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Overview
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Background

The study of f.g. fully residually free groups (limit groups) was
motivated, in part, by the study of the elementary theory of free
groups, and resulted in positive answers to fundamental Tarski
questions for free groups (Kharlampovich-Myasnikov, Sela).

algorithms for certain canonical (JSJ) decompositions of limit groups
were central in those works, by giving canonical embeddings and
description of homomorphisms and automorphisms

throughout this talk, unless stated otherwise, let Γ be a fixed
torsion-free non-elementary hyperbolic group, with a finite generating
set A.
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fully residually G groups

let G be a group (class of groups)

Definition

A group L is fully residually G (discriminated by G ) if, for every finite
subset A ⊂ G of non-trivial elements, there exists a homomorphism
φ : L→ G such that φ(`) 6= 1 for all ` ∈ A

Definition

a group is a G -limit group if it is the limit of markings of subgroups of G
in Grigorchuk’s space of marked groups.

If G is equationally Noetherian (every system of equations in n
variables is equivalent to a finite subsystem) these definitions are
equivalent for finitely generated groups (we are usually interested in
the cases of G = F a free group, G = Γ a torsion-free hyperbolic
group, or G = G a toral relatively hyperbolic group, all of which are
equationally Noetherian).
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limit groups over a free group F - some history

G. Baumslag, B. Baumslag, in 60’s proved that a double of a free
group is fully residually free,

Lyndon’s construction of FZ[t] in ‘60

in ‘89 Remeslennikov showed these are ∃-free groups, i.e. the class of
groups with the same existential theory as a free group, he also
conjectured (with Myasnikov) that f.g. subgroups of FZ[t] are exactly
the f.g. fully residually free groups.

in ‘98 Kharlampovich and Myasnikov introduced NTQ groups, proved
the above conjecture and showed f.g. fully residually free groups are
f.p.

in ‘99 Baumslag, Myasnikov and Remeslennikov published a paper
about algebraic geometry over groups,

in ‘01 Sela defined ω-residually free towers (analagous to NTQ
groups) and limit groups in terms of limiting action on R-trees

in ‘05 Champetier and Guirardel showed that f.g. fully residually free
is equivalent to F -limit groups.
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Γ-limit groups

Characterization Theorem

Let Γ be an equationally Noetherian group and G a finitely generated
group containing Γ. Then the following conditions are equivalent:

1) G is fully residually Γ;

2) G is universally equivalent to Γ (in the language with constants);

3) G is the coordinate group of an irreducible algebraic set over Γ;

4) G is a Γ- limit group;

5) G embeds into an ultrapower of Γ.
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Equations over groups

The perspective of algebraic geometry over groups is central to our
motivation and techniques.

Let G be a group generated by a finite set A and F (X ) the free group
on X = {x1, . . . , xn}. Recall that, for S ⊂ G [X ] = G ∗ F (X ), the
expression S(X ,A) = 1 is called a system of equations over G , and a
solution of S(X ,A) = 1 in G , is a G -homomorphism φ : G [X ]→ G
such that φ(S) = 1

Let
R(S) = {T (X ,A) ∈ G [X ]|∀Z ∈ Gn(S(Z ,A) = 1→ T (Z ,A) = 1)}.
We call GR(S) = G [X ]/R(S) the coordinate group of S (over G ).
Every solution of S(X ,A) = 1 in G corresponds to a
G -homomorphism GR(S) → G .

Olga Kharlampovich (CUNY) JSJ for Γ-limits March 26, 2015 7 / 23



Equations over groups

The perspective of algebraic geometry over groups is central to our
motivation and techniques.

Let G be a group generated by a finite set A and F (X ) the free group
on X = {x1, . . . , xn}. Recall that, for S ⊂ G [X ] = G ∗ F (X ), the
expression S(X ,A) = 1 is called a system of equations over G , and a
solution of S(X ,A) = 1 in G , is a G -homomorphism φ : G [X ]→ G
such that φ(S) = 1

Let
R(S) = {T (X ,A) ∈ G [X ]|∀Z ∈ Gn(S(Z ,A) = 1→ T (Z ,A) = 1)}.
We call GR(S) = G [X ]/R(S) the coordinate group of S (over G ).
Every solution of S(X ,A) = 1 in G corresponds to a
G -homomorphism GR(S) → G .

Olga Kharlampovich (CUNY) JSJ for Γ-limits March 26, 2015 7 / 23



Equations over groups

The perspective of algebraic geometry over groups is central to our
motivation and techniques.

