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History of algorithmic problems in groups of type F/N ′

The conjugacy problem in groups of the type F/N ′ was first
approached by J. Matthews [1966] and she proved that
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History of algorithmic problems in groups of type F/N ′

The conjugacy problem in groups of the type F/N ′ was first
approached by J. Matthews [1966] and she proved that

(a) u, v ∈ F/N ′ are conjugate (for free abelian F/N) if and only if their
images under Magnus embedding are conjugate in M(X ;N), where

M(X ;N) =

{(

g π
0 1

) ∣

∣

∣

∣

g ∈ F/N , π ∈ FΓ

}

;
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The conjugacy problem in groups of the type F/N ′ was first
approached by J. Matthews [1966] and she proved that

(a) u, v ∈ F/N ′ are conjugate (for free abelian F/N) if and only if their
images under Magnus embedding are conjugate in M(X ;N), where

M(X ;N) =

{(

g π
0 1

) ∣

∣

∣

∣

g ∈ F/N , π ∈ FΓ

}

;

(b) conjugacy problem in M(X ;N) is decidable if and only if conjugacy
and power problem are decidable in F/N .
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History of algorithmic problems in groups of type F/N ′

Later Remeslennikov and Sokolov [1970] extended (a) to any torsion
free group F/N and also showed that power problem is decidable in
free solvable groups, and deduced that free solvable groups have
decidable conjugacy problem.
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History of algorithmic problems in groups of type F/N ′

Later Remeslennikov and Sokolov [1970] extended (a) to any torsion
free group F/N and also showed that power problem is decidable in
free solvable groups, and deduced that free solvable groups have
decidable conjugacy problem.

Finally, C. Gupta [1982] proved that (a) holds for groups with torsion
and that for any group F/N:

{

CP(F/N)
PP(F/N)

⇒ CP(F/N ′).
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History of algorithmic problems in groups of type F/N ′

In the light of these results, V. Shpilrain raised the following
questions. Is it correct that:
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(a) WP(F/N) is decidable if and only if WP(F/N ′) is decidable.
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History of algorithmic problems in groups of type F/N ′

In the light of these results, V. Shpilrain raised the following
questions. Is it correct that:

(a) WP(F/N) is decidable if and only if WP(F/N ′) is decidable.

(b) CP(F/N) is decidable if and only if CP(F/N ′) is decidable.

(c) WP(F/N ′) is decidable if and only if CP(F/N ′) is decidable.
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Our results

Let F be a free group of rank at least 2 and N E F be recursively
enumerable.
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Our results

Let F be a free group of rank at least 2 and N E F be recursively
enumerable.

Theorem

WP(F/N) ⇒ PP(F/N ′).
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Our results

Let F be a free group of rank at least 2 and N E F be recursively
enumerable.

Theorem

WP(F/N) ⇒ PP(F/N ′).

Theorem

PP(F/N) ⇔ CP(F/N ′).

Theorem

CP(F/N) 6⇒ CP(F/N ′).
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Some special X-Digraphs

We say that an X -digraph Γ is:

rooted if it has a special vertex, called the root;
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We say that an X -digraph Γ is:

rooted if it has a special vertex, called the root;

folded if for every v ∈ V and x ∈ X there exists at most one edge
with the origin v labeled with x ;
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Some special X-Digraphs

We say that an X -digraph Γ is:

rooted if it has a special vertex, called the root;

folded if for every v ∈ V and x ∈ X there exists at most one edge
with the origin v labeled with x ;

X-complete if for every v ∈ V and x ∈ X there exists an edge e with
o(e) = v and µ(e) = x ;
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Some special X-Digraphs

We say that an X -digraph Γ is:

rooted if it has a special vertex, called the root;

folded if for every v ∈ V and x ∈ X there exists at most one edge
with the origin v labeled with x ;

X-complete if for every v ∈ V and x ∈ X there exists an edge e with
o(e) = v and µ(e) = x ;

inverse if with every edge e = (g1, g2, x), Γ also contains the inverse
edge e−1 = (g2, g1, x

−1).
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Scherier Graph

Let F = F (X ) and H ≤ F . The Schreier graph of the subgroup H,
denoted by Sch(X ;H), is an X -digraph (V ,E ), where V is the set of right
cosets

V = {Hg | g ∈ F}

and
E = {Hg

x
→ Hgx | g ∈ F , x ∈ X±}.
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Cayley Graph

Sch(X ;H) is an inverse folded complete X -digraph with root H. A
special case of the Schreier graph is when H = N E F , called a Cayley
graph of the group F/N denoted by Cay(X ;N).
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Flows on inverse X -digraphs

Let Γ = (V ,E ) be an inverse X -digraph. A function f : E → Z defines
the function Nf : V → Z:

Nf (v) =
∑

o(e)=v

f (e),

called the net-flow function of f . We say that f is a flow if it satisfies the
following conditions.
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the function Nf : V → Z:

Nf (v) =
∑

o(e)=v

f (e),

called the net-flow function of f . We say that f is a flow if it satisfies the
following conditions.

