unit is in \mathcal{P}.

Recovering the unipotent radical

Fitting Subgroups

By the Fitting subgroup of a group G, denoted by Fitt(G), we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P}. Also $T_{n}(R)$ for any commutative associative ring R with unit is in \mathcal{P}.

Lemma (A. Myasnikov, V. Romankov, M.S.)
Assume G is a group in \mathcal{P}. There is a formula that defines Fitt (G) in G uniformly with respect to $\operatorname{Th}(G)$. In particular the class \mathcal{P} is an elementary class.

The derived subgroup of G^{\prime} of $G=T_{n}(R)$ is definable in G.

Recovering the unipotent radical

Fitting Subgroups

By the Fitting subgroup of a group G, denoted by $\operatorname{Fitt}(G)$, we mean the subgroup generated by all normal nilpotent subgroups of G.

Denote by \mathcal{P} the class of groups G where the Fitting subgroup is itself nilpotent. For example every polycyclic-by-finite group is in \mathcal{P}. Also $T_{n}(R)$ for any commutative associative ring R with unit is in \mathcal{P}.

Lemma (A. Myasnikov, V. Romankov, M.S.)
Assume G is a group in \mathcal{P}. There is a formula that defines Fitt (G) in G uniformly with respect to $\operatorname{Th}(G)$. In particular the class \mathcal{P} is an elementary class.

Lemma

The derived subgroup of G^{\prime} of $G=T_{n}(R)$ is definable in G.

There is a problem though. In general for $G=T_{n}(R)$ where R is a characteristic zero integral domain

- $\operatorname{Fitt}(G)=U T_{n}(R) \times Z(G)$,
- G^{\prime} is the subgroup of G generated by

$$
X=\left\{t_{i, i+1}((1-\alpha) \beta), t_{k l}(\beta): \alpha \in R^{x}, \beta \in R\right\}
$$

> Indeed $U T_{n}(R)$ is not necessarily a definable subgroup of G. However we can prove the following

> Lemma
> Assume $G=T_{n}(R)$ and $H \equiv G$. Then $Z(H)$ contains a unique element of order 2 denoted by $-I_{n}$. Therefore the subgroup $U T_{n}(R) \times\left\{ \pm I_{n}\right\}$ is definable in G.

There is a problem though. In general for $G=T_{n}(R)$ where R is a characteristic zero integral domain

- $\operatorname{Fitt}(G)=U T_{n}(R) \times Z(G)$,
- G^{\prime} is the subgroup of G generated by

Indeed $U T_{n}(R)$ is not necessarily a definable subgroup of G. However we can prove the following

> Lemma
> Assume $G=T_{n}(R)$ and $H \equiv G$. Then $Z(H)$ contains a unique element of order 2 denoted by $-I_{n}$. Therefore the subgroup $U T_{n}(R) \times\left\{ \pm I_{n}\right\}$ is definable in G.

There is a problem though. In general for $G=T_{n}(R)$ where R is a characteristic zero integral domain

- $\operatorname{Fitt}(G)=U T_{n}(R) \times Z(G)$,
- G^{\prime} is the subgroup of G generated by

$$
X=\left\{t_{i, i+1}((1-\alpha) \beta), t_{k l}(\beta): \alpha \in R^{\times}, \beta \in R\right\}
$$

Indeed $U T_{n}(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Assume $G=T_{n}(R)$ and $H \equiv G$. Then $Z(H)$ contains a unique element of order 2 denoted by $-I_{n}$. Therefore the subgroup $U T_{n}(R) \times\left\{ \pm I_{n}\right\}$ is definable in G.

There is a problem though. In general for $G=T_{n}(R)$ where R is a characteristic zero integral domain

- $\operatorname{Fitt}(G)=U T_{n}(R) \times Z(G)$,
- G^{\prime} is the subgroup of G generated by

$$
X=\left\{t_{i, i+1}((1-\alpha) \beta), t_{k l}(\beta): \alpha \in R^{\times}, \beta \in R\right\}
$$

Indeed $U T_{n}(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Assume $G=T_{n}(R)$ and $H \equiv G$. Then $Z(H)$ contains a unique element of order 2 denoted by $-I_{n}$. Therefore the subgroup $U T_{n}(R) \times\left\{ \pm I_{n}\right\}$ is definable in G.

