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For details see section 6 of the paper Isomorphisms using Dehn fillings:
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Introduction

Separating torsion

Let G be a group and let H Ÿc G be a finite index characteristic subgroup,
such that every finite order α P Out pG q survives in the homomorphism

Out pG q Ñ Out pG{Hq, (1)

Then we say that H separates torsion in Out pG q.

In the case where
G “ Zn, the homomorphisms (1) include the maps
GLpn,Zq Ñ GLpn,Z{mZq. This motivates the terminology congruences
separate torsion in G .
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Introduction

Separating torsion

We say that congruence effectively separate torsion in G if we can
algorithmically find such a finite index characteristic subgroup H Ÿc G .

It is useful to think of H Ÿc G as being deep enough so that the kernel of
Out pG q Ñ Out pG{Hq is torsion free.
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Introduction

The mixed Whitehead problem

The mixed Whitehead problem is a term coined by Bogopolski and
Ventura and is easiest to formulate as a two quantifier problem:

Definition (The mixed Whitehead problem)

Let pS1, . . . ,Skq, pT1, . . . ,Tkq be tuples of elements in G . The mixed
Whitehead problem consists in deciding whether there exists σ P Aut pG q
and elements g1, . . . , gk P G such that

σpSi q “ T gi
i

for i “ 1, . . . , k. If such is the case we say the tuples of tuples
pS1, . . . ,Skq, pT1, . . . ,Tkq are Whitehead equivalent.
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Introduction

The mixed Whitehead problem

In the case of a single pair of tuples of elements, then the MWP asks if
two tuples are in the same automorphic orbit. On the other extreme, if
each tuple consists of a singleton, then this is the same as the classical
Whitehead minimization for a tuple of elements.
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Motivations

But why?

Theorem (Dahmani-T)

Let C be a class of algorithmically tractable and effectively coherent groups
(e.g. virtually polycyclic groups), satisfying the following properties:

C is closed for taking subgroups, and contains virtually cyclic groups

all groups in C are residually finite,

the isomorphism problem is explicitly solvable in C,

in C, congruences effectively separate the torsion, and

the mixed Whitehead problem is effectively solvable in C.

There is an algorithm which decides if two explicitly given torsion-free
relatively hyperbolic groups pG ,Pq, pH,Qq whose peripheral subgroups
belongs to C, are isomorphic as groups with unmarked peripheral structure.
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Motivations

But why?

Essentially what this says is that if the isomorphism problem is solvable in
a class C of groups, then if congruences separate torsion, and if the MWP
is solvable in this class, then we can lift this solution of the isomorphism
problem for groups in C to the isomorphism problem for groups that are
hyperbolic relative to groups in C.

This result therefore inserts itself in the sequence of results about relatively
hyperbolic groups in which, if an algorithmic problem is solvable in the
peripheral subgroups, then it is solvable in the ambient relatively
hyperbolic group.
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Motivations

How do these come up?

Suppose we have two amalgams

Γ1 “ Ga ˚Pa ˚P ˚Pb
Gb and Γ2 “ Ga ˚Pa ˚P ˚Pb

Gb

with the same vertex groups pGa,Paq,P, pGb,Pbq but such that Γ1 is
constructed with attaching maps

i1 : Pa ãÑ P, j1 : Pa ãÑ P

and similarly Γ2 is constructed with attaching maps i2, j2.
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Motivations

How do these come up?

These two graphs of groups with isomorphic vertex will be globally
isomorphic if and only if there are automorphisms α P Aut pPq and βa, βb
in Aut pGaq ,Aut pGbq, respectively such that

α ˝ i1 ˝ βa „P i2 (2)

α ˝ j1 ˝ βb „P j2 (3)

where „P denotes conjugacy in P.

Note that α, βa and βb are all interdependent, if one changes then so must
the other two.
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Motivations

How the MWP occurs

In the previous example suppose that Out pGaq and Out pGbq are trivial,
and let Xa and Xb denote generating tuples for Pa and Pb in Ga and Gb.

Denote by Sa,Sb the images i1pXaq, j1pXbq and by Ta,Tb the images
i2pXaq, j2pXbq. Then, because a homomorphism is specified by the image
of a generating tuple, the formulas (2) (3) become

αpSaq „P Ta

αpSbq „p Tb

i.e. we get an instance of the MWP in P.
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Motivations

Why does do we want congruences to separate torsion?

