Knapsack problems in products of groups

Andrey Nikolaev
(Stevens Institute of Technology)

Group Theory Webinar, November 13, 2014
Based on joint work with E.Frenkel and A.Ushakov

Non-commutative discrete optimization

Basic idea:

Take a classic algorithmic problem from computer science (traveling salesman, Post correspondence, knapsack,...) and translate it into group-theoretic setting.

Example: Post correspondence problem

Let A be an alphabet, $|A| \geq 2$.

The classic Post correspondence problem (PCP)

Given a finite set of pairs $\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)$ of elements of A^{*} determine if there is a non-empty word $w\left(x_{1}, \ldots, x_{k}\right) \in X^{*}$ such that $w\left(g_{1}, \ldots, g_{k}\right)=w\left(h_{1}, \ldots, h_{k}\right)$ in A^{*}.

Example: Post correspondence problem

Matching dominoes: top $=$ bottom

$g_{i_{1}}$	$g_{i_{2}}$	$g_{i_{3}}$	\ldots	$g_{i_{n}}$
$h_{i_{1}}$	$h_{i_{2}}$	$h_{i_{3}}$	\ldots	$h_{i_{n}}$

Decidable if number of pairs is $k \leq 3$. Undecidable if $k \geq 7$.
Unknown if $4 \leq k \leq 6$.

Example: Post correspondence problem

Matching dominoes: top $=$ bottom

$g_{i_{1}}$	$g_{i_{2}}$	$g_{i_{3}}$	\ldots	$g_{i_{n}}$
$h_{i_{1}}$	$h_{i_{2}}$	$h_{i_{3}}$	\ldots	$h_{i_{n}}$

Decidable if number of pairs is $k \leq 3$. Undecidable if $k \geq 7$. Unknown if $4 \leq k \leq 6$.

$\mathbf{P C P}$ in groups

Translating PCP to groups:
$A^{*} \rightsquigarrow$ f.g. group G, words $g_{i}, h_{i} \rightsquigarrow$ group elements g_{i}, h_{i} given as words in generators, word $w \rightsquigarrow$ group word,
right?
The above is trivial:
(a) $w=x x^{-1}$. Only allow non-trivial reduced words.
(b) G abelian, $w=[x, y]$. Only allow words that are not identities

$\mathbf{P C P}$ in groups

Translating PCP to groups:
$A^{*} \rightsquigarrow$ f.g. group G, words $g_{i}, h_{i} \rightsquigarrow$ group elements g_{i}, h_{i} given as words in generators, word $w \rightsquigarrow$ group word, right?

The above is trivial:
(a) $w=x x^{-1}$. Only allow non-trivial reduced words.
(b) G abelian, $w=[x, y]$. Only allow words that are not identities

$\mathbf{P C P}$ in groups

Translating PCP to groups:
$A^{*} \rightsquigarrow$ f.g. group G, words $g_{i}, h_{i} \rightsquigarrow$ group elements g_{i}, h_{i} given as words in generators, word $w \rightsquigarrow$ group word, right?

The above is trivial:
(a) $w=x x^{-1}$. Only allow non-trivial reduced words.
(b) G abelian, $w=[x, y]$. Only allow words that are not identities

$\mathbf{P C P}$ in groups

Translating PCP to groups:
$A^{*} \rightsquigarrow$ f.g. group G, words $g_{i}, h_{i} \rightsquigarrow$ group elements g_{i}, h_{i} given as words in generators, word $w \rightsquigarrow$ group word, right?

The above is trivial:
(a) $w=x x^{-1}$. Only allow non-trivial reduced words.
(b) G abelian, $w=[x, y]$. Only allow words that are not identities of G.

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem
(find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem
(find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem (find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem
(find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem (find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem
(find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem (find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem
(find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem (find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem
(find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem
(word problem in any quotient of G by a subgroup f.g. as a
normal subgroup).

