Nielsen equivalence in a class of random groups

 (joint work with llya Kapovich)Richard Weidmann

CAU Kiel

17.4.2014

Theorem 1

For every $n \geq 2$ there exists a torsion-free one-ended word-hyperbolic group G of rank n admitting generating n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ such that the $(2 n-1)$-tuples

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \text { and }(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }})
$$

are not Nielsen-equivalent in G.

The groups are constructed using a probabilistic construction.

Theorem 1

For every $n \geq 2$ there exists a torsion-free one-ended word-hyperbolic group G of rank n admitting generating n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ such that the $(2 n-1)$-tuples

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \text { and }(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }})
$$

are not Nielsen-equivalent in G.

The groups are constructed using a probabilistic construction.

More precisely: We consider groups given by presentations of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the $u_{i}(\underline{b})$ are reduced words in the $b_{i}^{ \pm 1}$ and the $v_{i}(\underline{a})$ are reduced words in the $a_{i}^{ \pm 1}$ such that

$$
\left|v_{1}\right|=\cdots=\left|v_{n}\right|=\left|v_{n}\right|=\cdots=\left|u_{n}\right|=N
$$

for some $N \in \mathbb{N}$.
It is trivial that $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are generating tuples.
We show that as N tends to infinity the probability that such a group satisfies the conclusion of the Theorem tends to 1 if the u_{i} and v_{i} are chosen at random.

More precisely: We consider groups given by presentations of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the $u_{i}(\underline{b})$ are reduced words in the $b_{i}^{ \pm 1}$ and the $v_{i}(\underline{a})$ are reduced words in the $a_{i}^{ \pm 1}$ such that

$$
\left|v_{1}\right|=\cdots=\left|v_{n}\right|=\left|v_{n}\right|=\cdots=\left|u_{n}\right|=N
$$

for some $N \in \mathbb{N}$.
It is trivial that $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are generating tuples. We show that as N tends to infinity the probability that such a group
satisfies the conclusion of the Theorem tends to 1 if the u_{i} and v_{i} are chosen at random.

More precisely: We consider groups given by presentations of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the $u_{i}(\underline{b})$ are reduced words in the $b_{i}^{ \pm 1}$ and the $v_{i}(\underline{a})$ are reduced words in the $a_{i}^{ \pm 1}$ such that

$$
\left|v_{1}\right|=\cdots=\left|v_{n}\right|=\left|v_{n}\right|=\cdots=\left|u_{n}\right|=N
$$

for some $N \in \mathbb{N}$.
It is trivial that $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ are generating tuples.
We show that as N tends to infinity the probability that such a group satisfies the conclusion of the Theorem tends to 1 if the u_{i} and v_{i} are chosen at random.

Let G be a group and $n \in \mathbb{N}$. Consider the set G^{n} of n-tuples of elements of G.

```
We say that T = (g1, ,., g, g) and T'=(g}\mp@subsup{T}{1}{\prime},\ldots,\mp@subsup{g}{n}{\prime})\mathrm{ are elementary
equivalent if one of the following holds:
(1) }\mp@subsup{g}{i}{\prime}=\mp@subsup{g}{\sigma(;)}{}\mathrm{ for all i and some }\sigma\in\mp@subsup{S}{n}{}\mathrm{ .
(3) g
(3) }\mp@subsup{g}{i}{\prime}=\mp@subsup{g}{i}{}\mp@subsup{g}{j}{}\mathrm{ for some i}=j\mathrm{ and }\mp@subsup{g}{k}{\prime}=\mp@subsup{g}{k}{}\mathrm{ for }k\not=
We say that T and T' are Nielsen equivalent and write T~}~\mp@subsup{T}{}{\prime}\mathrm{ if there
exist
\[
T=T_{0}, T_{1}, \ldots, T_{m}=T^{\prime}
\]
```

such that T_{i-1} and T_{i} elementary equivalent for $1 \leq i \leq m$.

Let G be a group and $n \in \mathbb{N}$. Consider the set G^{n} of n-tuples of elements of G.

We say that $T=\left(g_{1}, \ldots, g_{n}\right)$ and $T^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are elementary equivalent if one of the following holds:
(1) $g_{i}^{\prime}=g_{\sigma(i)}$ for all i and some $\sigma \in S_{n}$.
(2) $g_{i}^{\prime}=g_{i}^{-1}$ for some i and $g_{j}^{\prime}=g_{j}$ for $j \neq i$.
(3) $g_{i}^{\prime}=g_{i} g_{j}$ for some $i \neq j$ and $g_{k}^{\prime}=g_{k}$ for $k \neq i$.

We say that T and T^{\prime} are Nielsen equivalent and write $T \sim T^{\prime}$ if there exist

$$
T=T_{0}, T_{1}, \ldots, T_{m}=T^{\prime}
$$

such that T_{i-1} and T_{i} elementary equivalent for $1 \leq i \leq m$.