In general to assume that the groups pGa,Paq, pGb,Pbq have only trivial
outer automorphisms is too much to ask. However if the pair, say,
pGa,Paq is relatively hyperbolic and rigid then Out pGa,Paq is in fact finite.

It turns out that if we take H Ÿc Pa that is sufficiently deep then by the
hyperbolic Dehn filling Theorem of Osin or Manning-Groves the quotient
Ga{xxHyy will be a hyperbolic group.
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Motivations

Why does do we want congruences to separate torsion?

Furthermore, if H separates torsion in Out pPaq, then the image of the
natural restriction of Out pGa,Paq to Out pPaq is mapped injectively to
Out pPa{xxHyyq via the commutative diagram:

Out pGa,Paq Out pPaq

Out pGa{xxHyy,Pa{xxHyyq Out pPa{xxHyyq

Since we can effectively compute the bottom row of this diagram we are
(after more work, and a deep result) able to reduce (2) (3) to finitely
many instances of the MWP.

N. Touikan (Stevens Institute of Technology) On some algorithmic problems 2014 13 / 32



Motivations

Why does do we want congruences to separate torsion?

Furthermore, if H separates torsion in Out pPaq, then the image of the
natural restriction of Out pGa,Paq to Out pPaq is mapped injectively to
Out pPa{xxHyyq via the commutative diagram:

Out pGa,Paq Out pPaq

Out pGa{xxHyy,Pa{xxHyyq Out pPa{xxHyyq

Since we can effectively compute the bottom row of this diagram we are
(after more work, and a deep result) able to reduce (2) (3) to finitely
many instances of the MWP.

N. Touikan (Stevens Institute of Technology) On some algorithmic problems 2014 13 / 32



Computations

How do we separate torsion in Out pG q?

Let G be a nilpotent group, then we denote by νiG the terms of the upper
central series, i.e. ν1G “ Z pG q, ν2G is the preimage of the center of
G{ν1G , etc. We have a short exact series

1 Ñ ν1G Ñ G Ñ G{ν1G Ñ 1.

On one hand, since ν1G is characteristic, we have a projection

OutpG q OutpG{ν1G q
p
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Computations

the reason this only works for nilpotent groups. . .

On the other hand because ν1G is central, i.e. InnpG q acts trivially, and
has a trivial inner automorphism group we have a natural restriction map

AutpG q Autpν1G q

OutpG q Outpν1G q

“

r

This only works because ν1G is the center of G .

An element rβs P Out pG q that vanishes in both the projection p and the
restriction r is called elusive. Ultimately our algorithm will be by induction
on the upper central series length, but this map r can only be guaranteed
to exist if G is nilpotent.
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Computations

Making non-elusive elements survive

Suppose we are given subgroups K0 and N0 that separated torsion in
OutpN{ν1Nq,Outpν1Nq respectively, then we can find a finite index
characteristic subgroup P0 Ÿc G such that P0 X ν1N ď N0 and
P0 ď ν1GK0 so that non-elusive elements survive in the quotient

Out pG q Ñ Out pG{P0q.

The argument isn’t completely trivial, but it’s not difficult. The main trick
is that nilpotent groups are subgroup separable.
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Computations

Characterizing elusive elements

Lemma

Each ξ P ν2G induces a homomorphism zξ : G Ñ ν1G given by the
mapping

x ÞÑ rx , ξs.

Moreover the mapping

Φ : ν2G Ñ HompG , ν1G q

is in fact a homomorphism where HompG , ν1G q is viewed as an abelian
group with equipped with the standard Z-module addition.
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Computations

Characterizing elusive elements

Proof.