Example: Post correspondence problem

Variations of PCP in groups turn out to be closely related to:

- double-endo-twisted conjugacy problem (find $w \in G$ s.t. $u w^{\varphi}=w^{\psi} v$),
- equalizer problem (find the subgroup of elements g s.t. $\varphi(g)=\psi(g)$),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

The classic subset sum problem (SSP):
Given $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$ decide if

$$
\varepsilon_{1} a_{1}+\ldots+\varepsilon_{k} a_{k}=a
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.

SSP for a group G:

Given $g_{1}, \ldots, g_{k}, g \in G$ decide if

$$
g_{1}^{\varepsilon_{1}} \ldots g_{k}^{\varepsilon_{k}}=g
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.
Elements in G are given as words in a fixed set of generators of G.

Non-commutative discrete optimization

The classic subset sum problem (SSP):
Given $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$ decide if

$$
\varepsilon_{1} a_{1}+\ldots+\varepsilon_{k} a_{k}=a
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.

SSP for a group G :
Given $g_{1}, \ldots, g_{k}, g \in G$ decide if

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.
Elements in G are given as words in a fixed set of generators of G.

Non-commutative discrete optimization

The classic subset sum problem (SSP):
Given $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$ decide if

$$
\varepsilon_{1} a_{1}+\ldots+\varepsilon_{k} a_{k}=a
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.

SSP for a group G :
Given $g_{1}, \ldots, g_{k}, g \in G$ decide if

$$
g_{1}^{\varepsilon_{1}} \ldots g_{k}^{\varepsilon_{k}}=g
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{0,1\}$.
Elements in G are given as words in a fixed set of generators of G.

Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, SSP is in \mathbf{P},
- if input is given in binary, SSP is NP-complete.

The complexity of $\operatorname{SSP}(G)$ does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

$\operatorname{scn}(\pi)$
 - $\operatorname{SSP}(\mathbb{Z}) \in \mathbf{P}$ if \mathbb{Z} is generated by $\{1\}$,
 - $\operatorname{SSP}(\mathbb{Z})$ is $\mathbf{N P}$-complete if \mathbb{Z} is generated by $\left\{2^{n} \mid n \in \mathbb{N}\right\}$

Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, SSP is in \mathbf{P},
- if input is given in binary, SSP is NP-complete.

The complexity of $\operatorname{SSP}(G)$ does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example

Algorithmic set-up

Classic SSP is pseudopolynomial

- If input is given in unary, SSP is in \mathbf{P},
- if input is given in binary, SSP is NP-complete.

The complexity of $\operatorname{SSP}(G)$ does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:
SSP(Z)

- $\operatorname{SSP}(\mathbb{Z}) \in \mathbf{P}$ if \mathbb{Z} is generated by $\{1\}$,
- $\operatorname{SSP}(\mathbb{Z})$ is NP-complete if \mathbb{Z} is generated by $\left\{2^{n} \mid n \in \mathbb{N}\right\}$.

Complexity of $\operatorname{SSP}(G)$:

Group	Complexity	Why
Nilpotent	\mathbf{P}	Poly growth
$\mathbb{Z} \imath \mathbb{Z}$	NP-complete	$\mathbb{Z}^{\omega}, \mathbf{Z O E}$
Free metabelian	NP-complete	$\mathbb{Z} \imath \mathbb{Z}$
Thompson's F	NP-complete	$\mathbb{Z} \imath \mathbb{Z}$
$B S(m, n),\|m\| \neq\|n\|$	NP-complete	Binary $\mathbf{S S P}(\mathbb{Z})$
Hyperbolic	\mathbf{P}	Log depth

Note that the NP-completeness is despite unary input.

Complexity of $\operatorname{SSP}(G)$:

Group	Complexity	Why
Nilpotent	\mathbf{P}	Poly growth
$\mathbb{Z} \imath \mathbb{Z}$	NP-complete	$\mathbb{Z}^{\omega}, \mathbf{Z O E}$
Free metabelian	NP-complete	$\mathbb{Z} \imath \mathbb{Z}$
Thompson's F	NP-complete	$\mathbb{Z} \imath \mathbb{Z}$
$B S(m, n),\|m\| \neq\|n\|$	NP-complete	Binary $\mathbf{S S P}(\mathbb{Z})$
Hyperbolic	\mathbf{P}	Log depth

Note that the NP-completeness is despite unary input.

