Algorithmic problems in the groups of the form $F/N^{(d)}$

F. Gul-M. Sohrabi-A. Ushakov

Stevens Institute of Technology Group Theory Webinar

Feb 19, 2015

F. Gul–M. Sohrabi–A. Ushakov (Stevens InstiAlgorithmic problems in the groups of the for

Feb 19, 2015 1 / 32

• The conjugacy problem in groups of the type F/N' was first approached by J. Matthews [1966] and she proved that

- The conjugacy problem in groups of the type F/N' was first approached by J. Matthews [1966] and she proved that
 - (a) $u, v \in F/N'$ are conjugate (for free abelian F/N) if and only if their images under Magnus embedding are conjugate in M(X; N), where

$$M(X; N) = \left\{ \left(egin{array}{cc} g & \pi \ 0 & 1 \end{array}
ight) \ \middle| \ g \in F/N, \ \pi \in \mathcal{F}_{\Gamma}
ight\};$$

- The conjugacy problem in groups of the type F/N' was first approached by J. Matthews [1966] and she proved that
 - (a) $u, v \in F/N'$ are conjugate (for free abelian F/N) if and only if their images under Magnus embedding are conjugate in M(X; N), where

$$M(X; N) = \left\{ \left(egin{array}{cc} g & \pi \ 0 & 1 \end{array}
ight) \ \middle| \ g \in F/N, \ \pi \in \mathcal{F}_{\Gamma}
ight\};$$

(b) conjugacy problem in M(X; N) is decidable if and only if conjugacy and power problem are decidable in F/N.

回 と く ヨ と く ヨ と

• Later Remeslennikov and Sokolov [1970] extended (a) to any torsion free group F/N and also showed that power problem is decidable in free solvable groups, and deduced that free solvable groups have decidable conjugacy problem.

3 / 32

- Later Remeslennikov and Sokolov [1970] extended (a) to any torsion free group F/N and also showed that power problem is decidable in free solvable groups, and deduced that free solvable groups have decidable conjugacy problem.
- Finally, C. Gupta [1982] proved that (a) holds for groups with torsion and that for any group F/N:

$$\begin{cases} \mathsf{CP}(F/N) \\ \mathsf{PP}(F/N) \end{cases} \Rightarrow \mathsf{CP}(F/N'). \end{cases}$$

F. Gul–M. Sohrabi–A. Ushakov (Stevens InstiAlgorithmic problems in the groups of the for

• In the light of these results, V. Shpilrain raised the following questions. Is it correct that:

4 / 32

• In the light of these results, V. Shpilrain raised the following questions. Is it correct that:

(a) WP(F/N) is decidable if and only if WP(F/N') is decidable.

- In the light of these results, V. Shpilrain raised the following questions. Is it correct that:
 - (a) WP(F/N) is decidable if and only if WP(F/N') is decidable.
 - (b) CP(F/N) is decidable if and only if CP(F/N') is decidable.

- In the light of these results, V. Shpilrain raised the following questions. Is it correct that:
 - (a) WP(F/N) is decidable if and only if WP(F/N') is decidable.
 - (b) CP(F/N) is decidable if and only if CP(F/N') is decidable.
 - (c) WP(F/N') is decidable if and only if CP(F/N') is decidable.

• • • • • • • • •

Let *F* be a free group of rank at least 2 and $N \trianglelefteq F$ be recursively enumerable.

(ロ) (部) (目) (日) (日)

- 21

Let *F* be a free group of rank at least 2 and $N \trianglelefteq F$ be recursively enumerable.

Theorem

 $WP(F/N) \Rightarrow PP(F/N').$

→ 3 → 4 3

3

5 / 32

Let *F* be a free group of rank at least 2 and $N \trianglelefteq F$ be recursively enumerable.

Theorem

 $WP(F/N) \Rightarrow PP(F/N').$

Theorem $\mathbf{PP}(F/N) \Leftrightarrow \mathbf{CP}(F/N').$

Let F be a free group of rank at least 2 and $N \triangleleft F$ be recursively enumerable.