For all x P N, ξ P ν2N we have rx , ξs “ zξpxq P ν1N. Let x , y P N then
with the commutator convention rx , y s “ x´1y´1xy we can observe that
on one hand pxyqξ “ ξpx , yqrpxyq, ξs “ ξpxyqzξpxyq and on the other hand
(recall that rz , ξs is always central):

xyξ “ xξy ry , ξs “ ξxrx , ξsy ry , ξs “ ξpxyqrx , ξsry , ξs “ ξpxyqzξpxqzξpyq

so the map x ÞÑ zξpxq is a homomorphism.
Let now ξ, ζ P ν2N and let x P N one hand setting rx , ξζs “ zξζpxq we
have xpξζq “ pξζqxzξζpxq and on the other hand we have:

xξζ “ ξxzξpxqζ “ ξxζzξpxq “ pξζqxzζpxqzξpxq

which gives the formula: zξζpxq “ zξpxq ` zζpxq so the map Φ is a
homomorphism.
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Computations

Characterizing elusive elements

On the other hand we have:

Lemma

Let
Hom˚pN, ν1Nq “ tf P HompN, ν1Nq | ν1N ď kerpf qu.

For each f P Hom˚pN, ν1Nq the map x ÞÑ xf pxq is an automorphism
Ψpf q P AutpNq. Moreover this map Ψ : Hom˚pN, ν1Nq Ñ AutpNq is a
homomorphism.

Furthermore the composition

Ψ ˝ Φ : ν2G Ñ AutpG q

sends ξ to γξ, conjugation by ξ.
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Computations

Characterizing elusive elements

If an automorphism β has a finite order image rβs P Out pG q then this
means that βn “ γξ for some ξ P G . Morally β can be seen as the nth root
of ξ. We show

Proposition

The set of elusive elements of OutpG q coincides exactly with the set

 

rβs P OutpNq | pDβ P rβsq β P ΨpŜzSq
(

where S “ Φpν2G q and S ď Ŝ is the set consisting of f P Hom˚pG , ν1G q
such that

d ¨ f “ f ` ¨ ¨ ¨ ` f
looooomooooon

d times

P S “ Φpν2G q

for some d P Zě0, i.e. the isolator of Φpν2G q in Hom˚pG , ν1G q.
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Computations

An existential problem

So far all the objects and maps mentioned are computable. That being
said we still do not know if there exists a deep enough finite index H Ÿc G
such that elusive elements do not vanish in Out pG{Hq.

We therefore
asked for help. . .

Proposition (Segal)

Let P be a virtually polycyclic group and denote by Pn Ÿc P be a sequence
of finite index subgroups which eventually lie inside any fixed finite index
subgroup. For every finite order rαs P Out pPq there exists some j such
that for every k ě j the image rαsk P Out pP{Pkq is non-trivial.

The proof involves passing to the profinite completion and applying a deep
result about closures of centralizers in profinite completions of virtually
polycyclic groups due to Ribes-Segal-Zalesski.
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Computations

Separating torsion in Out pG q

So by the previous result, we know that by enumerating characteristic
finite quotients, we will eventually get a deep enough subgroup, and by the
computable algebraic characterization we know what to look for, and
therefore when to stop.

˝
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Computations

The mixed Whitehead problem, orbits of arithmetic groups

Our solution to the mixed Whitehead relies on the work of Grunewald and
Segal on the decidability of orbit problems. Here is one of their
fundamental results:

Theorem (Grunewald-Segal)

There exists and algorithm which takes as input:

an explicitly given Q-defined algebraic group G ,

ρ, an explicitly given rational action on some subset W Ă Cn,

Γ, an explicitly given arithmetic subgroup of G , and

two points a, b P W XQn

The algorithm decides whether there is some γ P Γ such that ρpγq ¨ a “ b
and if so produces such a matrix γ.
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Computations

The mixed Whitehead problem, representations of
nilpotent groups

Theorem (Grunewald-Segal)

Given a finite presentation xX | Ry of a T-group G we can effectively find
a suitable n and an embedding

ΘG : G ãÑ Tr1pn,Zq

such that the natural map

NGLpn,ZqpΘG pG qq Ñ Aut pG q

is surjective.