(F1) f (e−1) = −f (e) for any e ∈ E . (Balanced property)
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∑

o(e)=v

f (e),

called the net-flow function of f . We say that f is a flow if it satisfies the
following conditions.

(F1) f (e−1) = −f (e) for any e ∈ E . (Balanced property)

(F2) f has a finite support supp(f ) = {e ∈ E | f (e) 6= 0}.

(F3) There exist s, t ∈ V such that Nf (v) = 0 for all v ∈ V \ {s, t}, and
Nf (s) = 1 and Nf (t) = −1. If f is called a flow from the source s to
the sink t.
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Let Γ = (V ,E ) be an inverse X -digraph. A function f : E → Z defines
the function Nf : V → Z:

Nf (v) =
∑

o(e)=v

f (e),

called the net-flow function of f . We say that f is a flow if it satisfies the
following conditions.

(F1) f (e−1) = −f (e) for any e ∈ E . (Balanced property)

(F2) f has a finite support supp(f ) = {e ∈ E | f (e) 6= 0}.

(F3) There exist s, t ∈ V such that Nf (v) = 0 for all v ∈ V \ {s, t}, and
Nf (s) = 1 and Nf (t) = −1. If f is called a flow from the source s to
the sink t.

A flow f is called a circulation if Nf (v) = 0 for all v ∈ V .
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Flows defined by words

Let Γ = (V ,E ) be an inverse complete folded rooted X -digraph and

w = xε1
i1
. . . xεk

ik
∈ F (X )
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Flows defined by words

Let Γ = (V ,E ) be an inverse complete folded rooted X -digraph and

w = xε1
i1
. . . xεk

ik
∈ F (X )

The word w defines a unique path pw in Γ:

v0
x
ε1
i1→ v1

x
ε2
i2→ v2

x
ε3
i3→ . . .

x
ε
k

ik→ vk

where v0 is the root of Γ,
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Flows defined by words

Let Γ = (V ,E ) be an inverse complete folded rooted X -digraph and

w = xε1
i1
. . . xεk

ik
∈ F (X )

The word w defines a unique path pw in Γ:

v0
x
ε1
i1→ v1

x
ε2
i2→ v2

x
ε3
i3→ . . .

x
ε
k

ik→ vk

where v0 is the root of Γ, and a function

πΓ
w : E → Z

πΓ
w (e) = # of times e is traversed−# of times e−1is traversed by pw .
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Flows defined by words

Let Γ = (V ,E ) be an inverse complete folded rooted X -digraph and

w = xε1
i1
. . . xεk

ik
∈ F (X )

The word w defines a unique path pw in Γ:

v0
x
ε1
i1→ v1

x
ε2
i2→ v2

x
ε3
i3→ . . .

x
ε
k

ik→ vk

where v0 is the root of Γ, and a function

πΓ
w : E → Z

πΓ
w (e) = # of times e is traversed−# of times e−1is traversed by pw .

It can be easily checked that πΓ
w is a flow in Γ. We call πΓ

w the flow of w
in Γ.
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Word Problem: WP(F/N) ⇒ WP(F/N ′)

Lemma

Let H ≤ F , ∆ = Sch(X ;H), and w ∈ F . Then π∆
w = 0 if and only if

w ∈ [H,H].
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Word Problem: WP(F/N) ⇒ WP(F/N ′)

Lemma

Let H ≤ F , ∆ = Sch(X ;H), and w ∈ F . Then π∆
w = 0 if and only if

w ∈ [H,H].

Proposition

If the word problem is decidable in F/N, then it is decidable in F/N ′.
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Auslander-Lyndon:1955

Theorem

The operation of F/N on N/N ′ is effective; that is, only unit element of

F/N leaves all elements of N/N ′ fixed. The operation of F/N is induced

by the inner automorphisms of F.
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Auslander-Lyndon:1955

Theorem

The operation of F/N on N/N ′ is effective; that is, only unit element of

F/N leaves all elements of N/N ′ fixed. The operation of F/N is induced

by the inner automorphisms of F.

which is equivalent to:

v ∈ N ⇔ v−1w−1v = w−1 ∀w ∈ N/N ′

⇔ v−1w−1vw = 1

⇔ [v ,w ] = 1

⇔ [v ,w ] ∈ [N,N], ∀w ∈ N.
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Word Problem: WP(F/N ′) ⇒ WP(F/N)

Theorem

Assume that N is a recursively enumerable normal subgroup of F and N ′

is recursive, then N is recursive.
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Word Problem: WP(F/N ′) ⇒ WP(F/N)

Theorem

Assume that N is a recursively enumerable normal subgroup of F and N ′

is recursive, then N is recursive.