Theorem

 $WP(F/N) \Rightarrow PP(F/N').$

Theorem $PP(F/N) \Leftrightarrow CP(F/N').$

Theorem $CP(F/N) \Rightarrow CP(F/N').$

• • = • • = •

We say that an X-digraph Γ is:

• rooted if it has a special vertex, called the root;

We say that an X-digraph Γ is:

- rooted if it has a special vertex, called the root;
- folded if for every v ∈ V and x ∈ X there exists at most one edge with the origin v labeled with x;

6 / 32

We say that an X-digraph Γ is:

- rooted if it has a special vertex, called the root;
- folded if for every v ∈ V and x ∈ X there exists at most one edge with the origin v labeled with x;
- X-complete if for every v ∈ V and x ∈ X there exists an edge e with o(e) = v and µ(e) = x;

• • = • • = •

We say that an X-digraph Γ is:

- rooted if it has a special vertex, called the root;
- **folded** if for every $v \in V$ and $x \in X$ there exists at most one edge with the origin v labeled with x;
- **X-complete** if for every $v \in V$ and $x \in X$ there exists an edge e with $\mathbf{o}(e) = v$ and $\mu(e) = x$;
- **inverse** if with every edge $e = (g_1, g_2, x)$, Γ also contains the inverse edge $e^{-1} = (g_2, g_1, x^{-1}).$

• • = • • = •

Scherier Graph

Let F = F(X) and $H \le F$. The Schreier graph of the subgroup H, denoted by Sch(X; H), is an X-digraph (V, E), where V is the set of right cosets

$$V = \{Hg \mid g \in F\}$$

and

$$E = \{ Hg \xrightarrow{x} Hgx \mid g \in F, x \in X^{\pm} \}.$$

Sch(*X*; *H*) is an inverse folded complete *X*-digraph with root *H*. A special case of the Schreier graph is when $H = N \leq F$, called a Cayley graph of the group F/N denoted by **Cay**(*X*; *N*).

イロト 人間ト イヨト イヨト

Let $\Gamma = (V, E)$ be an inverse X-digraph. A function $f : E \to \mathbb{Z}$ defines the function $\mathcal{N}_f : V \to \mathbb{Z}$:

$$\mathcal{N}_f(v) = \sum_{\mathbf{o}(e)=v} f(e),$$

called the **net-flow** function of f. We say that f is a **flow** if it satisfies the following conditions.

• • = • • =

Let $\Gamma = (V, E)$ be an inverse X-digraph. A function $f : E \to \mathbb{Z}$ defines the function $\mathcal{N}_f : V \to \mathbb{Z}$:

$$\mathcal{N}_f(v) = \sum_{\mathbf{o}(e)=v} f(e),$$

called the **net-flow** function of f. We say that f is a **flow** if it satisfies the following conditions.

(F1) $f(e^{-1}) = -f(e)$ for any $e \in E$. (Balanced property)

E 990

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let $\Gamma = (V, E)$ be an inverse X-digraph. A function $f : E \to \mathbb{Z}$ defines the function $\mathcal{N}_f : V \to \mathbb{Z}$:

$$\mathcal{N}_f(v) = \sum_{\mathbf{o}(e)=v} f(e),$$

called the **net-flow** function of f. We say that f is a **flow** if it satisfies the following conditions.

(F1)
$$f(e^{-1}) = -f(e)$$
 for any $e \in E$. (Balanced property)

(F2) f has a finite support supp $(f) = \{e \in E \mid f(e) \neq 0\}$.

Let $\Gamma = (V, E)$ be an inverse X-digraph. A function $f : E \to \mathbb{Z}$ defines the function $\mathcal{N}_f : V \to \mathbb{Z}$:

$$\mathcal{N}_f(v) = \sum_{\mathbf{o}(e)=v} f(e),$$

called the **net-flow** function of f. We say that f is a **flow** if it satisfies the following conditions.

(F1)
$$f(e^{-1}) = -f(e)$$
 for any $e \in E$. (Balanced property)

(F2) f has a finite support $supp(f) = \{e \in E \mid f(e) \neq 0\}.$

(F3) There exist $s, t \in V$ such that $\mathcal{N}_f(v) = 0$ for all $v \in V \setminus \{s, t\}$, and $\mathcal{N}_f(s) = 1$ and $\mathcal{N}_f(t) = -1$. If f is called a flow from the source s to the sink t.

- ▲ 同 ▶ ▲ 目 ▶ → 目 → のへの

Let $\Gamma = (V, E)$ be an inverse X-digraph. A function $f : E \to \mathbb{Z}$ defines the function $\mathcal{N}_f : V \to \mathbb{Z}$:

$$\mathcal{N}_f(v) = \sum_{\mathbf{o}(e)=v} f(e),$$

called the **net-flow** function of f. We say that f is a **flow** if it satisfies the following conditions.