Furthermore the normalizer NGLpn,ZqpΘG pG qq can be explicitly given as an
arithmetic group. So already we can use the orbit algorithm to decide if
g , h P G are in the same Aut pG q orbit.
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Computations

How to solve the mixed Whitehead problem

Recall the mixed Whitehead problem:

Definition (The mixed Whitehead problem)

Let pS1, . . . ,Skq, pT1, . . . ,Tkq be tuples of elements in G . The mixed
Whitehead problem consists in deciding whether there exists σ P Aut pG q
and elements g1, . . . , gk P G such that

σpSi q “ T gi
i

for i “ 1, . . . , k. If such is the case we say the tuples of tuples
pS1, . . . ,Skq, pT1, . . . ,Tkq are Whitehead equivalent.
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Computations

Reduction to a one quantifier problem

Let G be some group and let Γ “ Aut pG q. There is a well defined right
action of the right semidirect product Γ˙ G r on the set of r -tuples of
tuples given by

pS1, . . . ,Sr q ¨
`

σ; pg1, . . . , gr q
˘

“ pσ´1pS1q
g1 , . . . , σ´1pSr q

gr q. (4)

It immediately follows that

Proposition

Let pS1, . . . ,Skq, pT1, . . . ,Tkq be tuples of elements in G. They are
Whitehead equivalent if and only if they lie in the same orbit under the
Γ˙ G r -action given in (4).
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Computations

If we identify G “ ΘG pG q ď Tr1pn,Zq, then there is a natural surjection
NGLpn,ZqpG q ˙ G k � Γ˙ G k and the map

pr ; ph1, . . . , hkqq ÞÑ diagpr , rhk , . . . , rhkq

which sends elements of NGLpn,ZqpG q ˙ G k to block matrices with zero
everywhere except the n ˆ n matrices r , rh1, . . . , rhk along the main
diagonal gives a linear representation.

Furthermore, since G and NGLpn,ZqpG q are explicitly given arithmetic

groups, the this gives also gives NGLpn,ZqpG q ˙ G k explicitly as an

arithmetic group, which acts by conjugation on GK (which is supposed to
encode our set of tuples of tuples), represented as a group of block
matrices.

We can therefore use the Grunewald-Segal orbit decidability algorithm to
solve the mixed Whitehead problem. By the way torsion in G is
unproblematic.
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Where do we go from here?

Where do we go from here?

The machinery just presented is what is needed to solve the isomorphism
problem for nilpotent groups.

Segal generalized this to prove the isomorphism problem for
polycyclic-by-finite groups. At the time when I first looked at his paper
Decidable properties of polycyclic groups, I could not for remember the
definition nor the significance of an arithmetic group, but last night upon
rereading I think that the same approach will work for polycyclic groups
where Theorem G (which is strangely formulated) is used in place of the
orbit decidability algorithm, but this needs to be verified carefully.
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Where do we go from here?

What about separating torsion in Out pG q?

Grunewald and Baues proved in 2005 that if G is polycyclic-by-finite then
Out pG q is in fact arithmetic. Even though Aut pG q may not even contain
an arithmetic subgroup of finite index.

It is not clear, however, if their representation of Out pG q as an arithmetic
group can be made explicit, or if given a generating set tγ1, . . . , γnu for
Aut pG q whether the images (as matrices) rγi s P Out pG q can be
computed.

If this is the case however, then modulo the production of a complete list
of conjugacy representatives of finite order elements of Out pG q (we can
do that, right? effective Borel-Harish-Chandra or something), we can
enumerate finite quotients and we’ll know when to stop. I.e. we will have
found a deep enough finite index characteristic subgroup, where no finite
order outer automorphism vanishes.
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Where do we go from here?

The actual question I wanted to investigate

On one hand, Fromanek and Remeslennikov showed that
polycyclic-by-finite groups are conjugacy separable, but that Segal showed
that it is possible to construct arbitrarily large (but finite) sets of pairwise
non-isomorphic polycyclic-by-finite with isomorphic finite quotients.

What remains unknown (to me) however is if g , h P G and for every finite
quotient of G there is an automorphism which brings ḡ to h̄ if this can lift
to an automorphism of G with the desired property.

This happens to be the case for hyperbolic Dehn fillings of rigid relatively
hyperbolic groups according to Dahmani and Guirardel. Their argument
relies on Gromov-Hausdorff limits, instead of inverse limits. Can
Gromov-Hausdorff limit of finite quotients of polycyclic-by-finite groups be
useful?
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Where do we go from here?

Am I just being silly?

Consider Z. It’s profinite completion has a huge automorphism group, but
if we look at asymptotic cones (okay, ultralimits of scaled based metric
spaces) of Z{nZ the ultralimits are either Z or R and our limiting
automorphism will act by an isometry fixing a point, i.e. will have order 2.
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Thank you!

Thank you!

Thank you!
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