Let G be a group and $n \in \mathbb{N}$. Consider the set G^{n} of n-tuples of elements of G.

We say that $T=\left(g_{1}, \ldots, g_{n}\right)$ and $T^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are elementary equivalent if one of the following holds:
(1) $g_{i}^{\prime}=g_{\sigma(i)}$ for all i and some $\sigma \in S_{n}$.
(2) $g_{i}^{\prime}=g_{i}^{-1}$ for some i and $g_{j}^{\prime}=g_{j}$ for $j \neq i$.
(3) $g_{i}^{\prime}=g_{i} g_{j}$ for some $i \neq j$ and $g_{k}^{\prime}=g_{k}$ for $k \neq i$.

We say that T and T^{\prime} are Nielsen equivalent and write $T \sim T^{\prime}$ if there exist

$$
T=T_{0}, T_{1}, \ldots, T_{m}=T^{\prime}
$$

such that T_{i-1} and T_{i} elementary equivalent for $1 \leq i \leq m$.

Alternative definition of Nielsen equivalence:
Can identify elements of G^{n} with elements of $\operatorname{Hom}\left(F_{n}, G\right)$ via the bijection

$$
G^{n} \rightarrow \operatorname{Hom}\left(F_{n}, G\right), \quad T \mapsto \phi_{T}
$$

where for any $T=\left(g_{1}, \ldots, g_{n}\right)$ the homomorphism $\phi_{T}: F_{n} \rightarrow G$ is given by $\phi_{T}\left(x_{i}\right)=g_{i}$ for $1 \leq i \leq n$. Note $F_{n}:=F\left(x_{1}, \ldots, x_{n}\right)$.

Fact: Let $T, T^{\prime} \in G^{n}$. Then $T \sim T^{\prime}$ iff $\phi_{T}=\phi_{T^{\prime}} \circ \alpha$ for some
$\alpha \in \operatorname{Aut}\left(F_{n}\right)$.
Thus Nielsen equivalence classes of n-tuples correspond to $\operatorname{Aut}\left(F_{n}\right)$-orbits of $\operatorname{Hom}\left(F_{n}, G\right)$ under the natural right action of $\operatorname{Aut}\left(F_{n}\right)$

Alternative definition of Nielsen equivalence:
Can identify elements of G^{n} with elements of $\operatorname{Hom}\left(F_{n}, G\right)$ via the bijection

$$
G^{n} \rightarrow \operatorname{Hom}\left(F_{n}, G\right), \quad T \mapsto \phi_{T}
$$

where for any $T=\left(g_{1}, \ldots, g_{n}\right)$ the homomorphism $\phi_{T}: F_{n} \rightarrow G$ is given by $\phi_{T}\left(x_{i}\right)=g_{i}$ for $1 \leq i \leq n$. Note $F_{n}:=F\left(x_{1}, \ldots, x_{n}\right)$.

Fact: Let $T, T^{\prime} \in G^{n}$. Then $T \sim T^{\prime}$ iff $\phi_{T}=\phi_{T^{\prime}} \circ \alpha$ for some $\alpha \in \operatorname{Aut}\left(F_{n}\right)$.
Thus Nielsen equivalence classes of n-tuples correspond to $\operatorname{Aut}\left(F_{n}\right)$-orbits of $\operatorname{Hom}\left(F_{n}, G\right)$ under the natural right action of $\operatorname{Aut}\left(F_{n}\right)$.

Above fact is a reformulation of the classical result of Nielsen that states that $\operatorname{Aut}\left(F_{n}\right)$ is generated by automorhisms of the following types (now called Nielsen automorphisms):
(1) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{\sigma(i)}$ for $1 \leq i \leq n$ and some $\sigma \in S_{n}$.
(2) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{i}^{-1}$ for some i and $x_{j} \mapsto x_{j}$ for $j \neq i$.
(3) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{i} x_{j}$ for some $i \neq j$ and $x_{k} \mapsto x_{k}$ for $k \neq i$.

Above fact is a reformulation of the classical result of Nielsen that states that $\operatorname{Aut}\left(F_{n}\right)$ is generated by automorhisms of the following types (now called Nielsen automorphisms):
(1) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{\sigma(i)}$ for $1 \leq i \leq n$ and some $\sigma \in S_{n}$.
(2) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{i}^{-1}$ for some i and $x_{j} \mapsto x_{j}$ for $j \neq i$.
(3) $F_{n} \rightarrow F_{n}, x_{i} \mapsto x_{i} x_{j}$ for some $i \neq j$ and $x_{k} \mapsto x_{k}$ for $k \neq i$.

We will be mostly interested in Nielsen equivalence classes of generating tuples, i.e. in $\operatorname{Aut}\left(F_{n}\right)$-orbits of $\operatorname{Epi}\left(F_{n}, G\right)$.