Let G be a group generated by a finite set A and F (X ) the free group
on X = {x1, . . . , xn}. Recall that, for S ⊂ G [X ] = G ∗ F (X ), the
expression S(X ,A) = 1 is called a system of equations over G , and a
solution of S(X ,A) = 1 in G , is a G -homomorphism φ : G [X ]→ G
such that φ(S) = 1

Let
R(S) = {T (X ,A) ∈ G [X ]|∀Z ∈ Gn(S(Z ,A) = 1→ T (Z ,A) = 1)}.
We call GR(S) = G [X ]/R(S) the coordinate group of S (over G ).
Every solution of S(X ,A) = 1 in G corresponds to a
G -homomorphism GR(S) → G .

Olga Kharlampovich (CUNY) JSJ for Γ-limits March 26, 2015 7 / 23



NTQ groups

again, how Γ-limit groups are given is significant, in our case we are
working with them as subgroups of Γ-NTQ groups.

Definition

A system of equations S(X ,A) = 1 over a group G , is called triangular
quasi-quadratic over G or G -TQ, if it can be partitioned into subsystems:
Si (Xi ,Ci ) = 1; 1 ≤ i ≤ n where {X1, . . . ,Xn} is a partition of X , and setting
Gi = G [Xi , . . . ,Xn,T ]/RG (Si , . . . ,Sn) for 1 ≤ i ≤ n and Gn+1 = G ∗ F (T ), we
have Ci = Xi+1 ∪ . . .∪Xn ∪A ⊂ Gi+1 for 1 ≤ i ≤ n− 1 and Cn = A. The number
n is called the depth of the system. Furthermore, for each i the subsystems Si
must have one of the following forms:

(I) Si is quadratic in Xi

(II) Si = {[x , y ] = 1, [x , u] = 1|x , y ∈ Xi , u ∈ U} where
U ⊂ F (Xi+1, . . . ,Xn,A)

(III) Si = {[x , y ] = 1|x , y ∈ Xi}

(IV) Si is empty
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NTQ groups

S(X ,A) = 1 is called non-degenerate triangular quasi-quadratic over
G or G -NTQ if it is G -TQ and for every i , the system Si (Xi ,Ci ) = 1
has a solution in Gi+1, and if Si is of form (II) the set U generates a
centralizer in Gi+1.

A regular G -NTQ system is a G -NTQ system in which each
non-empty quadratic equation Si is in standard form, and either
χ(Si ) ≤ −2 and the quadratic equation has a non-commutative
solution in Gi+1, or it is an equation of the form [x , y ]d = 1 or
[x1, y1][x2, y2] = 1.

Finally a group is called a (regular) G -NTQ group if it is isomorphic
to the coordinate group of a (regular) G -NTQ system of equations.

if G is toral relatively hyperbolic, every G -NTQ group is also toral
relatively hyperbolic
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Canonical representatives

There are some particularly useful tools for working with Γ-limit
groups (hyperbolic groups in general) and equations over groups
which make it possible to take advantage of results in free groups.

One such construction is canonical representatives, given by Rips and
Sela in ‘95. For every m ∈ N and g ∈ Γ, there is a word
θm(g) ∈ F (A) which has certain useful properties.

Note that Dahmani and Groves construct canonical representatives
for toral relatively hyperbolic groups in free products of free groups
and free abelian groups.
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Canonical representatives

wxyz = 1→ wxv = 1, v−1yz = 1
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Γ-limit quotients

Theorem (Kharlampovich, Macdonald 2013)

Given a system S(Z ,A) = 1 over Γ, there is a finite tree T , where every
branch bi corresponds to a Γ-NTQ group Ni and homomorphism
φi : ΓR(S) → Ni , where each Hi = φi (ΓR(S)) is a Γ-limit group, and for any
homomorphism ψ : ΓR(S) → Γ, there is a homomorphism πi : Hi → Γ, for
some i , such that ψ = φiπi .

The tree is constructed using canonical representatives to get all
solutions of the system in Γ from solutions of a finite number of
systems of equations over a free F (A). Then F −NTQ groups can be
reworked to give Γ-NTQ groups.

There are finitely many (isomorphism classes) of maximal (w.r.t just
quotient ordering) Γ-limit quotients The collection {Hi} contains a
representative of each isomorphism class.
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F -NTQ to Γ-NTQ reworking process
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F -NTQ to Γ-NTQ reworking process

The reworking process is necessary since considering each F -NTQ system
as a system over Γ gives groups through which solutions factor, but may
no longer be Γ-NTQ groups, since relators of Γ may kill certain parts of
the NTQ structure. The process gives explict constructions for how to add
new variables and relators depending on the form of each equation. Finally
the resulting system is shown to be equivalent to a Γ-NTQ one.

