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Definition
(mn)n≥0 sequence of integers ≥ 2.
T is a rooted tree of type (mn)n if T is a tree with root v0 of degree m0
s.t. every vertex at distance n ≥ 1 from v0 has degree mn + 1.

Vn = vertices at distance n from root
Tv is subtree rooted at v
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Groups that act on infinite rooted trees

Came to prominence from 1980s.

Used as counterexamples/solutions to open problems in group theory

General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
Groups of intermediate word growth (Grigorchuk)
Non-uniform exponential word growth (Wilson)
Amenable but not elementary amenable groups (Grigorchuk)
Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like
trees)

Regular trees are self-similar/fractal. Many of these groups are also
“self-similar”. Self-similar groups (=groups generated by automata)
appear naturally as iterated monodromy groups of self-coverings of
topological spaces and encode combinatorial information about the
dynamics of these coverings (Nekrashevych).

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 4 / 26



Groups that act on infinite rooted trees

Came to prominence from 1980s.
Used as counterexamples/solutions to open problems in group theory

General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
Groups of intermediate word growth (Grigorchuk)
Non-uniform exponential word growth (Wilson)
Amenable but not elementary amenable groups (Grigorchuk)
Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like
trees)

Regular trees are self-similar/fractal. Many of these groups are also
“self-similar”. Self-similar groups (=groups generated by automata)
appear naturally as iterated monodromy groups of self-coverings of
topological spaces and encode combinatorial information about the
dynamics of these coverings (Nekrashevych).

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 4 / 26



Groups that act on infinite rooted trees

Came to prominence from 1980s.
Used as counterexamples/solutions to open problems in group theory

General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
Groups of intermediate word growth (Grigorchuk)
Non-uniform exponential word growth (Wilson)
Amenable but not elementary amenable groups (Grigorchuk)
Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like
trees)

Regular trees are self-similar/fractal. Many of these groups are also
“self-similar”. Self-similar groups (=groups generated by automata)
appear naturally as iterated monodromy groups of self-coverings of
topological spaces and encode combinatorial information about the
dynamics of these coverings (Nekrashevych).

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 4 / 26



Groups that act on infinite rooted trees

Came to prominence from 1980s.
Used as counterexamples/solutions to open problems in group theory

General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
Groups of intermediate word growth (Grigorchuk)
Non-uniform exponential word growth (Wilson)
Amenable but not elementary amenable groups (Grigorchuk)
Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like
trees)

Regular trees are self-similar/fractal. Many of these groups are also
“self-similar”. Self-similar groups (=groups generated by automata)
appear naturally as iterated monodromy groups of self-coverings of
topological spaces and encode combinatorial information about the
dynamics of these coverings (Nekrashevych).

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 4 / 26



Groups that act on infinite rooted trees

Came to prominence from 1980s.
Used as counterexamples/solutions to open problems in group theory

General Burnside Problem (Aleshin, Grigorchuk, Gupta–Sidki)
Groups of intermediate word growth (Grigorchuk)
Non-uniform exponential word growth (Wilson)
Amenable but not elementary amenable groups (Grigorchuk)
Filling gaps in subgroup growth spectrum (Segal)

Links with dynamics and fractals (first sense in which they look like
trees)
Regular trees are self-similar/fractal. Many of these groups are also
“self-similar”. Self-similar groups (=groups generated by automata)
appear naturally as iterated monodromy groups of self-coverings of
topological spaces and encode combinatorial information about the
dynamics of these coverings (Nekrashevych).

Alejandra Garrido (Oxford) Groups that look like trees GTI Webinar, Dec 2014 4 / 26



Example: Gupta–Sidki p-groups

T = T (p), p =odd prime

a := (1 2 . . . p) on V1
b := (a, a−1, 1, . . . , 1, b).

G := 〈a, b〉
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Projections

Definition
For G acting faithfully on T :
StG (v) := {g ∈ G : vg = v} is the stabilizer of v ;
StG (n) :=

⋂
v∈Vn

StG (v) is the nth level stabilizer.

For any vertex v , for every x ∈ StG (v) we can assign a unique
xv ∈ Aut(Tv ) by restriction:

xv := x |Tv .

If v ∈ Vn, identify Tv and T(n) (tree rooted at level n). Then we have a
homomorphism ϕv : St(v)→ Aut(T(n)), x 7→ xv .

Definition
Gv := ϕv (StG (v)) is the vertex section/projection of G at v .
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We can think of Gv as a subgroup of Aut(T ) (after identifying Tv and T ),
but Gv is not necessarily a subgroup of G .

We say that G is self-similar if Gv ≤ G for every v ∈ T .
It is fractal/self-replicating if Gv = G for every v ∈ T .