Proof.

The statement is obvious for abelian F or N = {1}. Assume that F is not
abelian and N is not trivial. Then N has rank at least 2. By Theorem A-L,
for any w ∈ F \ N there exists r ∈ N such that [w , r ] /∈ N ′. That gives a
procedure for testing if w /∈ N making N recursive.
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Corollary

Assume that N is recursively enumerable normal subgroup of F and

WP(F/N(d)) is decidable for some d ∈ N. Then WP(F/N(d)) is
decidable for every d ∈ N.
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Corollary

Assume that N is recursively enumerable normal subgroup of F and

WP(F/N(d)) is decidable for some d ∈ N. Then WP(F/N(d)) is
decidable for every d ∈ N.

WP(F/N) WP(F/N ′) WP(F/N ′′) . . .
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F/N ′ is torsion free

Definition

The function ‖ · ‖ : FΓ → Z defined by:

‖π‖ =
∑

e∈E+

|π(e)|

is called a norm on FΓ.
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F/N ′ is torsion free

Definition

The function ‖ · ‖ : FΓ → Z defined by:

‖π‖ =
∑

e∈E+

|π(e)|

is called a norm on FΓ.

Lemma

For every w /∈ N ′ and k ∈ N we have ‖πΓ
wk ‖ ≥ k.
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F/N ′ is torsion free

Theorem

For every N E F the group F/N ′ is torsion free.
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F/N ′ is torsion free

Theorem

For every N E F the group F/N ′ is torsion free.

Proof.

By the previous lemma if w /∈ N ′ and k ∈ N, then ‖πΓ
wk‖ ≥ k , i.e.,

wk /∈ N ′.
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Power Problem

Lemma

Let u, v ∈ F and u /∈ N ′. If uk = v in F/N ′, then k ≤ |v |.
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Power Problem

Lemma

Let u, v ∈ F and u /∈ N ′. If uk = v in F/N ′, then k ≤ |v |.

Proof.

If |v | < k , then ‖πv‖ < k ≤ ‖πuk‖, which means that uk 6= v in F/N ′.
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Power Problem

Theorem

If WP(F/N) is decidable, then PP(F/N ′) is decidable.
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Power Problem

Theorem

If WP(F/N) is decidable, then PP(F/N ′) is decidable.

Proof.

By the previous lemma, given u, v ∈ F it is sufficient to check if v = uk in
F/N ′ for k = −|v |, . . . , |v | which reduces to 2|v |+ 1 number of times
solving the word problem in F/N ′ for the words v−1u−|v |, . . . , v−1u|v |

whose lengths are bounded by |v |+ |u| · |v |.
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Magnus Embedding

The set of matrices:

M(X ;N) =

{(

g π
0 1

)
∣

∣

∣

∣

g ∈ F/N, π ∈ FΓ

}

forms a group with respect to the matrix multiplication and it can be also
recognized as the wreath product Zn wr F/N.
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(FΓ,+) as a f.g. free ZF/N-module of rank n and

Magnus Embedding

Lemma

Let πxi be denoted by πi for i = 1, . . . , n, then FΓ is a free ZF/N-module

of rank n with a free basis {π1, . . . , πn}. In particular, every π ∈ FΓ can

be uniquely expressed as a ZF/N linear combination of π1, . . . , πn.
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Magnus Embedding

Let : F → F/N be the canonical epimorphism. Define a
homomorphism ϕ : F → M(X ;N) by:

xi
ϕ

7→

(

x i πi
0 1

)

, x−1
i

ϕ

7→

(

x−1
i

−x−1
i

πi
0 1

)

. (1)

It is easy to check by induction on |w | that:

ϕ(w) =

(

w πw
0 1

)

.
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Magnus Embedding

Theorem (Magnus Embedding)

Let F = F (x1, . . . , xn), N E F , and : F → F/N be the canonical

epimorphism. The homomorphism ϕ : F → M(X ;N) defined by

x
ϕ

7→

(

x πi
0 1

)

satisfies ker(ϕ) = N ′. Therefore, F/N ′ ≃ ϕ(F ) ≤ M(X ;N). The induced

embedding µ : F/N ′ → M(X ;N) is called the Magnus embedding.
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Conjugacy problem

Matthews proved that:

CP(M(X ;N)) ⇔

{

CP(F/N),
PP(F/N).