Olga Kharlampovich (CUNY) JSJ for Γ-limits March 26, 2015 14 / 23



Splittings of groups

Recall that a graph of groups is a connected graph X (V ,E ) with a
group Gv for each vertex v ∈ V , and a group Ge with
monomorphisms αe : Ge → G∂0(e), βe : Ge → G∂1(e) for each e ∈ E .

the fundamental group π(X (V ,E );T ) w.r.t. to a max. subtree T
(though up to isom., independent of choice) is generated by
〈∗v∈VGv , ∗e∈E te〉 with relations
{te = 1∀e ∈ T , tetē = 1∀e ∈ E , tēα(g)te = β(g)∀g ∈ Ge ,∀e ∈ E}
A splitting of a group G over some class of group E is an isomorphism
from G to π of a graph of groups with all edge groups in E .
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Classification of vertex groups

A QH vertex group is a vertex group isomorphic to the fundamental
group of a non-exceptional surface with finite number of punctures,
where the subgroups generated by each puncture is are exactly the
conjugates of each of the incident edge groups.

A QH subgroup Q of G is maximal (MQH) if, for every elementary
abelian splitting D of G , either Q is elliptic in D, or the edge group
Ge conjugates into Q and so D is induced by splitting Q along Ge .

A non-QH, non-abelian vertex group is called a rigid subgroup.
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Classification of vertex groups
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How are splittings related

An element g ∈ G (subgroup H ≤ G ) is said to be elliptic with
respect to a given splitting D of G , if g (H), can be conjugated into
a vertex group of D, otherwise it is said to be hyperbolic w.r.t. D.

FACT: the edge groups of 2 elementary splittings (1 edge) are always
both hyperbolic, or both elliptic w.r.t. to the other splitting.

A reduced (image of each edge group is a proper subgroup of its
vertex group) abelian splitting is essential if for any g ∈ G with
gk ∈ Ge for some k, then g ∈ Ge . An essential splitting of G is
primary if each noncyclic abelian subgroup of G can be conjugated
into one of its vertex groups.
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JSJ for Γ-limits - definition

Let H be a freely indecomposable Γ-limit group. By Sela (‘09), there
exists is a primary, reduced, unfolded splitting D of H, called an
primary abelian JSJ decomposition, where:

(i) Every MQH subgroup of H is elliptic in D, and every vertex group of D
which is not conjugate to a MQH subgroup, is elliptic in any splitting.

(ii) Any elementary splitting which is hyperbolic in another elementary
splitting, can be obtained from D by cutting along a weakly essential
s.c.c., a 2-orbifold corresponding to a MQH subgroup.

(iii) Any elementary splitting which is elliptic w.r.t. to every other
elementary, can be obtained from D by a collapsings, foldings, and
conjugations.

(iv) Any 2 reduced unfolded splittings satisfying the above 3 properties can
be obtained from one another by slidings, conjugations, and
modification of boundary monomorphisms by conjugations.

(v) All non-cyclic abelian subgroups are elliptic.
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Canonical NTQ systems

Definition

An NTQ system is canonical for a group ΓR(S) if a quadratic system of
equations on each level corresponds to the JSJ
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Results

Theorem

(Kh., Miasnikov, A. Taam) Let S(Z ,A) = 1 be a finite system of
equations over Γ. There is an algorithm to construct a complete set of
canonical NTQ systems for ΓR(S).
Moreover, there is an algorithm to construct a complete set of canonical
NTQ systems for each maximal Γ-limit quotient of ΓR(S).
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Difficulties

Γ-limit groups are more difficult, especially algorithmically, as they are
not necessarily finitely presented (since subgroups of Γ are not
necessarily finitely presented, e.g. non-quasiconvex).

How Γ-limit groups are given is significant. We are interested in
describing the Γ-limit quotients {Hi} obtained from the tree T
constructed by Kharlampovich and Macdonald, described earlier.
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Results

For each of the Γ-limit quotients Hi

We can find its Grushko decomposition

we can show that while not finitely presented, there are finitely many
(possible) finitely presentations of Hi up to nice subgroups of Γ,
which encode significant structure of the Γ-limit quotients.

from this, we can find the maximal Γ-limit quotients relative to
conjugates of those subgroups of Γ

extending centralizers of edge groups for these presentations we can
algorithmically construct canonical Γ- NTQ systems.
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