(F1)
$$f(e^{-1}) = -f(e)$$
 for any $e \in E$. (Balanced property)

(F2) f has a finite support $supp(f) = \{e \in E \mid f(e) \neq 0\}.$

(F3) There exist $s, t \in V$ such that $\mathcal{N}_f(v) = 0$ for all $v \in V \setminus \{s, t\}$, and $\mathcal{N}_f(s) = 1$ and $\mathcal{N}_f(t) = -1$. If f is called a flow from the source s to the sink t.

A flow f is called a **circulation** if $\mathcal{N}_f(v) = 0$ for all $v \in V$.

Let $\Gamma = (V, E)$ be an inverse complete folded rooted X-digraph and

$$w = x_{i_1}^{\varepsilon_1} \dots x_{i_k}^{\varepsilon_k} \in F(X)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Let $\Gamma = (V, E)$ be an inverse complete folded rooted X-digraph and

$$w = x_{i_1}^{\varepsilon_1} \dots x_{i_k}^{\varepsilon_k} \in F(X)$$

The word w defines a unique path p_w in Γ :

$$v_0 \stackrel{x_{i_1}^{\varepsilon_1}}{\to} v_1 \stackrel{x_{i_2}^{\varepsilon_2}}{\to} v_2 \stackrel{x_{i_3}^{\varepsilon_3}}{\to} \dots \stackrel{x_{i_k}^{\varepsilon_k}}{\to} v_k$$

where v_0 is the root of Γ ,

イロト イポト イヨト イヨト

Let $\Gamma = (V, E)$ be an inverse complete folded rooted X-digraph and

$$w = x_{i_1}^{\varepsilon_1} \dots x_{i_k}^{\varepsilon_k} \in F(X)$$

The word w defines a unique path p_w in Γ :

$$v_0 \stackrel{x_{i_1}^{\varepsilon_1}}{\to} v_1 \stackrel{x_{i_2}^{\varepsilon_2}}{\to} v_2 \stackrel{x_{i_3}^{\varepsilon_3}}{\to} \dots \stackrel{x_{i_k}^{\varepsilon_k}}{\to} v_k$$

where v_0 is the root of Γ , and a function

$$\pi_w^{\Gamma}: E \to \mathbb{Z}$$

 $\pi_w^{\Gamma}(e) = \# \text{ of times } e \text{ is traversed} - \# \text{ of times } e^{-1} \text{ is traversed by } p_w.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹00

Let $\Gamma = (V, E)$ be an inverse complete folded rooted X-digraph and

$$w = x_{i_1}^{\varepsilon_1} \dots x_{i_k}^{\varepsilon_k} \in F(X)$$

The word w defines a unique path p_w in Γ :

$$v_0 \stackrel{x_{i_1}^{\varepsilon_1}}{\to} v_1 \stackrel{x_{i_2}^{\varepsilon_2}}{\to} v_2 \stackrel{x_{i_3}^{\varepsilon_3}}{\to} \dots \stackrel{x_{i_k}^{\varepsilon_k}}{\to} v_k$$

where v_0 is the root of Γ , and a function

$$\pi_w^{\Gamma}: E \to \mathbb{Z}$$

 $\pi_w^{\Gamma}(e) = \# \text{ of times } e \text{ is traversed} - \# \text{ of times } e^{-1}\text{ is traversed by } p_w.$ It can be easily checked that π_w^{Γ} is a flow in Γ . We call π_w^{Γ} the **flow** of w in Γ .

Word Problem: $WP(F/N) \Rightarrow WP(F/N')$

Lemma

Let $H \leq F$, $\Delta = \mathbf{Sch}(X; H)$, and $w \in F$. Then $\pi_w^{\Delta} = 0$ if and only if $w \in [H, H]$.

F. Gul–M. Sohrabi–A. Ushakov (Stevens Inst Algorithmic problems in the groups of the for Feb 19, 2015 11 / 32

Word Problem: **WP**(F/N) \Rightarrow **WP**(F/N')

Lemma

Let $H \leq F$, $\Delta = \mathbf{Sch}(X; H)$, and $w \in F$. Then $\pi_w^{\Delta} = 0$ if and only if $w \in [H, H]$.

Proposition

If the word problem is decidable in F/N, then it is decidable in F/N'.

Auslander-Lyndon:1955

Theorem

The operation of F/N on N/N' is effective; that is, only unit element of F/N leaves all elements of N/N' fixed. The operation of F/N is induced by the inner automorphisms of F.