There is a problem though. In general for $G=T_{n}(R)$ where R is a characteristic zero integral domain

- $\operatorname{Fitt}(G)=U T_{n}(R) \times Z(G)$,
- G^{\prime} is the subgroup of G generated by

$$
X=\left\{t_{i, i+1}((1-\alpha) \beta), t_{k l}(\beta): \alpha \in R^{\times}, \beta \in R\right\}
$$

Indeed $U T_{n}(R)$ is not necessarily a definable subgroup of G. However we can prove the following

Lemma

Assume $G=T_{n}(R)$ and $H \equiv G$. Then $Z(H)$ contains a unique element of order 2 denoted by $-I_{n}$. Therefore the subgroup $U T_{n}(R) \times\left\{ \pm I_{n}\right\}$ is definable in G.

But we face another problem:

```
Lemma (O. Belegradek)
Consider the group N = UT
ring with unit. Then for each 1\leqi<j\leqn the one-parameter subgroups
Tij}={\mp@subsup{t}{ij}{}(\alpha):\alpha\inR}\mathrm{ are definable in N, unless j=i+1. If j=i+1
then the subgroup Cij = Tij}\cdot\(N)\mathrm{ is definable in N
general definable in N.
```

Theorem (O. Belegradek)
There is a ring R and H such that $H \equiv U T_{n}(R)$ but $H \neq U T_{n}(S)$ for any
ring S.

But we face another problem:

Lemma (O. Belegradek)

Consider the group $N=U T_{n}(R)$, where R is a commutative associative ring with unit. Then for each $1 \leq i<j \leq n$ the one-parameter subgroups $T_{i j}=\left\{t_{i j}(\alpha): \alpha \in R\right\}$ are definable in N, unless $j=i+1$. If $j=i+1$ then the subgroup $C_{i j}=T_{i j} \cdot Z(N)$ is definable in N. The $T_{i, i+1}$ are not in general definable in N.

But we face another problem:

Lemma (O. Belegradek)

Consider the group $N=U T_{n}(R)$, where R is a commutative associative ring with unit. Then for each $1 \leq i<j \leq n$ the one-parameter subgroups $T_{i j}=\left\{t_{i j}(\alpha): \alpha \in R\right\}$ are definable in N, unless $j=i+1$. If $j=i+1$ then the subgroup $C_{i j}=T_{i j} \cdot Z(N)$ is definable in N. The $T_{i, i+1}$ are not in general definable in N.

Theorem (O. Belegradek)

There is a ring R and H such that $H \equiv U T_{n}(R)$ but $H \not \equiv U T_{n}(S)$ for any ring S.

One can improve Belegradek's lemma as follows:

```
Lemma
The R-module structure of each }\mp@subsup{T}{ij}{}\mathrm{ is interpretable in N if j>i+1. If
j}=i+1\mathrm{ then the R-module C Ci,i+1 is interpretable in N
The good thing is the following fact:
\[
\left[d_{2}, \pm C_{12}\right]=\left\langle t_{12}(2 \alpha): \alpha \in R\right\rangle,
\]
```


which is close enough to T_{12}

```
So indeed using these first-order equations we can recover all the \(\pm T_{i, i+1}\) With a little bit of effort we can prove now that
Proposition
If \(H=T(R)\) for a characteristic zero integral domain \(R\) then there exists a ring \(S \equiv R\) and an abelian subgroup \(E_{n} \equiv D_{n}(R)\) of \(H\) such that
\[
H \cong E_{n} \ltimes U T_{n}(S)
\]
```


One can improve Belegradek's lemma as follows:

Lemma
The R-module structure of each $T_{i j}$ is interpretable in N if $j>i+1$. If $j=i+1$ then the R-module $C_{i, i+1}$ is interpretable in N.