Knapsack problems in groups

Three principle Knapsack type (decision) problems in groups:
SSP subset sum,
KP knapsack,
SMP submonoid membership.

The knapsack problem in groups

$$
\begin{aligned}
& \text { The classic knapsack problem (KP): } \\
& \text { Given } a_{1}, \ldots, a_{k}, a \in \mathbb{Z} \text { decide if } \\
& \qquad n_{1} a_{1}+\ldots+n_{k} a_{k}=a
\end{aligned}
$$

for some non-negative integers n_{1}, \ldots, n_{k}.

The knapsack problem (KP) for G:
Given $g_{1}, \ldots, g_{k}, g \in G$ decide if
for some non-negative integers n_{1}, \ldots, n_{k}
There are minor variations of this problem, for instance, integer KP , when n_{i} are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called $0-1$

The knapsack problem in groups

The classic knapsack problem (KP):

Given $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$ decide if

$$
n_{1} a_{1}+\ldots+n_{k} a_{k}=a
$$

for some non-negative integers n_{1}, \ldots, n_{k}.

The knapsack problem (KP) for G:
Given $g_{1}, \ldots, g_{k}, g \in G$ decide if

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g
$$

for some non-negative integers n_{1}, \ldots, n_{k}.

There are minor variations of this problem, for instance, integer KP, when n_{i} are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called $0-1$

The knapsack problem in groups

The classic knapsack problem (KP):

Given $a_{1}, \ldots, a_{k}, a \in \mathbb{Z}$ decide if

$$
n_{1} a_{1}+\ldots+n_{k} a_{k}=a
$$

for some non-negative integers n_{1}, \ldots, n_{k}.

The knapsack problem (KP) for G :

Given $g_{1}, \ldots, g_{k}, g \in G$ decide if

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g
$$

for some non-negative integers n_{1}, \ldots, n_{k}.
There are minor variations of this problem, for instance, integer KP, when n_{i} are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called $0-1$ knapsack.

The knapsack problem in groups

The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack = membership in product of cyclic groups.

The knapsack problem in groups

The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack $=$ membership in product of cyclic groups.

The submonoid membership problem in groups

Submonoid membership problem (SMP):

Given a finite set $A=\left\{g_{1}, \ldots, g_{k}, g\right\}$ of elements of G decide if g belongs to the submonoid generated by A, i.e., if $g=g_{i_{1}}, \ldots, g_{i_{s}}$ for some $g_{i_{j}} \in A$.

If the set A is closed under inversion then we have the subgroup membership problem in G.

Bounded variations

It makes sense to consider the bounded versions of KP and SMP, they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G :
decide, when given $g_{1}, \ldots, g_{k}, g \in G$ and $1^{m} \in \mathbb{N}$, if $g=G g_{1}^{\varepsilon_{1}} \ldots g_{k}^{\varepsilon_{k}}$ for some $\varepsilon_{i} \in\{0,1, \ldots, m\}$.

BKP is P-time equivalent to SSP in G

Bounded variations

It makes sense to consider the bounded versions of KP and SMP, they are always decidable in groups with decidable word problem.

The bounded knapsack problem (BKP) for G : decide, when given $g_{1}, \ldots, g_{k}, g \in G$ and $1^{m} \in \mathbb{N}$, if $g=G g_{1}^{\varepsilon_{1}} \ldots g_{k}^{\varepsilon_{k}}$ for some $\varepsilon_{i} \in\{0,1, \ldots, m\}$.

BKP is \mathbf{P}-time equivalent to $\mathbf{S S P}$ in G.

Bounded variations

Bounded submonoid membership problem (BSMP) for G :

Given $g_{1}, \ldots g_{k}, g \in G$ and $1^{m} \in \mathbb{N}$ (in unary) decide if g is equal in G to a product of the form $g=g_{i_{1}} \cdots g_{i_{s}}$, where $g_{i_{1}}, \ldots, g_{i_{s}} \in\left\{g_{1}, \ldots, g_{k}\right\}$ and $s \leq m$.