Auslander-Lyndon:1955

Theorem

The operation of F/N on N/N' is effective; that is, only unit element of F/N leaves all elements of N/N' fixed. The operation of F/N is induced by the inner automorphisms of F.

which is equivalent to:

$$v \in N \Leftrightarrow v^{-1}w^{-1}v = w^{-1} \quad \forall w \in N/N'$$
$$\Leftrightarrow v^{-1}w^{-1}vw = 1$$
$$\Leftrightarrow [v, w] = 1$$
$$\Leftrightarrow [v, w] \in [N, N], \quad \forall w \in N.$$

Feb 19, 2015 12 / 32

Word Problem: $WP(F/N') \Rightarrow WP(F/N)$

Theorem

Assume that N is a recursively enumerable normal subgroup of F and N' is recursive, then N is recursive.

Word Problem: $WP(F/N') \Rightarrow WP(F/N)$

Theorem

Assume that N is a recursively enumerable normal subgroup of F and N' is recursive, then N is recursive.

Proof.

The statement is obvious for abelian F or $N = \{1\}$. Assume that F is not abelian and N is not trivial. Then N has rank at least 2. By Theorem A-L, for any $w \in F \setminus N$ there exists $r \in N$ such that $[w, r] \notin N'$. That gives a procedure for testing if $w \notin N$ making N recursive.

Corollary

Assume that N is recursively enumerable normal subgroup of F and $WP(F/N^{(d)})$ is decidable for some $d \in \mathbb{N}$. Then $WP(F/N^{(d)})$ is decidable for every $d \in \mathbb{N}$.

Corollary

Assume that N is recursively enumerable normal subgroup of F and $WP(F/N^{(d)})$ is decidable for some $d \in \mathbb{N}$. Then $WP(F/N^{(d)})$ is decidable for every $d \in \mathbb{N}$.

$$WP(F/N) \iff WP(F/N') \iff WP(F/N'') \iff ..$$

F. Gul–M. Sohrabi–A. Ushakov (Stevens InstAlgorithmic problems in the groups of the for

F/N' is torsion free

Definition

The function $\|\cdot\|: \mathcal{F}_{\Gamma} \to \mathbb{Z}$ defined by:

$$\|\pi\|=\sum_{e\in E^+}|\pi(e)|$$

is called a *norm* on \mathcal{F}_{Γ} .

・ロト ・聞ト ・ヨト ・ヨト

E 990

F/N' is torsion free

Definition

The function $\|\cdot\|: \mathcal{F}_{\Gamma} \to \mathbb{Z}$ defined by:

$$\|\pi\|=\sum_{e\in E^+}|\pi(e)|$$

is called a *norm* on \mathcal{F}_{Γ} .

Lemma

For every
$$w \notin N'$$
 and $k \in \mathbb{N}$ we have $\|\pi_{w^k}^{\Gamma}\| \geq k$.

F. Gul–M. Sohrabi–A. Ushakov (Stevens InstiAlgorithmic problems in the groups of the for

Feb 19, 2015 15 / 32

E 990

・ロト ・聞ト ・ヨト ・ヨト

For every $N \trianglelefteq F$ the group F/N' is torsion free.

F. Gul–M. Sohrabi–A. Ushakov (Stevens Inst Algorithmic problems in the groups of the for Feb 19, 2015 16 / 32

イロト イポト イヨト イヨト

- 2

F/N' is torsion free

Theorem

For every $N \trianglelefteq F$ the group F/N' is torsion free.

Proof.

By the previous lemma if $w \notin N'$ and $k \in \mathbb{N}$, then $\|\pi_{w^k}^{\Gamma}\| \ge k$, i.e., $w^k \notin N'$.

Lemma

Let $u, v \in F$ and $u \notin N'$. If $u^k = v$ in F/N', then $k \leq |v|$.

F. Gul–M. Sohrabi–A. Ushakov (Stevens Inst Algorithmic problems in the groups of the for Feb 19, 2015 17 / 32

< ロ > < 同 > < 回 > < 回 > < 回

3

Lemma

Let $u, v \in F$ and $u \notin N'$. If $u^k = v$ in F/N', then $k \leq |v|$.

Proof.

If |v| < k, then $||\pi_v|| < k \le ||\pi_{u^k}||$, which means that $u^k \ne v$ in F/N'. \Box

Theorem If WP(F/N) is decidable, then PP(F/N') is decidable.