The good thing is the following fact:

$$
\left[d_{2}, \pm C_{12}\right]=\left\langle t_{12}(2 \alpha): \alpha \in R\right\rangle,
$$

which is close enough to T_{12}.
So indeed using these first-order equations we can recover all the $\pm T_{i, i+1}$ With a little bit of effort we can prove now that

$H \cong E_{n} \ltimes U T_{n}(S)$

One can improve Belegradek's lemma as follows:

Lemma

The R-module structure of each $T_{i j}$ is interpretable in N if $j>i+1$. If $j=i+1$ then the R-module $C_{i, i+1}$ is interpretable in N.

The good thing is the following fact:

$$
\left[d_{2}, \pm C_{12}\right]=\left\langle t_{12}(2 \alpha): \alpha \in R\right\rangle
$$

which is close enough to T_{12}.
With a little bit of effort we can prove now that

If $H \equiv T_{n}(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_{n} \equiv D_{n}(R)$ of H such that
\square

One can improve Belegradek's lemma as follows:

Lemma

The R-module structure of each $T_{i j}$ is interpretable in N if $j>i+1$. If $j=i+1$ then the R-module $C_{i, i+1}$ is interpretable in N.

The good thing is the following fact:

$$
\left[d_{2}, \pm C_{12}\right]=\left\langle t_{12}(2 \alpha): \alpha \in R\right\rangle
$$

which is close enough to T_{12}.
So indeed using these first-order equations we can recover all the $\pm T_{i, i+1}$. With a little bit of effort we can prove now that

If $H \equiv T_{n}(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_{n} \equiv D_{n}(R)$ of H such that

One can improve Belegradek's lemma as follows:

Lemma

The R-module structure of each $T_{i j}$ is interpretable in N if $j>i+1$. If $j=i+1$ then the R-module $C_{i, i+1}$ is interpretable in N.

The good thing is the following fact:

$$
\left[d_{2}, \pm C_{12}\right]=\left\langle t_{12}(2 \alpha): \alpha \in R\right\rangle
$$

which is close enough to T_{12}.
So indeed using these first-order equations we can recover all the $\pm T_{i, i+1}$. With a little bit of effort we can prove now that

Proposition

If $H \equiv T_{n}(R)$ for a characteristic zero integral domain R then there exists a ring $S \equiv R$ and an abelian subgroup $E_{n} \equiv D_{n}(R)$ of H such that

$$
H \cong E_{n} \ltimes U T_{n}(S) .
$$

If we can encode the fact that $D_{n} \cong\left(R^{\times}\right)^{n}$ then we are basically done. But all we know are the following first-order equations:

$$
d_{k}\left(\alpha^{-1}\right) t_{i j}(\beta) d_{k}(\alpha)= \begin{cases}t_{i j}(\beta) & \text { if } k \neq i, k \neq j \\ t_{i j}\left(\alpha^{-1} \beta\right) & \text { if } k=i \\ t_{i j}(\alpha \beta) & \text { if } k=j\end{cases}
$$

By the way, D_{n} is defined in G as the centralizer $C_{G}\left(\left\{d_{i}: i=1, \ldots n\right\}\right)$.

If we can encode the fact that $D_{n} \cong\left(R^{\times}\right)^{n}$ then we are basically done. But all we know are the following first-order equations:

$$
d_{k}\left(\alpha^{-1}\right) t_{i j}(\beta) d_{k}(\alpha)= \begin{cases}t_{i j}(\beta) & \text { if } k \neq i, k \neq j \\ t_{i j}\left(\alpha^{-1} \beta\right) & \text { if } k=i \\ t_{i j}(\alpha \beta) & \text { if } k=j\end{cases}
$$

By the way, D_{n} is defined in G as the centralizer $C_{G}\left(\left\{d_{i}: i=1, \ldots n\right\}\right)$.