Example. Gupta–Sidki p-group is fractal: St(1) = 〈b, ba, . . . , bap−1〉 where

b = (a, a−1, 1, . . . , 1, b),

ba = (b, a, a−1, 1, . . . , 1),

. . . ,

bap−1
= (a−1, 1, . . . , 1, b, a)

Look at v =left-most vertex in first level; then ϕv (b) = a, ϕv (ba) = b, so
Gv = G . Similarly for rest of first level. So we have St(1) subdirect in G×p.
Rest of vertices follow from ϕu = ϕw ◦ ϕv for u = vw .
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Self-similar results

Self-similarity/replication is very useful as it allows for length reduction
arguments:

write elements as words in generators,
project using ϕv ,
usually get words of shorter length, still in G .

Example
(Grigorchuk, 1984) solvable word problem for ‘spinal type’ branch
groups by a fast universal branch algorithm

(Grigorchuk–Wilson, 2000) solvable conjugacy problem for wide class
of branch groups (with some self-replication)
(Bartholdi, 2003) every f.g. branch group with solvable word problem
has finite “endomorphic” presentation

Question: Is there a f.p. branch/self-similar group?
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More self-similar results

Take this even further:

Theorem (G, 2013)
Let G be the Gupta–Sidki 3-group. If H ≤ G is finitely generated and
infinite then there exists v ∈ T with Hv = G.

This comes from (the proof of) an even stronger statement:

Theorem 1 (G, 2013)
If H ≤ G is finitely generated and infinite, then H is (abstractly)
commensurable with G or G × G .

Cfr:

Theorem (Grigorchuk–Wilson, 2001)
All infinite finitely generated subgroups of the Grigorchuk group Γ are
commensurable with Γ.
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Sketch proof

G =Gupta–Sidki 3-group

Auxiliary theorem
Let X be a class of subgroups of G satisfying

1 1,G ∈ X
2 closed for finite index supergroups
3 if all first level projections of H are in X then so is H.

Then X contains all finitely generated subgroups of G .

Proof: By contradiction; length reduction argument. Take H ≤ G finitely
generated, H /∈ X with “shortest” generating set. Then Hv /∈ X for every v
in first level, so Hu /∈ X for some u in second level. Technical work, to get
that Hu has a shorter generating set than H.

The “technical work” only works for p = 3; everything else works for all odd
primes.
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Auxiliary Theorem
Let X be a class of subgroups of G satisfying

1 1,G ∈ X
2 closed for finite index supergroups
3 if all first level projections of H are in X then so is H.

Then X contains all finitely generated subgroups of G .

So suffices to show that C(:=subgroups of G which are finite, or
commensurable with G or G × G ) satisfies 3 conditions in Auxiliary
Theorem. 1 & 2: easy
3: H is subdirect product of its projections H1,H2,H3. Each Hi is
commensurable with G or G × G . Now, use fact that each finite index
subgroup of G contains some St(n) (congruence subgroup property, more
to follow) and St(n) is subdirect in G×3n

. Reduce to H subdirect in
H1 × G×k , of finite index because G is just infinite. Finish using fact that
G×i and G×j are commensurable if i ≡ j mod 2.
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Similarly, use Auxiliary Theorem and Theorem 1 to prove

Theorem (G, 2013)
G is subgroup separable (LERF), i.e., all finitely generated subgroups are
an intersection of finite index subgroups.

Remains to show that G and G × G are not commensurable. Idea: write
subgroups of finite index as subdirect products; look at the number of
factors. Need to know about normal subgroups of subgroups of finite index.
Second way in which these groups look like trees...
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Outline

1 Introduction

2 Self-similarity

3 Branch structure
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Branch group: definition

T =rooted tree of type (mn)n. G acts faithfully on T .

Definition
rstG (v) := {g ∈ G : g fixes all vertices outside Tv} is the rigid stabilizer
of v ∈ T .
rstG (n) :=

∏
v∈Vn

rstG (v) is the rigid stabilizer of level n.

v

Tv
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Branch group: definition

Definition
G acts as a branch group on T iff for every n:

1 G acts transitively on Vn (‘acts level-transitively on T ’)
2 |G : rstG (n)| <∞

Definition
G is branch if it acts faithfully as a branch group on some T .

Examples
For all n, A = Aut(T ) acts transitively on Vn with kernel rstA(n).
Gupta–Sidki p-groups
Grigorchuk groups
Aleshin group
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Subgroups of branch groups

Key lemma (Grigorchuk)
If G is branch and 1 6= K C G then rstG (n)′ ≤ K for some n.

Theorem 2 (G–Wilson, 2014)
Let G branch, 1 6= K / H ≤f G . For all n sufficiently large,

K ∩ rstG (n)′ = rstG (X )′

where X is a union of orbits of H at level n.