Known results [MNU]

SSP and BKP:

- NP-complete in $\mathbb{Z} \imath \mathbb{Z}$, free metabelian, Thompson's F, $B S(m, n), m \neq \pm n$.
- P-time in f.g. v. nilpotent groups, hyperbolic groups, $B S(n, \pm n)$.

BSMP:

- NP-complete in $F_{2} \times F_{2}$ (therefore NP-hard in any group that contains $F_{2} \times F_{2}$, e.g. $B_{\geq 5}, G L(\geq 4, \mathbb{Z})$, partially commutative with induced \square.)
- P-time in f.g. v. nilpotent groups, hyperbolic groups.

Known results

KP:

- [MNU] P-time in abelian groups, hyperbolic groups.
- [Olshanski, Sapir, 2000] There is G with decidable WP and undecidable membership in cyclic subgroups.
- [Lohrey, 2013] Undecidable in $\mathrm{UT}_{d}(\mathbb{Z})$ if d is large enough.
- [Mischenko, Treyer, 2014] Undecidable in nilpotent groups of class ≥ 2 if $\gamma_{c}(G)$ is large enough. Decidable in $\mathrm{UT}_{3}(\mathbb{Z})$.

SSP vs group-theoretic constructions

What about group-theoretic constructions?
Q1 Does SSP carry from G, H to $G * H$?
A1 That's not the right question.
Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!

What about group-theoretic constructions?
Q1 Does SSP carry from G, H to $G * H$?
A1 That's not the right question.
Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!

What about group-theoretic constructions?
Q1 Does SSP carry from G, H to $G * H$?
A1 That's not the right question.
Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!

What about group-theoretic constructions?
Q1 Does SSP carry from G, H to $G * H$?
A1 That's not the right question.
Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!

What about group-theoretic constructions?
Q1 Does SSP carry from G, H to $G * H$?
A1 That's not the right question.
Q2 Does SSP in $G \times H$ behave like the word problem or like the membership problem?
A2 Both!

SSP and free products

What an instance of $\operatorname{SSP}(G)$ looks like?

SSP and free products

What an instance of $\operatorname{SSP}(G)$ looks like?

SSP and free products

Consider $\operatorname{SSP}(G * H)$.
If some path reads trivial group element, then there is subpath in G or H that reads 1_{G} or 1_{H}, resp.

Try to solve it using $\operatorname{SSP}(G)$ and $\operatorname{SSP}(H)$.

SSP and free products

Consider $\operatorname{SSP}(G * H)$.
If some path reads trivial group element, then there is subpath in G or H that reads 1_{G} or 1_{H}, resp.

Try to solve it using $\operatorname{SSP}(G)$ and $\operatorname{SSP}(H)$.

SSP and free products

Look at the G part:

Solve all occurring instances of $\operatorname{SSP}(G)$:

SSP and free products

Look at the G part:

Solve all occurring instances of $\operatorname{SSP}(G)$:

SSP and free products

Bring back H part:

Look at H part separately:

This is not SSP anymore! $\left(3 \neq 2^{m}\right.$ choices of paths. $)$

SSP and free products

Bring back H part:

Look at H part separately:

This is not SSP anymore! $\left(3 \neq 2^{m}\right.$ choices of paths. $)$

SSP and free products

Bring back H part:

Look at H part separately:

This is not SSP anymore! ($3 \neq 2^{m}$ choices of paths. $)$

$\operatorname{AGP}(G)$

In this context, it is natural to consider so-called Acyclic Graph Problem:

The acyclic graph problem $\operatorname{AGP}(G, X)$

Given an acyclic directed graph Γ labeled by letters in $X \cup X^{-1} \cup\{\varepsilon\}$ with two marked vertices, α and ω, decide whether there is an oriented path in Γ from α to ω labeled by a word w such that $w=1$ in G.

$\operatorname{AGP}(G)$

$\operatorname{AGP}(G)$ generalizes $\operatorname{SSP}(G)$ (i.e. $\operatorname{SSP}(G)$ is \mathbf{P}-time reducible to AGP(G)):

AGP(G) generalizes BSMP(G):

$\operatorname{AGP}(G)$

AGP (G) generalizes $\operatorname{SSP}(G)$ (i.e. $\operatorname{SSP}(G)$ is \mathbf{P}-time reducible to AGP $(G))$:

$\operatorname{AGP}(G)$ generalizes $\operatorname{BSMP}(G)$:

$\operatorname{AGP}(G)$

Question
Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with P-time $\operatorname{SSP}(G)$ that we know,
$\operatorname{AGP}(G)$ is also \mathbf{P}-time, by essentially the same arguments:

- AGP(virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that AGP(G) P-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with P-time $\operatorname{SSP}(G)$ that we know,
$\operatorname{AGP}(G)$ is also P-time, by essentially the same arguments:

- AGP(virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that $\operatorname{AGP}(G)$ P-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

AGP (G)

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- AGP(virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that AGP(G) P-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- $\mathbf{A G P}$ (virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that $\operatorname{AGP}(G)$ P-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- AGP (virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that AGP(G) P-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- AGP (virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that $\mathbf{A G P}(G) \mathbf{P}$-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- AGP (virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that $\mathbf{A G P}(G) \mathbf{P}$-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$

$\operatorname{AGP}(G)$

Question

Does AGP (G) reduce to $\operatorname{SSP}(G)$?

We don't know. But in all G with \mathbf{P}-time $\operatorname{SSP}(G)$ that we know, AGP (G) is also \mathbf{P}-time, by essentially the same arguments:

- AGP (virtually f.g. nilpotent) $\in \mathbf{P}$ by polynomial growth,
- AGP(hyperbolic) $\in \mathbf{P}$ by logarithmic depth of Van Kampen diagrams.
Also, we know that $\mathbf{A G P}(G) \mathbf{P}$-time reduces to:
- $\operatorname{SSP}\left(G \times F_{2}\right)$,
- $\operatorname{SSP}\left(G * F_{2}\right)$.

$\operatorname{AGP}(G * H)$

AGP plays nicely with free products:

Theorem

Let G, H be finitely generated groups. Then $\operatorname{AGP}(G * H)$ is P-time Cook reducible to AGP (G), AGP (H).

Proof: same as what we tried to do with SSP, only this time it works.

$\operatorname{AGP}(G * H)$

AGP plays nicely with free products:

Theorem

Let G, H be finitely generated groups. Then $\operatorname{AGP}(G * H)$ is P-time Cook reducible to AGP (G), AGP (H).

Proof: same as what we tried to do with SSP, only this time it works.

$\operatorname{AGP}(G * H)$

Corollary

If G, H are finitely generated groups such that $\operatorname{AGP}(G)$, $\mathbf{A G P}(H) \in \mathbf{P}$ then $\operatorname{AGP}(G * H) \in \mathbf{P}$.

> Corollary
> SSP, BKP, BSMP, AGP are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.

$\operatorname{AGP}(G * H)$

Corollary

If G, H are finitely generated groups such that $\operatorname{AGP}(G)$, $\operatorname{AGP}(H) \in \mathbf{P}$ then $\operatorname{AGP}(G * H) \in \mathbf{P}$.

Corollary

SSP, BKP, BSMP, AGP are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.

What about Knapsack Problem KP $(G * H)$?

Difficulty: put a bound on exponents n_{i} in

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g .
$$

We can do it in

- abelian grouns (by linear algebra),
- hyperbolic groups (thin n-gons).

What about Knapsack Problem KP $(G * H)$?
Difficulty: put a bound on exponents n_{i} in

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g .
$$

We can do it in

- abelian grouns (by linear algebra),
- hyperbolic groups (thin n-gons).

What about Knapsack Problem KP(G*H)?
Difficulty: put a bound on exponents n_{i} in

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g
$$

We can do it in

- abelian groups (by linear algebra),
- hyperbolic groups (thin n-gons).

What about Knapsack Problem KP(G*H)?
Difficulty: put a bound on exponents n_{i} in

$$
g_{1}^{n_{1}} \ldots g_{k}^{n_{k}}=g .
$$

We can do it in

- abelian groups (by linear algebra),
- hyperbolic groups (thin n-gons).

KP and free products

In hyperbolic groups:

KP and free products

Similar argument works in free products, which gives

Theorem

If G, H are groups such that $\mathbf{K P}(G), \mathbf{K P}(H) \in \mathbf{P}$, then $\mathbf{K P}(G * H)$ is \mathbf{P}-time reducible to $\operatorname{BKP}(G * H)$.

```
Corollary
If G,H are groups such that }\operatorname{AGP}(G),AGP(H)\in\mathbb{P}\mathrm{ and }\textrm{KP}(G)\mathrm{ ,
KP(H)\inP}\mathrm{ then KP(G*H) GPP
```

Corollary
KP is polynomial time decidable in free products of finitely
generated abelian and hyperbolic groups in any finite number.

Similar argument works in free products, which gives

Theorem

If G, H are groups such that $\mathbf{K P}(G), \mathbf{K P}(H) \in \mathbf{P}$, then $\mathbf{K P}(G * H)$ is \mathbf{P}-time reducible to $\operatorname{BKP}(G * H)$.

Corollary

If G, H are groups such that $\mathbf{A G P}(G), \mathbf{A G P}(H) \in \mathbf{P}$ and $\mathbf{K P}(G)$, $\mathbf{K P}(H) \in \mathbf{P}$ then $\mathbf{K P}(G * H) \in \mathbf{P}$.

Corollary
KP is polynomial time decidable in free products of finitely
generated abelian and hyperbolic groups in any finite number

Similar argument works in free products, which gives

Theorem

If G, H are groups such that $\mathbf{K P}(G), \mathbf{K P}(H) \in \mathbf{P}$, then $\mathbf{K P}(G * H)$ is \mathbf{P}-time reducible to $\operatorname{BKP}(G * H)$.

Corollary

If G, H are groups such that $\operatorname{AGP}(G), \mathbf{A G P}(H) \in \mathbf{P}$ and $\mathbf{K P}(G)$, $\mathbf{K P}(H) \in \mathbf{P}$ then $\mathbf{K P}(G * H) \in \mathbf{P}$.

Corollary

KP is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number.

SSP and direct products

$\mathbf{A G P}(G \times H)$ is decidable whenever $\mathbf{W P}(G) \mathbf{W P}(H)$ are decidable. What about complexity?
$\operatorname{AGP}\left(F_{2} \times F_{2}\right)$ is NP-complete since $\operatorname{BSMP}\left(F_{2} \times F_{2}\right)$ is, by a variation of Mikhailova construction.

By itself, this does not mean $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ is NP-complete because we don't know whether $\operatorname{AGP}(G)$ reduces to $\operatorname{SSP}(G)$.

Question

Is $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ NP-complete?

Answer: we don't know... but we know about $\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$!

SSP and direct products

$\mathbf{A G P}(G \times H)$ is decidable whenever $\mathbf{W P}(G), \mathbf{W P}(H)$ are decidable. What about complexity?
$\operatorname{AGP}\left(F_{2} \times F_{2}\right)$ is NP-complete since $\operatorname{BSMP}\left(F_{2} \times F_{2}\right)$ is, by a variation of Mikhailova construction.

By itself, this does not mean $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ is NP-complete because we don't know whether $\operatorname{AGP}(G)$ reduces to $\operatorname{SSP}(G)$.

Question

Is $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ NP-complete?

Answer: we don't know... but we know about $\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$!

SSP and direct products

$\mathbf{A G P}(G \times H)$ is decidable whenever $\mathbf{W P}(G) \mathbf{W P}(H)$ are decidable. What about complexity?
$\operatorname{AGP}\left(F_{2} \times F_{2}\right)$ is $\mathbf{N P}$-complete since $\operatorname{BSMP}\left(F_{2} \times F_{2}\right)$ is, by a variation of Mikhailova construction.

By itself, this does not mean $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ is NP-complete because we don't know whether $\operatorname{AGP}(G)$ reduces to $\operatorname{SSP}(G)$.

Question
Is $\operatorname{SSP}\left(F_{2} \times F_{2}\right) \mathbf{N P}$-complete?

Answer: we don't know... but we know about $\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$!

SSP and direct products

$\mathbf{A G P}(G \times H)$ is decidable whenever $\mathbf{W P}(G) \mathbf{W P}(H)$ are decidable. What about complexity?
$\operatorname{AGP}\left(F_{2} \times F_{2}\right)$ is NP-complete since $\operatorname{BSMP}\left(F_{2} \times F_{2}\right)$ is, by a variation of Mikhailova construction.

By itself, this does not mean $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ is NP-complete because we don't know whether $\operatorname{AGP}(G)$ reduces to $\operatorname{SSP}(G)$.

Question
Is $\operatorname{SSP}\left(F_{2} \times F_{2}\right) \mathbf{N P}$-complete?

Answer: we don't know...

SSP and direct products

$\mathbf{A G P}(G \times H)$ is decidable whenever $\mathbf{W P}(G) \mathbf{W P}(H)$ are decidable. What about complexity?
$\operatorname{AGP}\left(F_{2} \times F_{2}\right)$ is NP-complete since $\operatorname{BSMP}\left(F_{2} \times F_{2}\right)$ is, by a variation of Mikhailova construction.

By itself, this does not mean $\operatorname{SSP}\left(F_{2} \times F_{2}\right)$ is NP-complete because we don't know whether $\mathbf{A G P}(G)$ reduces to $\operatorname{SSP}(G)$.

Question

Is $\operatorname{SSP}\left(F_{2} \times F_{2}\right) \mathbf{N P}$-complete?

Answer: we don't know... but we know about $\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$!

$\operatorname{BSMP}(G)$ vs $\operatorname{SSP}(G \times \mathbb{Z})$

$\operatorname{BSMP}(G)$ reduces to $\operatorname{SSP}(G \times \mathbb{Z})$:

Corollary
$\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$ is NP-complete.

$\operatorname{BSMP}(G)$ vs $\operatorname{SSP}(G \times \mathbb{Z})$

$\operatorname{BSMP}(G)$ reduces to $\operatorname{SSP}(G \times \mathbb{Z})$:

Corollary

$\operatorname{SSP}\left(F_{2} \times F_{2} \times \mathbb{Z}\right)$ is $\mathbf{N P}$-complete.

SSP and direct products

Observation: $\mathbf{A G P}(G)$ and $\mathbf{A G P}(G \times \mathbb{Z})$ are \mathbf{P}-time equivalent.

Corollary

There are groups G, H such that $\operatorname{SSP}(G), S S P(H) \in P$, but $\operatorname{SSP}(G \times H)$ is NP-complete.

Proof: $G=F_{2}, H=F_{2} \times \mathbb{Z}$.

SSP and direct products

Observation: $\mathbf{A G P}(G)$ and $\mathbf{A G P}(G \times \mathbb{Z})$ are \mathbf{P}-time equivalent.

Corollary
There are groups G, H such that $\mathbf{S S P}(G), \mathbf{S S P}(H) \in \mathbf{P}$, but $\mathbf{S S P}(G \times H)$ is NP-complete.

Proof: $G=F_{2}, H=F_{2} \times \mathbb{Z}$.

SSP and direct products

Observation: $\mathbf{A G P}(G)$ and $\mathbf{A G P}(G \times \mathbb{Z})$ are \mathbf{P}-time equivalent.

Corollary
There are groups G, H such that $\operatorname{SSP}(G), \mathbf{S S P}(H) \in \mathbf{P}$, but $\operatorname{SSP}(G \times H)$ is NP-complete.

Proof: $G=F_{2}, H=F_{2} \times \mathbb{Z}$.

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right), \mathbf{S S P}(H N N)$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right), \mathbf{S S P}(H N N)$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP (lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP (G*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP (lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right), \mathbf{S S P}(H N N)$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right), \operatorname{SSP}(H N N)$? (Finite amalgamated
subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right)$, $\mathbf{S S P}(H N N)$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

Open questions

Some of (many) open questions:

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP (polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about $\operatorname{SSP}\left(G *_{A} H\right), \mathbf{S S P}(H N N)$? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