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

Proposition
Let $G=T_{n}(R)$, and H is a group $H \equiv G$. Then
(a) For each $1 \leq i \leq n$ the subgroup $\Delta_{i}(R) \stackrel{\text { def }}{=} d_{i}\left(R^{\times}\right) \cdot Z(G)$ is
first-order definable in $D_{n}=D_{n}(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each $i=1, \ldots, n$ a subgroup $\Lambda_{i}<E_{n}$ of H defined in H by the same formula that defines Δ_{i} in D_{n} such that $\Lambda_{i} / Z(H) \cong S$

one has $Z(H)=\bigcap_{i=1}^{n} \Lambda_{i}$ and $Z(H) \cong S$
(d) Therefore E_{n} is isomorphic to an abelian extension of $Z(H) \cong S^{\times}$by $E_{n} / Z(H) \cong\left(S^{\times}\right)^{n-1}$

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

Proposition

Let $G=T_{n}(R)$, and H is a group $H \equiv G$. Then
(a) For each $1 \leq i \leq n$ the subgroup $\Delta_{i}(R) \stackrel{\text { def }}{=} d_{i}\left(R^{\times}\right) \cdot Z(G)$ is first-order definable in $D_{n}=D_{n}(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each $i=1, \ldots, n$ a subgroup $\Lambda_{i}<E_{n}$ of H defined in H by the same formula that defines Δ_{i} in D_{n} such that $\Lambda_{i} / Z(H) \cong S^{\times}$.
(b) $D_{n}=\Delta_{1} \cdots \Delta_{n}$. Therefore $E_{n}=\Lambda_{1} \cdots \Lambda_{n}$.
(c) $Z(G)=\bigcap_{i=1}^{n} \Delta_{i}$ and $Z(G)$ is definably isomorphic to R^{\times}. Similarly
one has $Z(H)=\bigcap_{i=1}^{n} \Lambda_{i}$ and $Z(H) \cong S^{\times}$.
(d) Therefore E_{n} is isomorphic to an abelian extension of $Z(H) \cong S^{\times}$by
$E_{n} / Z(H) \cong\left(S^{\times}\right)^{n-1}$.

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

Proposition

Let $G=T_{n}(R)$, and H is a group $H \equiv G$. Then
(a) For each $1 \leq i \leq n$ the subgroup $\Delta_{i}(R) \stackrel{\text { def }}{=} d_{i}\left(R^{\times}\right) \cdot Z(G)$ is first-order definable in $D_{n}=D_{n}(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each $i=1, \ldots, n$ a subgroup $\Lambda_{i}<E_{n}$ of H defined in H by the same formula that defines Δ_{i} in D_{n} such that $\Lambda_{i} / Z(H) \cong S^{\times}$.
(b) $D_{n}=\Delta_{1} \cdots \Delta_{n}$. Therefore $E_{n}=\Lambda_{1} \cdots \Lambda_{n}$.

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

Proposition

Let $G=T_{n}(R)$, and H is a group $H \equiv G$. Then
(a) For each $1 \leq i \leq n$ the subgroup $\Delta_{i}(R) \stackrel{\text { def }}{=} d_{i}\left(R^{\times}\right) \cdot Z(G)$ is first-order definable in $D_{n}=D_{n}(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each $i=1, \ldots, n$ a subgroup $\Lambda_{i}<E_{n}$ of H defined in H by the same formula that defines Δ_{i} in D_{n} such that $\Lambda_{i} / Z(H) \cong S^{\times}$.
(b) $D_{n}=\Delta_{1} \cdots \Delta_{n}$. Therefore $E_{n}=\Lambda_{1} \cdots \Lambda_{n}$.
(c) $Z(G)=\bigcap_{i=1}^{n} \Delta_{i}$ and $Z(G)$ is definably isomorphic to R^{\times}. Similarly
one has $Z(H)=\bigcap_{i=1}^{n} \Lambda_{i}$ and $Z(H) \cong S^{\times}$.
(d) Therefore E_{n} is isomorphic to an abelian extension of $Z(H) \cong S^{\times}$by

We can coordinatize D_{n} using the equations above but everything will be modulo the center. So we have proved that