We can use this to give an isomorphism invariant for H:
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Finite index subgroups of branch groups

Theorem 2 (G–Wilson, 2014)
Let G branch, 1 6= K / H ≤f G . For all n sufficiently large,

K ∩ rstG (n)′ = rstG (X )′

where X is a union of orbits of H at level n.

b(H) := maximum number of infinite normal subgroups of H that generate
their direct product. By Theorem 2, b(H) ≤ maximum number of orbits
of H on any layer of T The number of H-orbits on any layer is bounded
(by |G : H|).
Say Vn = X1 t . . . t Xr , each Xi an H-orbit.
Then rstG (Xi )

′ / H and rstG (n)′ =
∏

rstG (Xi )
′ / H.

Corollary
b(H) = maximum number of orbits of H on any layer of T .
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How it all fits together

b(H) behaves well under direct products
Let H ≤f H1 × . . .× Hr be subdirect; b(Hi ) finite.
Then b(H) = b(H1) + . . .+ b(Hr ).

Easy lemma
Let H ≤f G act like a p-group on every layer of the p-regular tree.
Then b(H) ≡ 1 mod p − 1.

Corollary
Let Γ1, Γ2 be direct products of n1, n2 branch groups acting like p-groups
on every layer of the p-regular tree.
If Γ1 and Γ2 are commensurable, then n1 ≡ n2 mod p − 1.

So the Gupta–Sidki 3-group has 3 commensurability classes of f.g.
subgroups.
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Branch structure: structure lattice

Old idea of Wilson for classification of just infinite groups (a group is just
non-P if it is not P but all its proper quotients are P).

One of the classes
is that of just infinite branch groups.

Look at subnormal subgroups with finitely many conjugates of just
infinite groups
quotient by commensurability
obtain structure lattice.

Turns out we only need to look at subgroups with finitely many conjugates.
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Structure lattice

L(G ) := {K | K C H ≤f G}

By Key Lemma, all branch groups are just non-(virtually abelian).
K1 ∼ K2 iff K1/(K1 ∩ K2),K2/(K1 ∩ K2) are virtually abelian.
L := L(G )/ ∼ is a lattice: [K1] ∧ [K2] = [K1 ∩ K2],
[K1] ∨ [K2] = [〈K1,K2〉], order induced by subgroup inclusion.

Definition
L is the structure lattice of G .

Conjugation by G induces a well-defined action of G on L.
So, reformulating, we have

Theorem 2
Every element of L has as a representative some rst(X ) where X is an
H-orbit for some H ≤f G .
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Application: Congruence subgroup property

By analogy with the classical case of linear algebraic groups, we have

Definition
A group G acting faithfully on a rooted tree has the congruence subgroup
property (CSP) if for every H ≤f G there is some n with St(n) ≤ H.

Example: Gupta–Sidki p-groups (used in proof of Theorem 1).

Question (Bartholdi–Siegenthaler–Zalesskii, 2012)
For a branch group, does having CSP depend on the chosen branch action?

No!

Theorem 3 (G, 2014)
Whether a branch group has CSP or not is independent of the branch
action.
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Proof ingredients

Theorem 2
Every element of L has as a representative some rst(X ) where X is an
H-orbit for some H ≤f G .

In particular, for any branch action ρ : G → Aut(Tρ) and any [K ] ∈ L
there exists v ∈ Tρ with [K ] ≥ [rstρ(v)].

Lemma
If G acts as a branch group on T then T embeds G -equivariantly in L:
v 7→ [rstG (v)].
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Proof

To show that having CSP is independent of the branch action, we need to
show that given two branch actions σ : G → Aut(Tσ) and
ρ : G → Aut(Tρ) every Stσ(n) contains some Stρ(m) and vice-versa.

Take u ∈ Tσ of level n.
By the above, there is some v ∈ Tρ (call its level m) such that
[rstσ(u)] ≥ [rstρ(v)].
Now, if x ∈ Stρ(m), we have

1 6= [rstρ(v)] ≤ [rstσ(u)]x ∧ [rstσ(u)] = [rstσ(ux) ∩ rstσ(u)],

so rstσ(ux) = rstσ(u).
Hence x ∈ Stσ(u).
To finish, use transitivity of G on all levels of Tρ and Tσ to get
x ∈

⋂
g∈G Stσ(ug) = Stσ(n).
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Summary

Two ways in which groups acting on trees can “look” like trees:

Self-similarity/replication

strong replication in some examples: Gupta–Sidki 3-group (p > 3?),
Grigorchuk group

subgroup structure of branch groups “detects” all trees on which group
acts as branch group

Applications to commensurability and congruence subgroup problem.

Q How many “different” branch actions can a given group have? On
what trees?
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Thank you for your attention :)
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