Fix a group G. There are a number of natural problems:
(1) Is there an algorithm that decides whether two given (generating) n-tuples of G are Nielsen equivalent?
(2) Are there at most finitely many Nielsen classes of generating n-tuples of G for given n ?
(3) Classify all Nielsen-classes of generating n-tuples of G for given n.

Problems are usually very hard and often undecidable.
First problem is at least as hard as the generalized word problem as

$$
\left(g_{1}, \ldots, g_{n}, 1\right) \sim\left(g_{1}, \ldots, g_{n}, h\right) \Longleftrightarrow h \in\left\langle g_{1}, \ldots, g_{n}\right\rangle .
$$

Thus the Rips construction shows that Nielsen-equivalence is undecidable even in small cancellation groups.

Fix a group G. There are a number of natural problems:
(1) Is there an algorithm that decides whether two given (generating) n-tuples of G are Nielsen equivalent?
(2) Are there at most finitely many Nielsen classes of generating n-tuples of G for given n ?
(3) Classify all Nielsen-classes of generating n-tuples of G for given n.

Problems are usually very hard and often undecidable.
First problem is at least as hard as the generalized word problem as

Thus the Rips construction shows that Nielsen-equivalence is undecidable even in small cancellation groups.

Fix a group G. There are a number of natural problems:
(1) Is there an algorithm that decides whether two given (generating) n-tuples of G are Nielsen equivalent?
(2) Are there at most finitely many Nielsen classes of generating n-tuples of G for given n ?
(3) Classify all Nielsen-classes of generating n-tuples of G for given n.

Problems are usually very hard and often undecidable.
First problem is at least as hard as the generalized word problem as

$$
\left(g_{1}, \ldots, g_{n}, 1\right) \sim\left(g_{1}, \ldots, g_{n}, h\right) \Longleftrightarrow h \in\left\langle g_{1}, \ldots, g_{n}\right\rangle
$$

Thus the Rips construction shows that Nielsen-equivalence is undecidable even in small cancellation groups.

Fix a group G. There are a number of natural problems:
(1) Is there an algorithm that decides whether two given (generating) n-tuples of G are Nielsen equivalent?
(2) Are there at most finitely many Nielsen classes of generating n-tuples of G for given n ?
(3) Classify all Nielsen-classes of generating n-tuples of G for given n.

Problems are usually very hard and often undecidable.
First problem is at least as hard as the generalized word problem as

$$
\left(g_{1}, \ldots, g_{n}, 1\right) \sim\left(g_{1}, \ldots, g_{n}, h\right) \Longleftrightarrow h \in\left\langle g_{1}, \ldots, g_{n}\right\rangle
$$

Thus the Rips construction shows that Nielsen-equivalence is undecidable even in small cancellation groups.

Nielsen equivalence plays an important role in finite groups, in particular in relation to the product replacement algorithm. We will only focus on infinite groups.

Some positive results:
(1) Nielsen: An generating n-tuple of F_{k} is Nielsen-quivalent to

(2) Grushko: Any generating tuple of $A * B$ is Nielsen equivalent to a tuple $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \in A \cup B$ for $1 \leq i \leq n$.
(3) An analogue of Nielsen's result for surface groups due to Zieschang and Louder.

Many related results. All proofs are similar. They rely on replacing a given generating tuple with a reduced one by cancellation/folding methods. No need to distinguish Nielsen classes.

Nielsen equivalence plays an important role in finite groups, in particular in relation to the product replacement algorithm. We will only focus on infinite groups.

Some positive results:
(1) Nielsen: An generating n-tuple of F_{k} is Nielsen-quivalent to $(x_{1}, \ldots, x_{k}, \underbrace{1, \ldots, 1}_{n-k \text { times }})$.
(2) Grushko: Any generating tuple of $A * B$ is Nielsen equivalent to a
tuple $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \in A \cup B$ for $1 \leq i \leq n$.
(3) An analogue of Nielsen's result for surface groups due to Zieschang
and Louder.

Many related results. All proofs are similar. They rely on replacing a given generating tuple with a reduced one by cancellation/folding methods. No need to distinguish Nielsen classes.

Nielsen equivalence plays an important role in finite groups, in particular in relation to the product replacement algorithm. We will only focus on infinite groups.

Some positive results:
(1) Nielsen: An generating n-tuple of F_{k} is Nielsen-quivalent to $(x_{1}, \ldots, x_{k}, \underbrace{1, \ldots, 1}_{n-k \text { times }})$.
(2) Grushko: Any generating tuple of $A * B$ is Nielsen equivalent to a tuple $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \in A \cup B$ for $1 \leq i \leq n$.and Louder. Many related results. All proofs are similar. They rely on replacing a given generating tuple with a reduced one by cancellation/folding methods. No need to distinguish Nielsen classes.