< ロ > < 同 > < 回 > < 回 > < 回

3

If WP(F/N) is decidable, then PP(F/N') is decidable.

Proof.

By the previous lemma, given $u, v \in F$ it is sufficient to check if $v = u^k$ in F/N' for $k = -|v|, \ldots, |v|$ which reduces to 2|v| + 1 number of times solving the word problem in F/N' for the words $v^{-1}u^{-|v|}, \ldots, v^{-1}u^{|v|}$ whose lengths are bounded by $|v| + |u| \cdot |v|$.

The set of matrices:

$$M(X; N) = \left\{ \left(egin{array}{cc} g & \pi \ 0 & 1 \end{array}
ight) \ \middle| \ g \in F/N, \ \pi \in \mathcal{F}_{\Gamma}
ight\}$$

forms a group with respect to the matrix multiplication and it can be also recognized as the wreath product $\mathbb{Z}^n \operatorname{wr} F/N$.

$(\mathcal{F}_{\Gamma}, +)$ as a f.g. free $\mathbb{Z}F/N$ -module of rank n and Magnus Embedding

Lemma

Let π_{x_i} be denoted by π_i for i = 1, ..., n, then \mathcal{F}_{Γ} is a free $\mathbb{Z}F/N$ -module of rank n with a free basis $\{\pi_1, ..., \pi_n\}$. In particular, every $\pi \in \mathcal{F}_{\Gamma}$ can be uniquely expressed as a $\mathbb{Z}F/N$ linear combination of $\pi_1, ..., \pi_n$.

Let $-: F \to F/N$ be the canonical epimorphism. Define a homomorphism $\varphi: F \to M(X; N)$ by:

$$x_i \stackrel{\varphi}{\mapsto} \left(\begin{array}{cc} \overline{x}_i & \pi_i \\ 0 & 1 \end{array} \right), \quad x_i^{-1} \stackrel{\varphi}{\mapsto} \left(\begin{array}{cc} \overline{x}_i^{-1} & -\overline{x}_i^{-1}\pi_i \\ 0 & 1 \end{array} \right).$$
 (1)

It is easy to check by induction on |w| that:

$$\varphi(w) = \left(egin{array}{cc} \overline{w} & \pi_w \\ 0 & 1 \end{array}
ight).$$

F. Gul–M. Sohrabi–A. Ushakov (Stevens InstAlgorithmic problems in the groups of the for

Feb 19, 2015 21 / 32

回 と く ヨ と く ヨ と

Theorem (Magnus Embedding)

Let $F = F(x_1, ..., x_n)$, $N \leq F$, and $\overline{}: F \rightarrow F/N$ be the canonical epimorphism. The homomorphism $\varphi : F \rightarrow M(X; N)$ defined by

$$x \stackrel{\varphi}{\mapsto} \left(\begin{array}{cc} \overline{x} & \pi_i \\ 0 & 1 \end{array}
ight)$$

satisfies ker(φ) = N'. Therefore, $F/N' \simeq \varphi(F) \leq M(X; N)$. The induced embedding $\mu : F/N' \rightarrow M(X; N)$ is called the Magnus embedding.

Feb 19, 2015

Matthews proved that:

$$\mathsf{CP}(M(X;N)) \Leftrightarrow \left\{ \begin{array}{c} \mathsf{CP}(F/N), \\ \mathsf{PP}(F/N). \end{array} \right.$$

Now what we have is that restricting the conjugacy problem from M(X; N) to F/N' gives a problem equivalent to PP(F/N). In general, decidability of CP(F/N) is irrelevant to decidability of CP(F/N').

The theorem below was first proved by Remeslennikov and Sokolov for a torsion free group F/N and by C. Gupta for any finitely generated group F/N.

Theorem

For any $u, v \in F$ the matrices

$$\mu(u) = \begin{pmatrix} \overline{u} & \pi_u^{\Gamma} \\ 0 & 1 \end{pmatrix} \text{ and } \mu(v) = \begin{pmatrix} \overline{v} & \pi_v^{\Gamma} \\ 0 & 1 \end{pmatrix}$$

24 / 32

are conjugate in M(X; N) if and only if they are conjugate in $\mu(F/N')$.