Proposition

Let $G=T_{n}(R)$, and H is a group $H \equiv G$. Then
(a) For each $1 \leq i \leq n$ the subgroup $\Delta_{i}(R) \stackrel{\text { def }}{=} d_{i}\left(R^{\times}\right) \cdot Z(G)$ is first-order definable in $D_{n}=D_{n}(R)$ by an L-formula. Moreover there exists a ring $S \equiv R$ and for each $i=1, \ldots, n$ a subgroup $\Lambda_{i}<E_{n}$ of H defined in H by the same formula that defines Δ_{i} in D_{n} such that $\Lambda_{i} / Z(H) \cong S^{\times}$.
(b) $D_{n}=\Delta_{1} \cdots \Delta_{n}$. Therefore $E_{n}=\Lambda_{1} \cdots \Lambda_{n}$.
(c) $Z(G)=\bigcap_{i=1}^{n} \Delta_{i}$ and $Z(G)$ is definably isomorphic to R^{\times}. Similarly
one has $Z(H)=\bigcap_{i=1}^{n} \Lambda_{i}$ and $Z(H) \cong S^{\times}$.
(d) Therefore E_{n} is isomorphic to an abelian extension of $Z(H) \cong S^{\times}$by $E_{n} / Z(H) \cong\left(S^{\times}\right)^{n-1}$.

So we proved that for a characteristic zero integral domain R

$$
H \cong E_{n}(S) \ltimes_{\psi_{n, S}} U T_{n}(S),
$$

 and $\psi_{n, s} \approx \phi_{n, s}$.

So we proved that for a characteristic zero integral domain R
Theorem
$H \equiv\left(T_{n}(R)=D_{n}(R) \ltimes_{\phi_{n, R}} U T_{n}(R)\right)$ then

$$
H \cong E_{n}(S) \ltimes_{\psi_{n, S}} \cup T_{n}(S),
$$

where $S \equiv R$ and E_{n} is an abelian extension of $Z(H) \cong S^{\times}$by $\left(S^{\times}\right)^{n-1}$ and $\psi_{n, s} \approx \phi_{n, s}$.

The sufficient conditions

- Question: Are all $T_{n}(S, \bar{f})$ elementarily equivalent to $T_{n}(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be CoT if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$is the torsion subgroup of R^{\times}, of f to $T \times T$ is a 2 -coboundary.
- Assume A is abelian extension of $A_{1}=R^{\times}$by $A_{2}=R^{\times}$, and T_{2} is the copy of T in A_{2}. Then f is CoT if and only if the subgroup H of A generated by A_{1} and any preimage of T_{2} in A splits over A_{1}, i.e. $H \cong A_{1} \times T_{2}$.
- Note that if $\Delta_{i}=d_{i}\left(R^{x}\right) \times Z(G)$ the fact that the corresponding 2-cocycle f_{i} is CoT is a first-order property.

The sufficient conditions

- Question: Are all $T_{n}(S, \bar{f})$ elementarily equivalent to $T_{n}(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be CoT if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$is the torsion subgroup of R^{\times}, of f to $T \times T$ is a 2-coboundary.
- Assume A is abelian extension of $A_{1}=R^{\times}$by $A_{2}=R^{\times}$, and T_{2} is the copy of T in A_{2}. Then f is CoT if and only if the subgroup H of A generated by A_{1} and any preimage of T_{2} in A splits over A_{1}, i.e. $H \cong A_{1} \times T_{2}$.
- Note that if $\Delta_{i}=d_{i}\left(R^{x}\right) \times Z(G)$ the fact that the corresponding 2-cocycle f_{i} is CoT is a first-order property.

The sufficient conditions

- Question: Are all $T_{n}(S, \bar{f})$ elementarily equivalent to $T_{n}(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be CoT if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$is the torsion subgroup of R^{\times}, of f to $T \times T$ is a 2-coboundary.
- Assume A is abelian extension of $A_{1}=R^{\times}$by $A_{2}=R^{\times}$, and T_{2} is A generated by A_{1} and any preimage of T_{2} in A splits over A_{1}, i.e. $H \cong A_{1} \times T_{2}$.
- Note that if $\Delta_{i}=d_{i}\left(R^{\times}\right) \times Z(G)$ the fact that the corresponding 2-cocycle f_{i} is CoT is a first-order property.