Nielsen equivalence plays an important role in finite groups, in particular in relation to the product replacement algorithm. We will only focus on infinite groups.

Some positive results:
(1) Nielsen: An generating n-tuple of F_{k} is Nielsen-quivalent to $(x_{1}, \ldots, x_{k}, \underbrace{1, \ldots, 1}_{n-k \text { times }})$.
(2) Grushko: Any generating tuple of $A * B$ is Nielsen equivalent to a tuple $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \in A \cup B$ for $1 \leq i \leq n$.
(3) An analogue of Nielsen's result for surface groups due to Zieschang and Louder.

Many related results. All proofs are similar. They rely on replacing a given generating tuple with a reduced one by cancellation/folding methods. No need to distinguish Nielsen classes.

Nielsen equivalence plays an important role in finite groups, in particular in relation to the product replacement algorithm. We will only focus on infinite groups.

Some positive results:
(1) Nielsen: An generating n-tuple of F_{k} is Nielsen-quivalent to $(x_{1}, \ldots, x_{k}, \underbrace{1, \ldots, 1}_{n-k \text { times }})$.
(2) Grushko: Any generating tuple of $A * B$ is Nielsen equivalent to a tuple $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \in A \cup B$ for $1 \leq i \leq n$.
(3) An analogue of Nielsen's result for surface groups due to Zieschang and Louder.

Many related results. All proofs are similar. They rely on replacing a given generating tuple with a reduced one by cancellation/folding methods. No need to distinguish Nielsen classes.

Distinguishing Nielsen classes is difficult. An exception is the case $n=2$, i.e. the case of pairs of elements. There is test provided the conjugace problem is solvable:

```
If (g1, g2)~ (h, h, h2) then [g, , g2] is conjugate to [h},\mp@subsup{h}{1}{},\mp@subsup{h}{2}{}\mp@subsup{]}{}{\pm1
No such test for n\geq3
However there are a number of ways to distinguish classes in very specific
situations, see work of Zieschang, Rost, Rosenberger, Noskov,
Lustig-Moriah, Evans,
```

Distinguishing Nielsen classes is difficult. An exception is the case $n=2$, i.e. the case of pairs of elements. There is test provided the conjugace problem is solvable:

If $\left(g_{1}, g_{2}\right) \sim\left(h_{1}, h_{2}\right)$ then $\left[g_{1}, g_{2}\right]$ is conjugate to $\left[h_{1}, h_{2}\right]^{ \pm 1}$. No such test for $n \geq 3$

However there are a number of ways to distinguish classes in very specific situations, see work of Zieschang, Rost, Rosenberger, Noskov, Lustig-Moriah, Evans,

Distinguishing Nielsen classes is difficult. An exception is the case $n=2$, i.e. the case of pairs of elements. There is test provided the conjugace problem is solvable:

If $\left(g_{1}, g_{2}\right) \sim\left(h_{1}, h_{2}\right)$ then $\left[g_{1}, g_{2}\right]$ is conjugate to $\left[h_{1}, h_{2}\right]^{ \pm 1}$.
No such test for $n \geq 3$.
However there are a number of ways to distinguish classes in very specific situations, see work of Zieschang, Rost, Rosenberger, Noskov, Lustig-Moriah, Evans,

Distinguishing Nielsen classes is difficult. An exception is the case $n=2$, i.e. the case of pairs of elements. There is test provided the conjugace problem is solvable:
If $\left(g_{1}, g_{2}\right) \sim\left(h_{1}, h_{2}\right)$ then $\left[g_{1}, g_{2}\right]$ is conjugate to $\left[h_{1}, h_{2}\right]^{ \pm 1}$.
No such test for $n \geq 3$.
However there are a number of ways to distinguish classes in very specific situations, see work of Zieschang, Rost, Rosenberger, Noskov, Lustig-Moriah, Evans,

$$
\begin{aligned}
& \text { If } T=\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \text { then we call the }(n+k) \text {-tuple } \\
& \qquad(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{k \text { times }})
\end{aligned}
$$

the k-th stabilisation of T.
Often the first stabilisation of two generating tuples are Nielsen equivalent, even if the tuples aren't. Moreover the following is trivial:

If $\left(g_{1}, \ldots, g_{n}\right)$ and $\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are generating n-tuples of G then

Work of Evans implies that in general many stabilisations are needed to make two generating tuples Nielsen equivalent:

If $T=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ then we call the $(n+k)$-tuple

$$
(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{k \text { times }})
$$

the k-th stabilisation of T.
Often the first stabilisation of two generating tuples are Nielsen equivalent, even if the tuples aren't. Moreover the following is trivial:

Work of Evans implies that in general many stabilisations are needed to make two generating tuples Nielsen equivalent:

If $T=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ then we call the $(n+k)$-tuple

$$
(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{k \text { times }})
$$

the k-th stabilisation of T.
Often the first stabilisation of two generating tuples are Nielsen equivalent, even if the tuples aren't. Moreover the following is trivial:

If $\left(g_{1}, \ldots, g_{n}\right)$ and $\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are generating n-tuples of G then

$$
(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{n \text { times }}) \sim(g_{1}^{\prime}, \ldots, g_{n}^{\prime}, \underbrace{1, \ldots, 1}_{n \text { times }}) .
$$

Work of Evans implies that in general many stabilisations are needed to make two generating tuples Nielsen equivalent:

If $T=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ then we call the $(n+k)$-tuple

$$
(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{k \text { times }})
$$

the k-th stabilisation of T.
Often the first stabilisation of two generating tuples are Nielsen equivalent, even if the tuples aren't. Moreover the following is trivial:

If $\left(g_{1}, \ldots, g_{n}\right)$ and $\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$ are generating n-tuples of G then

$$
(g_{1}, \ldots, g_{n}, \underbrace{1, \ldots, 1}_{n \text { times }}) \sim(g_{1}^{\prime}, \ldots, g_{n}^{\prime}, \underbrace{1, \ldots, 1}_{n \text { times }}) .
$$

Work of Evans implies that in general many stabilisations are needed to make two generating tuples Nielsen equivalent:

Theorem 2 (Evans)
 For every $k \geq 1$ there exists a $\left(2^{k}+k+1\right)$ generated metabelian group G and generating 2^{k+1}-tuples T and T^{\prime} such that the k-th stabilisations of T and T^{\prime} are Nielsen-inequivalent.

```
Note there is still a large gap between the trivial upper bound on the
number of stabilisations needed to make two generating tuples equivalent
and the number given by Evans.
The result presented in this talk shows that the trivial upper bound is in
fact the best possible.
While Evans' methods are algebraic/homological, ours are
combinatorial/geometric with a dose of randomness.
```

```
Theorem 2 (Evans)
For every k \geq1 there exists a (2k}+k+1) generated metabelian group G
and generating 2 2+1}\mathrm{ -tuples T and T' such that the k-th stabilisations of T and \(T^{\prime}\) are Nielsen-inequivalent.
```

Note there is still a large gap between the trivial upper bound on the number of stabilisations needed to make two generating tuples equivalent and the number given by Evans.

The result presented in this talk shows that the trivial upper bound is in fact the best possible.

While Evans' methods are algebraic/homological, ours are combinatorial/geometric with a dose of randomness.

```
Theorem 2 (Evans)
For every }k\geq1\mathrm{ there exists a (2k}+k+1) generated metabelian group G
and generating 2 2+1}\mathrm{ -tuples T and T' such that the k-th stabilisations of T and \(T^{\prime}\) are Nielsen-inequivalent.
```

Note there is still a large gap between the trivial upper bound on the number of stabilisations needed to make two generating tuples equivalent and the number given by Evans.

The result presented in this talk shows that the trivial upper bound is in fact the best possible.

While Evans' methods are algebraic/homological, ours are combinatorial/geometric with a dose of randomness.

Theorem 2 (Evans)

For every $k \geq 1$ there exists a $\left(2^{k}+k+1\right)$ generated metabelian group G and generating 2^{k+1}-tuples T and T^{\prime} such that the k-th stabilisations of T and T^{\prime} are Nielsen-inequivalent.

Note there is still a large gap between the trivial upper bound on the number of stabilisations needed to make two generating tuples equivalent and the number given by Evans.

The result presented in this talk shows that the trivial upper bound is in fact the best possible.

While Evans' methods are algebraic/homological, ours are combinatorial/geometric with a dose of randomness.

Recall that we consider groups of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the u_{i} and v_{i} are long random words of the same length N.
We may assume that the presentation is a $C^{\prime}(1 / \lambda)$ small cancellation presentation for λ arbitrarily large. Thus for any $\alpha<1$ we may assume that any reduced word w in the $a_{i}^{ \pm 1}$ and $b_{i}^{ \pm 1}$ that represents the trivial element contains a subword of a cyclic conjugate of some defining relator (or its inverse) of length at least $\alpha \cdot N$.

It follows in particular that any word w in the $a_{i}^{ \pm 1}$ such that $w{ }_{G} b_{i}$ for some i contains a long subword of some $v_{j}(\underline{a})$.

Recall that we consider groups of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the u_{i} and v_{i} are long random words of the same length N.
We may assume that the presentation is a $C^{\prime}(1 / \lambda)$ small cancellation presentation for λ arbitrarily large. Thus for any $\alpha<1$ we may assume that any reduced word w in the $a_{i}^{ \pm 1}$ and $b_{i}^{ \pm 1}$ that represents the trivial element contains a subword of a cyclic conjugate of some defining relator (or its inverse) of length at least $\alpha \cdot N$.