Theorem (Geometry of conjugacy problem)

Let $N \leq F$, $u, v \in F$, and $\Delta = \mathbf{Sch}(X, \langle N, u \rangle)$. Then $u \sim v$ in F/N' if and only if there exists $c \in F$ satisfying the conditions: (a) $\pi_u^{\Delta} = \overline{c} \pi_v^{\Delta}$, i.e., π_u can be obtained by a \overline{c} -shift of π_v in Δ ; (b) $\overline{c}^{-1}\overline{uc} = \overline{v}$ in F/N.

 $\mathbf{PP}(F/N) \Rightarrow \mathbf{CP}(F/N')$

If PP(F/N) is decidable, then CP(F/N') is decidable.

F. Gul–M. Sohrabi–A. Ushakov (Stevens Inst Algorithmic problems in the groups of the for Feb 19, 2015 26 / 32

- 2

イロト 人間ト イヨト イヨト

 $PP(F/N) \Rightarrow CP(F/N')$

If PP(F/N) is decidable, then CP(F/N') is decidable.

Proof.

We may assume that $u \neq 1$ and $v \neq 1$ in F/N'. If u = 1 in F/N, then $\pi_u^{\Delta} = \pi_u^{\Gamma} \neq 0$. If $u \neq 1$ in F/N, then we get again that: $\pi_u^{\Delta} \neq 0$. It shows that Case (2) in the proof of Matthews is impossible in F/N' and allows us to drop decidability of **CP**(F/N). The rest of the proof is essentially the same as the proof of Matthews.

$\mathbf{CP}(F/N') \Rightarrow \mathbf{PP}(F/N)$

Proposition

Let $N \trianglelefteq F$ and $u, v \in F \setminus N$ satisfy [u, v] = 1 in F/N. Then $v \in \langle u \rangle$ in F/N if and only if $u \sim u[w, v]$ in F/N' for every $w \in \langle N, u \rangle$.

Theorem

Assume that N is recursively enumerable. Then $CP(F/N') \Rightarrow PP(F/N)$.

$\mathbf{CP}(F/N') \Rightarrow \mathbf{PP}(F/N)$

Proof.

By assumption $\mathbf{CP}(F/N')$ is decidable. Hence $\mathbf{WP}(F/N')$ is decidable and $\mathbf{WP}(F/N)$ is decidable. Consider an arbitrary instance $u, v \in F$ of $\mathbf{PP}(F/N)$. Our goal is to decide if $v \in \langle u \rangle$ in F/N, or not.

- If v = 1 in F/N, then the answer is YES.
- If u = 1 in F/N and $v \neq 1$, then the answer is NO.

• If $[u, v] \neq 1$ in F/N, then the answer is NO.

Hence, we may assume that $u \neq 1$, $v \neq 1$, and [u, v] = 1 in F/N. To test if $v \in \langle u \rangle$ in F/N we run a process that checks if $v = u^k$ in F/N for some $k \in \mathbb{Z}$. To test if $v \notin \langle u \rangle$ in F/N we enumerate all words $w \in \langle N, u \rangle$ and solve the conjugacy problem for words u and u[w, v] in F/N'. By the previous proposition, if $v \notin \langle u \rangle$ then a negative instance will be found eventually.

・ロト ・雪ト ・ヨト

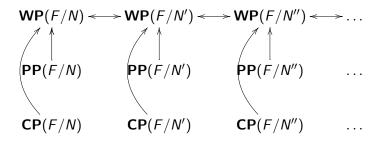
There exists a recursive $N \trianglelefteq F$ with undecidable CP(F/N) and decidable CP(F/N').

There exists a recursive $N \trianglelefteq F$ with undecidable CP(F/N) and decidable CP(F/N).

Proof.

C. Miller constructed a group G(U) from a group U with a finite presentation such that G(U) has a decidable power problem. He also proved that CP(G(U)) is decidable if and only if WP(G(U)) is decidable. Thus choosing a finitely presented group U with undecidable word problem we obtain a group G(U) with the required property.

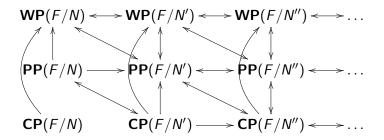
Relations among the algorithmic problems without our results



Feb 19, 2015 30 / 32

Summary: Relations among the algorithmic problems together with our results

Theorems we stated so far give the following diagram of problem reducibility for a finitely generated recursively presented group F/N:



Feb 19, 2015 31 / 32

THANK YOU

F. Gul-M. Sohrabi-A. Ushakov (Stevens Inst Algorithmic problems in the groups of the for Feb 19, 2015

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ●