# Knapsack problems in products of groups

Andrey Nikolaev (Stevens Institute of Technology)

Group Theory Webinar, November 13, 2014

Based on joint work with E.Frenkel and A.Ushakov

#### Basic idea:

Take a classic algorithmic problem from computer science (traveling salesman, Post correspondence, knapsack,...) and translate it into group-theoretic setting.

Let A be an alphabet,  $|A| \ge 2$ .

#### The classic Post correspondence problem (PCP)

Given a finite set of pairs  $(g_1, h_1), \ldots, (g_k, h_k)$  of elements of  $A^*$  determine if there is a non-empty word  $w(x_1, \ldots, x_k) \in X^*$  such that  $w(g_1, \ldots, g_k) = w(h_1, \ldots, h_k)$  in  $A^*$ .

Matching dominoes: top = bottom

| $g_{i_1}$ | $g_{i_2}$ | g <sub>i3</sub> | <br>$g_{i_n}$ |
|-----------|-----------|-----------------|---------------|
| $h_{i_1}$ | $h_{i_2}$ | $h_{i_3}$       | <br>$h_{i_n}$ |

Decidable if number of pairs is  $k \le 3$ . Undecidable if  $k \ge 7$  Unknown if  $4 \le k \le 6$ .

Matching dominoes: top = bottom

| $g_{i_1}$ | $g_{i_2}$ | $g_{i_3}$ | <br>g <sub>in</sub> |
|-----------|-----------|-----------|---------------------|
| $h_{i_1}$ | $h_{i_2}$ | $h_{i_3}$ | <br>$h_{i_n}$       |

Decidable if number of pairs is  $k \le 3$ . Undecidable if  $k \ge 7$ . Unknown if  $4 \le k \le 6$ .

#### Translating **PCP** to groups:

 $A^* \leadsto \text{f.g. group } G$ , words  $g_i, h_i \leadsto \text{group elements } g_i, h_i \text{ given as words in generators, word } w \leadsto \text{group word, }$ right?

The above is trivial:

- (a)  $w = xx^{-1}$ . Only allow non-trivial reduced words.
- (b) G abelian, w = [x, y]. Only allow words that are not identities of G.

#### Translating **PCP** to groups:

```
A^* \leadsto \text{f.g.} group G, words g_i, h_i \leadsto \text{group elements } g_i, h_i given as words in generators, word w \leadsto \text{group word}, right?
```

The above is trivial

- (a)  $w = xx^{-1}$ . Only allow non-trivial reduced words.
- (b) G abelian, w = [x, y]. Only allow words that are not identities of G.

#### Translating **PCP** to groups:

```
A^* \leadsto \text{f.g.} group G, words g_i, h_i \leadsto \text{group elements } g_i, h_i given as words in generators, word w \leadsto \text{group word}, right?
```

#### The above is trivial:

- (a)  $w = xx^{-1}$ . Only allow non-trivial reduced words.
- (b) G abelian, w = [x, y]. Only allow words that are not identities of G.

#### Translating **PCP** to groups:

 $A^* \leadsto \text{f.g.}$  group G, words  $g_i, h_i \leadsto \text{group elements } g_i, h_i$  given as words in generators, word  $w \leadsto \text{group word}$ , right?

#### The above is trivial:

- (a)  $w = xx^{-1}$ . Only allow non-trivial reduced words.
- (b) G abelian, w = [x, y]. Only allow words that are not identities of G.

#### Variations of **PCP** in groups turn out to be closely related to:

double-endo-twisted conjugacy problem

```
(find w \in G s.t. uw^{\varphi} = w^{\psi}v),
```

- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g)=\psi(g)$ ),
- hereditary word problem
   (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

- double-endo-twisted conjugacy problem (find  $w \in G$  s.t.  $uw^{\varphi} = w^{\psi}v$ ),
- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g)=\psi(g)$ )
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

- double-endo-twisted conjugacy problem (find  $w \in G$  s.t.  $uw^{\varphi} = w^{\psi}v$ ),
- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g) = \psi(g)$ ),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