It follows in particular that any word w in the $a_{i}^{ \pm 1}$ such that $w=_{G} b_{i}$ for some i contains a long subword of some $v_{j}(\underline{a})$

Recall that we consider groups of type

$$
\left.G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right| a_{i}=u_{i}(\underline{b}), b_{i}=v_{i}(\underline{a}), \text { for } i=1, \ldots, n\right\rangle .
$$

where the u_{i} and v_{i} are long random words of the same length N.
We may assume that the presentation is a $C^{\prime}(1 / \lambda)$ small cancellation presentation for λ arbitrarily large. Thus for any $\alpha<1$ we may assume that any reduced word w in the $a_{i}^{ \pm 1}$ and $b_{i}^{ \pm 1}$ that represents the trivial element contains a subword of a cyclic conjugate of some defining relator (or its inverse) of length at least $\alpha \cdot N$.
It follows in particular that any word w in the $a_{i}^{ \pm 1}$ such that $w{ }_{G} b_{i}$ for some i contains a long subword of some $v_{j}(\underline{a})$.

We will first argue that (generically) $\left(a_{1}, \ldots, a_{n}\right) \nsucc\left(b_{1}, \ldots, b_{n}\right)$. The proof of the Main Theorem follows a similar strategy.

The proof is by contradiction.
Thus we assume that $\left(a_{1}, \ldots, a_{n}\right) \sim\left(b_{1}, \ldots, b_{n}\right)$
Thus there exists a basis $\left(m_{1}, \ldots, m_{n}\right)$ of the free group
$F(A)=F\left(a_{1}, \ldots, a_{n}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$. Note that the w_{i} are just the images of the a_{i} under some automorphism of $F(A)$.

If Γ is the wedge of n (subdivided) circuits with labels $w_{1} \ldots \ldots$, w_{n} and R_{n} the rose with n loop edges and labels a_{1}, \ldots, a_{n} then the label preserving map is π_{1}-surjective.

We will first argue that (generically) $\left(a_{1}, \ldots, a_{n}\right) \nsucc\left(b_{1}, \ldots, b_{n}\right)$. The proof of the Main Theorem follows a similar strategy.
The proof is by contradiction.
Thus we assume that $\left(a_{1}, \ldots, a_{n}\right) \sim\left(b_{1}, \ldots, b_{n}\right)$.
Thus there exists a basis $\left(w_{1}, \ldots, w_{n}\right)$ of the free group
$F(A)=F\left(a_{1}, \ldots, a_{n}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$. Note that the w_{i} are just the images of the a_{i} under some automorphism of $F(A)$

If Γ is the wedge of n (subdivided) circuits with labels w_{1}, \ldots, w_{n} and R_{n} the rose with n loop edges and labels a_{1}, \ldots, a_{n} then the label preserving map is π_{1}-surjective.

We will first argue that (generically) $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$. The proof of the Main Theorem follows a similar strategy.

The proof is by contradiction.
Thus we assume that $\left(a_{1}, \ldots, a_{n}\right) \sim\left(b_{1}, \ldots, b_{n}\right)$.
Thus there exists a basis $\left(w_{1}, \ldots, w_{n}\right)$ of the free group $F(A)=F\left(a_{1}, \ldots, a_{n}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$. Note that the w_{i} are just the images of the a_{i} under some automorphism of $F(A)$.

If Γ is the wedge of n (subdivided) circuits with labels w_{1}, \ldots, w_{n} and R_{n} the rose with n loop edges and labels a_{1}, \ldots, a_{n} then the label preserving map is π_{1}-surjective

We will first argue that (generically) $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$. The proof of the Main Theorem follows a similar strategy.

The proof is by contradiction.
Thus we assume that $\left(a_{1}, \ldots, a_{n}\right) \sim\left(b_{1}, \ldots, b_{n}\right)$.
Thus there exists a basis $\left(w_{1}, \ldots, w_{n}\right)$ of the free group
$F(A)=F\left(a_{1}, \ldots, a_{n}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$. Note that the w_{i} are just the images of the a_{i} under some automorphism of $F(A)$.

If Γ is the wedge of n (subdivided) circuits with labels w_{1}, \ldots, w_{n} and R_{n} the rose with n loop edges and labels a_{1}, \ldots, a_{n} then the label preserving map is π_{1}-surjective.

It is a fundamental observation of Stallings (see also Dicks and others) that f factors as a product of folds.

Any w_{i} must be readable in any graph that occurs in the sequence. However not everything is readable in the graph that occurs just before R_{n}

Figure: $a_{1}^{-1} a_{2}$ is not readable in the graph that appears just before R_{n}

It is a fundamental observation of Stallings (see also Dicks and others) that f factors as a product of folds.

Any w_{i} must be readable in any graph that occurs in the sequence. However not everything is readable in the graph that occurs just before R_{n}.