The sufficient conditions

- Question: Are all $T_{n}(S, \bar{f})$ elementarily equivalent to $T_{n}(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be CoT if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$is the torsion subgroup of R^{\times}, of f to $T \times T$ is a 2-coboundary.
- Assume A is abelian extension of $A_{1}=R^{\times}$by $A_{2}=R^{\times}$, and T_{2} is the copy of T in A_{2}. Then f is CoT if and only if the subgroup H of A generated by A_{1} and any preimage of T_{2} in A splits over A_{1}, i.e. $H \cong A_{1} \times T_{2}$.
- Note that if $\Delta_{i}=d_{i}\left(R^{\times}\right) \times Z(G)$ the fact that the corresponding 2-cocycle f_{i} is CoT is a first-order property.

The sufficient conditions

- Question: Are all $T_{n}(S, \bar{f})$ elementarily equivalent to $T_{n}(R)$ if $R \equiv S$?
- Answer: No!
- Recall that for ring R a 2-cocycle $f: R^{\times} \times R^{\times} \rightarrow R^{\times}$is said to be CoT if the restriction $g: T \times T \rightarrow R^{\times}$, where $T=T\left(R^{\times}\right)$is the torsion subgroup of R^{\times}, of f to $T \times T$ is a 2-coboundary.
- Assume A is abelian extension of $A_{1}=R^{\times}$by $A_{2}=R^{\times}$, and T_{2} is the copy of T in A_{2}. Then f is CoT if and only if the subgroup H of A generated by A_{1} and any preimage of T_{2} in A splits over A_{1}, i.e. $H \cong A_{1} \times T_{2}$.
- Note that if $\Delta_{i}=d_{i}\left(R^{\times}\right) \times Z(G)$ the fact that the corresponding 2-cocycle f_{i} is CoT is a first-order property.

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times}is finite. Assume $f \in S^{2}\left(R^{\times}, R^{\times}\right)$is CoT and (I, \mathcal{D}) is an ultra-filter so that ultraproduct $\left(R^{\times}\right)^{*}$ of R^{\times}over \mathcal{D} is \aleph_{1}-saturated. Then the 2-cocycle $f^{*} \in S^{2}\left(\left(R^{\times}\right)^{*},\left(R^{\times}\right)^{*}\right)$ induced by f is a 2-coboundary.

Theorem

Under the conditions of the lemma above

$$
H \equiv T_{n}(R) \Leftrightarrow H \cong T_{n}(S, \bar{f}),
$$

For $S \equiv R$ and CoT 2-cocycles f_{i}.

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times}is finite. Assume $f \in S^{2}\left(R^{\times}, R^{\times}\right)$is CoT and (I, \mathcal{D}) is an ultra-filter so that ultraproduct $\left(R^{\times}\right)^{*}$ of R^{\times}over \mathcal{D} is \aleph_{1}-saturated. Then the 2-cocycle $f^{*} \in S^{2}\left(\left(R^{\times}\right)^{*},\left(R^{\times}\right)^{*}\right)$ induced by f is a 2-coboundary.

Lemma

Assume R is a characteristic zero integral domain so that the maximal torsion subgroup of R^{\times}is finite. Assume $f \in S^{2}\left(R^{\times}, R^{\times}\right)$is CoT and (I, \mathcal{D}) is an ultra-filter so that ultraproduct $\left(R^{\times}\right)^{*}$ of R^{\times}over \mathcal{D} is \aleph_{1}-saturated. Then the 2-cocycle $f^{*} \in S^{2}\left(\left(R^{\times}\right)^{*},\left(R^{\times}\right)^{*}\right)$ induced by f is a 2-coboundary.

Theorem

Under the conditions of the lemma above

$$
H \equiv T_{n}(R) \Leftrightarrow H \cong T_{n}(S, \bar{f}),
$$

For $S \equiv R$ and CoT 2-cocycles f_{i}.

Are abelian deformations necessary after all?

```
Proposition
Assume R and S are characteristic zero integral domains with unit. Let
\phi:}\mp@subsup{T}{n}{}(R,\overline{f})->\mp@subsup{T}{n}{}(S)\mathrm{ be an isomorphism of abstract groups. Then R}\cong
as rings and all the symmetric 2-cocycles }\mp@subsup{f}{i}{}\mathrm{ are 2-coboundaries.
```

Proposition
For any ring \mathcal{O} of integers with infinite O^{\times}of a number field F there
exists a ring $S \equiv \mathcal{O}$ where $\operatorname{Ext}\left(S^{\times}, S^{\times}\right) \neq 1$.
Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any
element of a definable subgroup B of finite index in \mathcal{O}^{\times}, with the
corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_{n}(\mathcal{O})$.

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi: T_{n}(R, \bar{f}) \rightarrow T_{n}(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_{i} are 2-coboundaries.

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi: T_{n}(R, \bar{f}) \rightarrow T_{n}(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_{i} are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times}of a number field F there exists a ring $S \equiv \mathcal{O}$ where $\operatorname{Ext}\left(S^{\times}, S^{\times}\right) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times}, with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_{n}(\mathcal{O})$

Are abelian deformations necessary after all?

Proposition

Assume R and S are characteristic zero integral domains with unit. Let $\phi: T_{n}(R, \bar{f}) \rightarrow T_{n}(S)$ be an isomorphism of abstract groups. Then $R \cong S$ as rings and all the symmetric 2-cocycles f_{i} are 2-coboundaries.

Proposition

For any ring \mathcal{O} of integers with infinite \mathcal{O}^{\times}of a number field F there exists a ring $S \equiv \mathcal{O}$ where $\operatorname{Ext}\left(S^{\times}, S^{\times}\right) \neq 1$.

Using Romanovskii-Robinson we can prove that $\lambda^{\mathbb{Z}} \leq \mathcal{O}^{\times}$, where λ is any element of a definable subgroup B of finite index in \mathcal{O}^{\times}, with the corresponding ring structure is interpretable in $\mathcal{O}^{\times} \ltimes \mathcal{O}$ and thus in $T_{n}(\mathcal{O})$.

Theorem

Assume \mathcal{O} is the ring of integers of an algebraic number field.
(1) If \mathcal{O}^{\times}is finite, then

$$
H \equiv T_{n}(\mathcal{O}) \Leftrightarrow H \cong T_{n}(R)
$$

for some ring $R \equiv \mathcal{O}$.
(2) If \mathcal{O}^{\times}is infinite, then there exit $R \equiv \mathcal{O}$ and some $f_{i} \in S^{2}\left(R^{\times}, R^{\times}\right)$ such that

$$
T_{n}(\mathcal{O}) \equiv T_{n}(R, \bar{f})
$$

but

$$
T_{n}(R, \bar{f}) \not \neq T_{n}(S)
$$

for any ring S.

Our work's contribution in studying Problems 1-3

Our work contributes to the study of Problems 1-3 in the follwoing ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups
- The grouns $T_{n}(R)$, as they are, play an important part in the study of model theory of groups $G_{m}(K)$ from Problem 1.

Our work's contribution in studying Problems 1-3

Our work contributes to the study of Problems 1-3 in the follwoing ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.

Our work's contribution in studying Problems 1-3

Our work contributes to the study of Problems 1-3 in the follwoing ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups
model theory of groups $G_{m}(K)$ from Problem 1

Our work's contribution in studying Problems 1-3

Our work contributes to the study of Problems 1-3 in the follwoing ways:

- First, we present a framework to approach these and similar problems via nilpotent radicals in solvable groups.
- Secondly, we solve these problems for the group of all invertible $n \times n$ upper triangular matrices $T_{n}(R)$ over a ring R which are model groups for linear solvable groups
- The groups $T_{n}(R)$, as they are, play an important part in the study of model theory of groups $G_{m}(K)$ from Problem 1.