- double-endo-twisted conjugacy problem (find  $w \in G$  s.t.  $uw^{\varphi} = w^{\psi}v$ ),
- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g) = \psi(g)$ ),
- hereditary word problem
   (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

- double-endo-twisted conjugacy problem (find  $w \in G$  s.t.  $uw^{\varphi} = w^{\psi}v$ ),
- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g) = \psi(g)$ ),
- hereditary word problem
   (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

- double-endo-twisted conjugacy problem (find  $w \in G$  s.t.  $uw^{\varphi} = w^{\psi}v$ ),
- equalizer problem (find the subgroup of elements g s.t.  $\varphi(g) = \psi(g)$ ),
- hereditary word problem (word problem in any quotient of G by a subgroup f.g. as a normal subgroup).

### The classic subset sum problem (SSP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ .

#### **SSP** for a group G:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{\varepsilon_1} \dots g_k^{\varepsilon_k} = g$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ .

Elements in G are given as words in a fixed set of generators of G.

#### The classic subset sum problem (SSP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ .

### **SSP** for a group *G*:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{\varepsilon_1} \dots g_k^{\varepsilon_k} = g$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ 

Elements in G are given as words in a fixed set of generators of G.

#### The classic subset sum problem (SSP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$\varepsilon_1 a_1 + \ldots + \varepsilon_k a_k = a$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ .

#### **SSP** for a group *G*:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{\varepsilon_1} \dots g_k^{\varepsilon_k} = g$$

for some  $\varepsilon_1, \ldots, \varepsilon_k \in \{0, 1\}$ .

Elements in G are given as words in a fixed set of generators of G.

## Algorithmic set-up

#### Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

### $\mathsf{SSP}(\mathbb{Z})$

- $SSP(\mathbb{Z}) \in P$  if  $\mathbb{Z}$  is generated by  $\{1\}$ ,
- SSP( $\mathbb{Z}$ ) is NP-complete if  $\mathbb{Z}$  is generated by  $\{2^n \mid n \in \mathbb{N}\}$ .

## Algorithmic set-up

#### Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

#### For example:

### $\mathsf{SSP}(\mathbb{Z})$

- $SSP(\mathbb{Z}) \in P$  if  $\mathbb{Z}$  is generated by  $\{1\}$ ,
- SSP( $\mathbb{Z}$ ) is NP-complete if  $\mathbb{Z}$  is generated by  $\{2^n \mid n \in \mathbb{N}\}$ .

## Algorithmic set-up

#### Classic **SSP** is pseudopolynomial

- If input is given in unary, SSP is in P,
- if input is given in binary, SSP is NP-complete.

The complexity of SSP(G) does not depend on a finite generating set, but may depend on a generating set if infinite ones are allowed.

For example:

### $\overline{\mathsf{SSP}(\mathbb{Z})}$

- $SSP(\mathbb{Z}) \in P$  if  $\mathbb{Z}$  is generated by  $\{1\}$ ,
- **SSP**( $\mathbb{Z}$ ) is **NP**-complete if  $\mathbb{Z}$  is generated by  $\{2^n \mid n \in \mathbb{N}\}$ .

### **SSP**

### Complexity of **SSP**(G):

| Group                       | Complexity          | Why                         |
|-----------------------------|---------------------|-----------------------------|
| Nilpotent                   | Р                   | Poly growth                 |
| $\mathbb{Z} \wr \mathbb{Z}$ | <b>NP</b> -complete | $\mathbb{Z}^\omega, \; ZOE$ |
| Free metabelian             | <b>NP</b> -complete | $\mathbb{Z} \wr \mathbb{Z}$ |
| Thompson's F                | <b>NP</b> -complete | $\mathbb{Z} \wr \mathbb{Z}$ |
| $BS(m, n),  m  \neq  n $    | <b>NP</b> -complete | Binary $SSP(\mathbb{Z})$    |
| Hyperbolic                  | Р                   | Log depth                   |

Note that the **NP**-completeness is despite unary input.