Figure : $a_{1}^{-1} a_{2}$ is not readable in the graph that appears just before R_{n}

Thus we have the following:
(1) w_{i} contains a subword w of length at least $N / 2$ of some $v_{j}(\underline{a})$.
(2) For any graph that occurs in a folding sequence just before R_{n} a word of length 2 is not readable.
(3) w_{i} is readable in any graph occuring in the folding sequence.

This gives a constradiction as w contains all subwords of length 2 with probabilty tending to 1 as N tends to infinity. Thus for large N, we have $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$ with high probability. Remark: An alternative argument for (2) can be given using the Whitehead

Thus we have the following:
(1) w_{i} contains a subword w of length at least $N / 2$ of some $v_{j}(\underline{a})$.
(2) For any graph that occurs in a folding sequence just before R_{n} a word of length 2 is not readable.
(3) w_{i} is readable in any graph occuring in the folding sequence.

This gives a constradiction as w contains all subwords of length 2 with probabilty tending to 1 as N tends to infinity.

Thus for large N, we have $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$ with high probability. Remark: An alternative argument for (2) can be given using the Whitehead

Thus we have the following:
(1) w_{i} contains a subword w of length at least $N / 2$ of some $v_{j}(\underline{a})$.
(2) For any graph that occurs in a folding sequence just before R_{n} a word of length 2 is not readable.
(3) w_{i} is readable in any graph occuring in the folding sequence.

This gives a constradiction as w contains all subwords of length 2 with probabilty tending to 1 as N tends to infinity.

Thus for large N, we have $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$ with high probability. Remark: An alternative argument for (2) can be given using the Whitehead

Thus we have the following:
(1) w_{i} contains a subword w of length at least $N / 2$ of some $v_{j}(\underline{a})$.
(2) For any graph that occurs in a folding sequence just before R_{n} a word of length 2 is not readable.
(3) w_{i} is readable in any graph occuring in the folding sequence.

This gives a constradiction as w contains all subwords of length 2 with probabilty tending to 1 as N tends to infinity.

Thus for large N, we have $\left(a_{1}, \ldots, a_{n}\right) \nsim\left(b_{1}, \ldots, b_{n}\right)$ with high probability. Remark: An alternative argument for (2) can be given using the Whitehead graph.

The proof of the general case follows the same strategy. Thus assume that

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \sim(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) .
$$

It follows that $\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)$ is in $F(A)$ Nielsen equivalent to $\left(w_{1}, \ldots, w_{2 n-1}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$.

We can now construct Γ as before as the wedge of $2 n-1$ circuits with labels $w_{1}, \ldots, w_{2 n-1}$ and get π_{1}-surjective map to R_{n} which factors as a product of folds.

However at some point in the folding sequence a copy of R_{n} can occur as a subgraph which means everything is readable. We inspect the last graph in the folding sequence before this occurs.

The proof of the general case follows the same strategy. Thus assume that

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \sim(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) .
$$

It follows that $\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)$ is in $F(A)$ Nielsen equivalent to $\left(w_{1}, \ldots, w_{2 n-1}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$. labels $w_{1}, \ldots, w_{2 n-1}$ and get π_{1}-surjective map to R_{n} which factors as a product of folds.

However at some point in the folding sequence a copy of R_{n} can occur as a subgraph which means everything is readable. We inspect the last graph in the folding sequence before this occurs.

The proof of the general case follows the same strategy. Thus assume that

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \sim(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) .
$$

It follows that $\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)$ is in $F(A)$ Nielsen equivalent to $\left(w_{1}, \ldots, w_{2 n-1}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$.

We can now construct Γ as before as the wedge of $2 n-1$ circuits with labels $w_{1}, \ldots, w_{2 n-1}$ and get π_{1}-surjective map to R_{n} which factors as a product of folds.

However at some point in the folding sequence a copy of R_{n} can occur as a subgraph which means everything is readable. We inspect the last graph in the folding sequence before this occurs.

The proof of the general case follows the same strategy. Thus assume that

$$
(a_{1}, \ldots, a_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) \sim(b_{1}, \ldots, b_{n}, \underbrace{1, \ldots, 1}_{n-1 \text { times }}) .
$$

It follows that $\left(a_{1}, \ldots, a_{n}, 1, \ldots, 1\right)$ is in $F(A)$ Nielsen equivalent to $\left(w_{1}, \ldots, w_{2 n-1}\right)$ such that $w_{i}={ }_{G} b_{i}$ for $1 \leq i \leq n$.

We can now construct Γ as before as the wedge of $2 n-1$ circuits with labels $w_{1}, \ldots, w_{2 n-1}$ and get π_{1}-surjective map to R_{n} which factors as a product of folds.

However at some point in the folding sequence a copy of R_{n} can occur as a subgraph which means everything is readable. We inspect the last graph in the folding sequence before this occurs.

Let Δ be the last graph in the folding sequence that does not contain a copy of R_{n}. Thus Δ contains a subgraph ψ (fat edges) that folds onto R_{n} with a single fold.

We will now explain how the w_{i} (or subwords that are also subwords of the v_{j}) can be read in Δ. Note that any word can be read in such a graph as we have no control over the part of Δ that is the complement of ψ.

Let Δ be the last graph in the folding sequence that does not contain a copy of R_{n}. Thus Δ contains a subgraph ψ (fat edges) that folds onto R_{n} with a single fold.

We will now explain how the w_{i} (or subwords that are also subwords of the v_{j}) can be read in Δ. Note that any word can be read in such a graph as we have no control over the part of Δ that is the complement of Ψ.

Note that the following hold for the finite labeled graph Δ :
(1) $b(\Delta) \leq 2 n-1$
(2) Δ does not contain a subgraph that covers R_{n}. We call such a graph tame.
\square
Let Δ be tame. Then there is a word that is not readable in Δ.

Note that the following hold for the finite labeled graph Δ :
(1) $b(\Delta) \leq 2 n-1$
(2) Δ does not contain a subgraph that covers R_{n}.

We call such a graph tame.

Theorem 3

Let Δ be tame. Then there is a word that is not readable in Δ.

Note however that any word is readable in some tame graph. We will see that generically such words can only be read in a very controlled way.

Definition 4

Let $\alpha \in[0,1]$. We say that a path γ in some graph Γ is α-injective if γ crosses at least $\alpha \cdot|\gamma|$ distinct topological edges.
\square

Note however that any word is readable in some tame graph. We will see that generically such words can only be read in a very controlled way.

Definition 4

Let $\alpha \in[0,1]$. We say that a path γ in some graph Γ is α-injective if γ crosses at least $\alpha \cdot|\gamma|$ distinct topological edges.

Remark: 1-injective means no edge (pair) is travelled twice.

Note however that any word is readable in some tame graph. We will see that generically such words can only be read in a very controlled way.

Definition 4

Let $\alpha \in[0,1]$. We say that a path γ in some graph Γ is α-injective if γ crosses at least $\alpha \cdot|\gamma|$ distinct topological edges.

Remark: 1-injective means no edge (pair) is travelled twice.

Theorem 5

Let $\alpha \in[0,1)$. The set Ω of all reduced words in the $a_{i}^{ \pm 1}$ contains a generic subset S such that the following holds:
Let $s \in S$ and Γ be a tame connected core graph. Then any path in Γ that reads s is α-injective.

This allows us to immediately deal with one more special case, namely the case that $w_{i}=v_{i}$ for $1 \leq i \leq n$. Recall that we have the following map:

The above theorem implies that the $w_{i}=v_{i}$ are read by essentially injective paths. Moreover they are distinct generic words, thus for each v_{i} there is an arc in Δ outside ψ that is only travelled once and not travelled by the other v_{j}. This implies that $b(\Delta) \geq 2 n$ as $b(\Psi)=n$, a contradiction.

This allows us to immediately deal with one more special case, namely the case that $w_{i}=v_{i}$ for $1 \leq i \leq n$. Recall that we have the following map:

The above theorem implies that the $w_{i}=v_{i}$ are read by essentially injective paths. Moreover they are distinct generic words, thus for each v_{i} there is an arc in Δ outside Ψ that is only travelled once and not travelled by the other v_{j}. This implies that $b(\Delta) \geq 2 n$ as $b(\Psi)=n$, a contradiction.

The remaining case is the case where $w_{i} \neq v_{i}$ for some $1 \leq i \leq n$. In this case we will see that we can find another graph Γ where the circuits are of shorter length.

This is achieved by surgery on Г, a modification introduced by Arzhantseva and Olshankii. The length considered however is not the usual word length but significantly more subtle.

Figure: Replace arc with label w and all its preimages in Γ by arc with label \bar{w} where $|\bar{W}|<|w|$ and $\bar{w}={ }_{G} w$.

The remaining case is the case where $w_{i} \neq v_{i}$ for some $1 \leq i \leq n$. In this case we will see that we can find another graph Γ where the circuits are of shorter length.

This is achieved by surgery on Γ, a modification introduced by Arzhantseva and Olshankii. The length considered however is not the usual word length but significantly more subtle.

Figure : Replace arc with label w and all its preimages in Γ by arc with label \bar{w} where $|\bar{w}|<|w|$ and $\bar{w}={ }_{G} w$.

This last case relies on the fact that the presentation

$$
\left\langle a_{1}, \ldots, a_{n} \mid U_{1}, \ldots, U_{n}\right\rangle
$$

obtained by Tietze transformation eliminating the b_{i} is again (an arbitrarily good) small cancellation group and that any reduced word representing b_{i} that is distinct from v_{i} must contain almost all of some cyclic conjugate of some U_{j} which must be read α-injectively in Δ for some α close to 1 .