Now what we have is that restricting the conjugacy problem from
M(X ;N) to F/N ′ gives a problem equivalent to PP(F/N). In general,
decidability of CP(F/N) is irrelevant to decidability of CP(F/N ′).
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Magnus Embeding is Fratini

The theorem below was first proved by Remeslennikov and Sokolov for
a torsion free group F/N and by C. Gupta for any finitely generated group
F/N.

Theorem

For any u, v ∈ F the matrices

µ(u) =

(

u πΓ
u

0 1

)

and µ(v) =

(

v πΓ
v

0 1

)

are conjugate in M(X ;N) if and only if they are conjugate in µ(F/N ′).
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Theorem (Geometry of conjugacy problem)

Let N E F , u, v ∈ F , and ∆ = Sch(X , 〈N, u〉). Then u ∼ v in F/N ′ if and

only if there exists c ∈ F satisfying the conditions:

(a) π∆
u = cπ∆

v , i.e., πu can be obtained by a c-shift of πv in ∆;

(b) c−1uc = v in F/N.
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PP(F/N) ⇒ CP(F/N ′)

Theorem

If PP(F/N) is decidable, then CP(F/N ′) is decidable.
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PP(F/N) ⇒ CP(F/N ′)

Theorem

If PP(F/N) is decidable, then CP(F/N ′) is decidable.

Proof.

We may assume that u 6= 1 and v 6= 1 in F/N ′. If u = 1 in F/N, then
π∆
u = πΓ

u 6= 0. If u 6= 1 in F/N, then we get again that: π∆
u 6= 0. It shows

that Case (2) in the proof of Matthews is impossible in F/N ′ and allows
us to drop decidability of CP(F/N). The rest of the proof is essentially
the same as the proof of Matthews.

F. Gul–M. Sohrabi–A. Ushakov (Stevens Institute of Technology Group Theory Webinar)Algorithmic problems in the groups of the form F/N(d) Feb 19, 2015 26 / 32



CP(F/N ′) ⇒ PP(F/N)

Proposition

Let N E F and u, v ∈ F \ N satisfy [u, v ] = 1 in F/N. Then v ∈ 〈u〉 in
F/N if and only if u ∼ u[w , v ] in F/N ′ for every w ∈ 〈N, u〉.

Theorem

Assume that N is recursively enumerable. Then CP(F/N ′) ⇒ PP(F/N).
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CP(F/N ′) ⇒ PP(F/N)

Proof.

By assumption CP(F/N ′) is decidable. Hence WP(F/N ′) is decidable and
WP(F/N) is decidable. Consider an arbitrary instance u, v ∈ F of
PP(F/N). Our goal is to decide if v ∈ 〈u〉 in F/N, or not.

If v = 1 in F/N, then the answer is YES.
If u = 1 in F/N and v 6= 1, then the answer is NO.
If [u, v ] 6= 1 in F/N, then the answer is NO.

Hence, we may assume that u 6= 1, v 6= 1, and [u, v ] = 1 in F/N. To test
if v ∈ 〈u〉 in F/N we run a process that checks if v = uk in F/N for some
k ∈ Z. To test if v /∈ 〈u〉 in F/N we enumerate all words w ∈ 〈N, u〉 and
solve the conjugacy problem for words u and u[w , v ] in F/N ′. By the
previous proposition, if v /∈ 〈u〉 then a negative instance will be found
eventually.
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Theorem

There exists a recursive N E F with undecidable CP(F/N) and decidable

CP(F/N ′).
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Theorem

There exists a recursive N E F with undecidable CP(F/N) and decidable

CP(F/N ′).

Proof.

C. Miller constructed a group G (U) from a group U with a finite
presentation such that G (U) has a decidable power problem. He also
proved that CP(G (U)) is decidable if and only if WP(G (U)) is decidable.
Thus choosing a finitely presented group U with undecidable word problem
we obtain a group G (U) with the required property.
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Relations among the algorithmic problems without our

results

WP(F/N) WP(F/N ′) WP(F/N ′′) . . .

PP(F/N) PP(F/N ′) PP(F/N ′′) . . .

CP(F/N) CP(F/N ′) CP(F/N ′′) . . .
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Summary: Relations among the algorithmic problems

together with our results

Theorems we stated so far give the following diagram of problem
reducibility for a finitely generated recursively presented group F/N:

WP(F/N) WP(F/N ′) WP(F/N ′′) . . .

PP(F/N) PP(F/N ′) PP(F/N ′′) . . .

CP(F/N) CP(F/N ′) CP(F/N ′′) . . .

F. Gul–M. Sohrabi–A. Ushakov (Stevens Institute of Technology Group Theory Webinar)Algorithmic problems in the groups of the form F/N(d) Feb 19, 2015 31 / 32



THANK YOU
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