### SSP

### Complexity of **SSP**(G):

| Group                       | Complexity          | Why                         |
|-----------------------------|---------------------|-----------------------------|
| Nilpotent                   | Р                   | Poly growth                 |
| $\mathbb{Z} \wr \mathbb{Z}$ | <b>NP</b> -complete | $\mathbb{Z}^\omega, \; ZOE$ |
| Free metabelian             | <b>NP</b> -complete | $\mathbb{Z} \wr \mathbb{Z}$ |
| Thompson's F                | <b>NP</b> -complete | $\mathbb{Z} \wr \mathbb{Z}$ |
| $BS(m, n),  m  \neq  n $    | <b>NP</b> -complete | Binary $SSP(\mathbb{Z})$    |
| Hyperbolic                  | Р                   | Log depth                   |

Note that the  $\ensuremath{\mathbf{NP}}\xspace$ -completeness is despite unary input.

## Knapsack problems in groups

Three principle Knapsack type (decision) problems in groups:

SSP subset sum,

KP knapsack,

SMP submonoid membership.

### The classic knapsack problem (KP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$n_1a_1+\ldots+n_ka_k=a$$

for some non-negative integers  $n_1, \ldots, n_k$ .

#### The knapsack problem (**KP**) for G:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{n_1} \dots g_k^{n_k} = g$$

for some non-negative integers  $n_1, \ldots, n_k$ .

There are minor variations of this problem, for instance, integer **KP**, when  $n_i$  are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0-1 knapsack.

### The classic knapsack problem (KP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$n_1a_1+\ldots+n_ka_k=a$$

for some non-negative integers  $n_1, \ldots, n_k$ .

#### The knapsack problem (KP) for G:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{n_1}\ldots g_k^{n_k}=g$$

for some non-negative integers  $n_1, \ldots, n_k$ .

There are minor variations of this problem, for instance, integer **KP**, when  $n_i$  are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0-1 knapsack.

### The classic knapsack problem (KP):

Given  $a_1, \ldots, a_k, a \in \mathbb{Z}$  decide if

$$n_1a_1+\ldots+n_ka_k=a$$

for some non-negative integers  $n_1, \ldots, n_k$ .

#### The knapsack problem (KP) for G:

Given  $g_1, \ldots, g_k, g \in G$  decide if

$$g_1^{n_1} \dots g_k^{n_k} = g$$

for some non-negative integers  $n_1, \ldots, n_k$ .

There are minor variations of this problem, for instance, integer **KP**, when  $n_i$  are arbitrary integers. They are all similar, we omit them here. The subset sum problem sometimes is called 0-1 knapsack.

The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack = membership in product of cyclic groups.

The knapsack problem in groups is closely related to the big powers method, which appeared long before any complexity considerations.

Integer knapsack = membership in product of cyclic groups.

## The submonoid membership problem in groups

#### Submonoid membership problem (SMP):

Given a finite set  $A = \{g_1, \dots, g_k, g\}$  of elements of G decide if g belongs to the submonoid generated by A, i.e., if  $g = g_{i_1}, \dots, g_{i_s}$  for some  $g_{i_i} \in A$ .

If the set A is closed under inversion then we have the subgroup membership problem in G.

### Bounded variations

It makes sense to consider the bounded versions of **KP** and **SMP**, they are always decidable in groups with decidable word problem.

### The bounded knapsack problem (**BKP**) for G:

decide, when given  $g_1, \ldots, g_k, g \in G$  and  $\mathbf{1}^m \in \mathbb{N}$ , if  $g =_G g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k}$  for some  $\varepsilon_i \in \{0, 1, \ldots, m\}$ .

BKP is P-time equivalent to SSP in G

#### **Bounded variations**

It makes sense to consider the bounded versions of **KP** and **SMP**, they are always decidable in groups with decidable word problem.

### The bounded knapsack problem (BKP) for G:

decide, when given  $g_1, \ldots, g_k, g \in G$  and  $\mathbf{1}^m \in \mathbb{N}$ , if  $g =_G g_1^{\varepsilon_1} \ldots g_k^{\varepsilon_k}$  for some  $\varepsilon_i \in \{0, 1, \ldots, m\}$ .

**BKP** is **P**-time equivalent to **SSP** in G.

#### Bounded variations

### Bounded submonoid membership problem (**BSMP**) for *G*:

Given  $g_1, \ldots g_k, g \in G$  and  $1^m \in \mathbb{N}$  (in unary) decide if g is equal in G to a product of the form  $g = g_{i_1} \cdots g_{i_s}$ , where  $g_{i_1}, \ldots, g_{i_s} \in \{g_1, \ldots, g_k\}$  and  $s \leq m$ .

# Known results [MNU]

#### SSP and BKP:

- **NP**-complete in  $\mathbb{Z} \wr \mathbb{Z}$ , free metabelian, Thompson's F,  $BS(m,n), m \neq \pm n$ .
- **P**-time in f.g. v. nilpotent groups, hyperbolic groups,  $BS(n, \pm n)$ .

#### BSMP:

- **NP**-complete in  $F_2 \times F_2$  (therefore **NP**-hard in any group that contains  $F_2 \times F_2$ , e.g.  $B_{\geq 5}$ ,  $GL(\geq 4, \mathbb{Z})$ , partially commutative with induced  $\square$ .)
- P-time in f.g. v. nilpotent groups, hyperbolic groups.

#### Known results

#### KP:

- [MNU] P-time in abelian groups, hyperbolic groups.
- [Olshanski, Sapir, 2000] There is *G* with decidable **WP** and undecidable membership in cyclic subgroups.
- [Lohrey, 2013] Undecidable in  $\mathrm{UT}_d(\mathbb{Z})$  if d is large enough.
- [Mischenko, Treyer, 2014] Undecidable in nilpotent groups of class  $\geq 2$  if  $\gamma_c(G)$  is large enough. Decidable in  $\mathrm{UT}_3(\mathbb{Z})$ .

# **SSP** vs group-theoretic constructions

What about group-theoretic constructions?

- **Q1** Does **SSP** carry from G, H to G \* H?
- **A1** That's not the right question.
- Q2 Does **SSP** in  $G \times H$  behave like the word problem or like the membership problem?
- A2 Both

What about group-theoretic constructions?

- **Q1** Does **SSP** carry from G, H to G \* H?
- **A1** That's not the right question.
- Q2 Does **SSP** in  $G \times H$  behave like the word problem or like the membership problem?
- A2 Both

What about group-theoretic constructions?

- **Q1** Does **SSP** carry from G, H to G \* H?
- **A1** That's not the right question.
- Q2 Does **SSP** in  $G \times H$  behave like the word problem or like the membership problem?

A2 Both

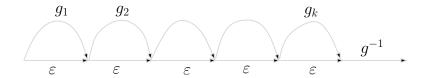
What about group-theoretic constructions?

- **Q1** Does **SSP** carry from G, H to G \* H?
- **A1** That's not the right question.
- Q2 Does **SSP** in  $G \times H$  behave like the word problem or like the membership problem?
- A2 Both!

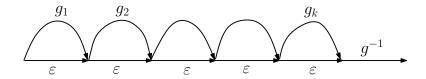
What about group-theoretic constructions?

- **Q1** Does **SSP** carry from G, H to G \* H?
- **A1** That's not the right question.
- Q2 Does **SSP** in  $G \times H$  behave like the word problem or like the membership problem?
- A2 Both!

What an instance of SSP(G) looks like?



What an instance of SSP(G) looks like?



Consider **SSP**(G \* H).

If some path reads trivial group element, then there is subpath in G or H that reads  $1_G$  or  $1_H$ , resp.



Try to solve it using SSP(G) and SSP(H).

Consider **SSP**(G \* H).

If some path reads trivial group element, then there is subpath in G or H that reads  $1_G$  or  $1_H$ , resp.

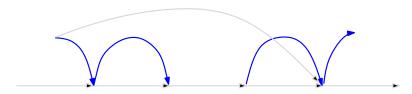


Try to solve it using SSP(G) and SSP(H).

### Look at the *G* part:



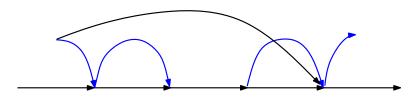
Solve all occurring instances of SSP(G):



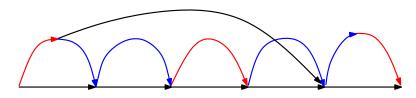
Look at the G part:



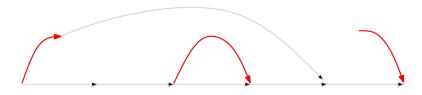
Solve all occurring instances of SSP(G):



### Bring back *H* part:

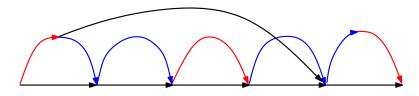


Look at *H* part separately:

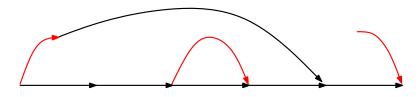


This is not **SSP** anymore!  $(3 \neq 2^m \text{ choices of paths.})$ 

### Bring back *H* part:

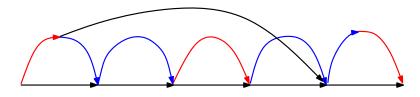


### Look at H part separately:

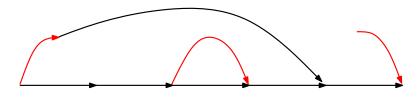


This is not **SSP** anymore!  $(3 \neq 2^m \text{ choices of paths.})$ 

Bring back *H* part:



Look at H part separately:



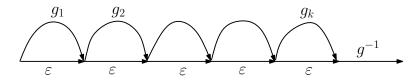
This is not **SSP** anymore!  $(3 \neq 2^m \text{ choices of paths.})$ 

In this context, it is natural to consider so-called Acyclic Graph Problem:

### The acyclic graph problem AGP(G, X)

Given an acyclic directed graph  $\Gamma$  labeled by letters in  $X \cup X^{-1} \cup \{\varepsilon\}$  with two marked vertices,  $\alpha$  and  $\omega$ , decide whether there is an oriented path in  $\Gamma$  from  $\alpha$  to  $\omega$  labeled by a word w such that w=1 in G.

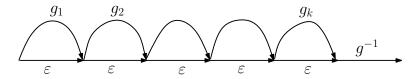
AGP(G) generalizes SSP(G) (i.e. SSP(G) is P-time reducible to AGP(G)):



AGP(G) generalizes BSMP(G):



AGP(G) generalizes SSP(G) (i.e. SSP(G) is P-time reducible to AGP(G)):



### AGP(G) generalizes BSMP(G):



#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

#### Question

Does AGP(G) reduce to SSP(G)?

We don't know. But in all G with P-time SSP(G) that we know, AGP(G) is also P-time, by essentially the same arguments:

- $AGP(virtually f.g. nilpotent) \in P$  by polynomial growth,
- AGP(hyperbolic) ∈ P by logarithmic depth of Van Kampen diagrams.

- SSP( $G \times F_2$ ),
- $SSP(G * F_2)$ .

AGP plays nicely with free products:

#### Theorem

Let G, H be finitely generated groups. Then AGP(G \* H) is P-time Cook reducible to AGP(G), AGP(H).

Proof: same as what we tried to do with **SSP**, only this time it works.

AGP plays nicely with free products:

#### Theorem

Let G, H be finitely generated groups. Then AGP(G \* H) is P-time Cook reducible to AGP(G), AGP(H).

Proof: same as what we tried to do with **SSP**, only this time it works.

### Corollary

If G, H are finitely generated groups such that AGP(G),  $AGP(H) \in P$  then  $AGP(G * H) \in P$ .

### Corollary

**SSP**, **BKP**, **BSMP**, **AGP** are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.

### Corollary

If G, H are finitely generated groups such that AGP(G),  $AGP(H) \in P$  then  $AGP(G * H) \in P$ .

### Corollary

**SSP**, **BKP**, **BSMP**, **AGP** are polynomial time decidable in free products of finitely generated virtually nilpotent and hyperbolic groups in any finite number.

### What about Knapsack Problem KP(G \* H)?

Difficulty: put a bound on exponents  $n_i$  in

$$g_1^{n_1}\ldots g_k^{n_k}=g.$$

- abelian groups (by linear algebra),
- hyperbolic groups (thin *n*-gons).

What about Knapsack Problem KP(G \* H)?

Difficulty: put a bound on exponents  $n_i$  in

$$g_1^{n_1}\ldots g_k^{n_k}=g.$$

- abelian groups (by linear algebra),
- hyperbolic groups (thin *n*-gons).

What about Knapsack Problem KP(G \* H)?

Difficulty: put a bound on exponents  $n_i$  in

$$g_1^{n_1}\ldots g_k^{n_k}=g.$$

- abelian groups (by linear algebra),
- hyperbolic groups (thin *n*-gons).

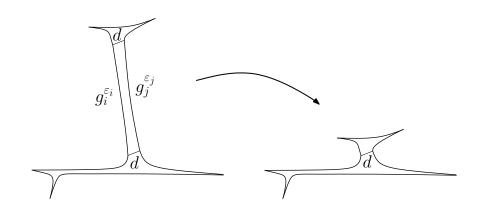
What about Knapsack Problem KP(G \* H)?

Difficulty: put a bound on exponents  $n_i$  in

$$g_1^{n_1}\ldots g_k^{n_k}=g.$$

- abelian groups (by linear algebra),
- hyperbolic groups (thin *n*-gons).

In hyperbolic groups:



Similar argument works in free products, which gives

#### Theorem

If G, H are groups such that  $KP(G), KP(H) \in P$ , then KP(G \* H) is **P**-time reducible to BKP(G \* H).

### Corollary

If G, H are groups such that AGP(G),  $AGP(H) \in P$  and KP(G),  $KP(H) \in P$  then  $KP(G*H) \in P$ .

### Corollary

**KP** is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number

Similar argument works in free products, which gives

#### Theorem

If G, H are groups such that  $KP(G), KP(H) \in P$ , then KP(G \* H) is **P**-time reducible to BKP(G \* H).

### Corollary

If G, H are groups such that AGP(G),  $AGP(H) \in P$  and KP(G),  $KP(H) \in P$  then  $KP(G * H) \in P$ .

### Corollary

**KP** is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number

Similar argument works in free products, which gives

#### Theorem

If G, H are groups such that  $KP(G), KP(H) \in P$ , then KP(G \* H) is **P**-time reducible to BKP(G \* H).

### Corollary

If G, H are groups such that AGP(G),  $AGP(H) \in P$  and KP(G),  $KP(H) \in P$  then  $KP(G * H) \in P$ .

### Corollary

**KP** is polynomial time decidable in free products of finitely generated abelian and hyperbolic groups in any finite number.

**AGP**( $G \times H$ ) is decidable whenever **WP**(G), **WP**(H) are decidable. What about complexity?

**AGP** $(F_2 \times F_2)$  is **NP**-complete since **BSMP** $(F_2 \times F_2)$  is, by a variation of Mikhailova construction.

By itself, this does not mean  $\mathbf{SSP}(F_2 \times F_2)$  is  $\mathbf{NP}$ -complete because we don't know whether  $\mathbf{AGP}(G)$  reduces to  $\mathbf{SSP}(G)$ .

#### Question

Is  $SSP(F_2 \times F_2)$  NP-complete?

**AGP**( $G \times H$ ) is decidable whenever **WP**(G), **WP**(H) are decidable. What about complexity?

**AGP** $(F_2 \times F_2)$  is **NP**-complete since **BSMP** $(F_2 \times F_2)$  is, by a variation of Mikhailova construction.

By itself, this does not mean  $\mathbf{SSP}(F_2 \times F_2)$  is  $\mathbf{NP}$ -complete because we don't know whether  $\mathbf{AGP}(G)$  reduces to  $\mathbf{SSP}(G)$ .

#### Question

Is  $SSP(F_2 \times F_2)$  NP-complete?

**AGP**( $G \times H$ ) is decidable whenever **WP**(G), **WP**(H) are decidable. What about complexity?

**AGP** $(F_2 \times F_2)$  is **NP**-complete since **BSMP** $(F_2 \times F_2)$  is, by a variation of Mikhailova construction.

By itself, this does not mean  $\mathbf{SSP}(F_2 \times F_2)$  is  $\mathbf{NP}$ -complete because we don't know whether  $\mathbf{AGP}(G)$  reduces to  $\mathbf{SSP}(G)$ .

#### Question

Is **SSP**( $F_2 \times F_2$ ) **NP**-complete?

**AGP** $(G \times H)$  is decidable whenever **WP**(G), **WP**(H) are decidable. What about complexity?

**AGP** $(F_2 \times F_2)$  is **NP**-complete since **BSMP** $(F_2 \times F_2)$  is, by a variation of Mikhailova construction.

By itself, this does not mean  $\mathbf{SSP}(F_2 \times F_2)$  is  $\mathbf{NP}$ -complete because we don't know whether  $\mathbf{AGP}(G)$  reduces to  $\mathbf{SSP}(G)$ .

#### Question

Is **SSP**( $F_2 \times F_2$ ) **NP**-complete?

**AGP**( $G \times H$ ) is decidable whenever **WP**(G), **WP**(H) are decidable. What about complexity?

**AGP** $(F_2 \times F_2)$  is **NP**-complete since **BSMP** $(F_2 \times F_2)$  is, by a variation of Mikhailova construction.

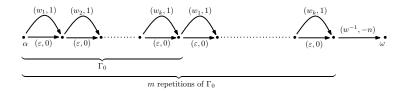
By itself, this does not mean  $\mathbf{SSP}(F_2 \times F_2)$  is  $\mathbf{NP}$ -complete because we don't know whether  $\mathbf{AGP}(G)$  reduces to  $\mathbf{SSP}(G)$ .

#### Question

Is **SSP**( $F_2 \times F_2$ ) **NP**-complete?

# $\mathsf{BSMP}(G)$ vs $\mathsf{SSP}(G \times \mathbb{Z})$

### **BSMP**(G) reduces to **SSP**( $G \times \mathbb{Z}$ ):

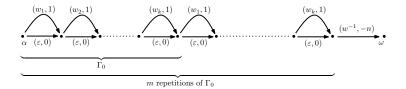


#### Corollary

**SSP**( $F_2 \times F_2 \times \mathbb{Z}$ ) is **NP**-complete.

# $\mathsf{BSMP}(G)$ vs $\mathsf{SSP}(G \times \mathbb{Z})$

### **BSMP**(G) reduces to **SSP**( $G \times \mathbb{Z}$ ):



#### Corollary

 $SSP(F_2 \times F_2 \times \mathbb{Z})$  is **NP**-complete.

Observation: **AGP**(G) and **AGP**( $G \times \mathbb{Z}$ ) are **P**-time equivalent.

#### Corollary

There are groups G, H such that  $SSP(G), SSP(H) \in P$ , but  $SSP(G \times H)$  is NP-complete.

Proof: 
$$G = F_2$$
,  $H = F_2 \times \mathbb{Z}$ .

Observation: **AGP**(G) and **AGP**( $G \times \mathbb{Z}$ ) are **P**-time equivalent.

#### Corollary

There are groups G, H such that  $SSP(G), SSP(H) \in P$ , but  $SSP(G \times H)$  is NP-complete.

Proof:  $G = F_2$ ,  $H = F_2 \times \mathbb{Z}$ .

Observation: **AGP**(G) and **AGP**( $G \times \mathbb{Z}$ ) are **P**-time equivalent.

#### Corollary

There are groups G, H such that  $SSP(G), SSP(H) \in P$ , but  $SSP(G \times H)$  is NP-complete.

Proof:  $G = F_2$ ,  $H = F_2 \times \mathbb{Z}$ .

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is **KP** decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is **KP** decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is **KP** decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is **KP** decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about  $SSP(G *_A H)$ , SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?

- In which nilpotent groups is KP decidable? Polynomial?
- Is SSP(lamplighter) in P?
- Is SSP(polycyclic) in P?
- Is decidability of KP invariant under quasi-isometry? (Finite extensions and f.i. subgroups are fine.)
- What about SSP(G\*AH), SSP(HNN)? (Finite amalgamated subgroups are fine.)
- What about SSP(relatively hyperbolic)? In particular SSP(limit groups)?