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Main Theorem

Theorem 1
For every n ≥ 2 there exists a torsion-free one-ended word-hyperbolic group
G of rank n admitting generating n-tuples (a1, . . . , an) and (b1, . . . , bn)
such that the (2n − 1)-tuples

(a1, . . . , an, 1, . . . , 1︸ ︷︷ ︸
n−1 times

) and (b1, . . . , bn, 1, . . . , 1︸ ︷︷ ︸
n−1 times

)

are not Nielsen-equivalent in G.

The groups are constructed using a probabilistic construction.
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Main Theorem

More precisely: We consider groups given by presentations of type

G = 〈a1, . . . , an, b1, . . . , bn|ai = ui (b), bi = vi (a), for i = 1, . . . , n〉.

where the ui (b) are reduced words in the b±1
i and the vi (a) are reduced

words in the a±1
i such that

|v1| = · · · = |vn| = |vn| = · · · = |un| = N

for some N ∈ N.

It is trivial that (a1, . . . , an) and (b1, . . . , bn) are generating tuples.

We show that as N tends to infinity the probability that such a group
satisfies the conclusion of the Theorem tends to 1 if the ui and vi are
chosen at random.
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Nielsen Equivalence

Let G be a group and n ∈ N. Consider the set Gn of n-tuples of elements
of G .

We say that T = (g1, . . . , gn) and T ′ = (g ′1, . . . , g
′
n) are elementary

equivalent if one of the following holds:
1 g ′i = gσ(i) for all i and some σ ∈ Sn.
2 g ′i = g−1

i for some i and g ′j = gj for j 6= i .
3 g ′i = gigj for some i 6= j and g ′k = gk for k 6= i .

We say that T and T ′ are Nielsen equivalent and write T ∼ T ′ if there
exist

T = T0,T1, . . . ,Tm = T ′

such that Ti−1 and Ti elementary equivalent for 1 ≤ i ≤ m.
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Nielsen Equivalence

Alternative definition of Nielsen equivalence:

Can identify elements of Gn with elements of Hom(Fn,G ) via the bijection

Gn → Hom(Fn,G ), T 7→ φT

where for any T = (g1, . . . , gn) the homomorphism φT : Fn → G is given
by φT (xi ) = gi for 1 ≤ i ≤ n. Note Fn := F (x1, . . . , xn).

Fact: Let T ,T ′ ∈ Gn. Then T ∼ T ′ iff φT = φT ′ ◦ α for some
α ∈ Aut(Fn).

Thus Nielsen equivalence classes of n-tuples correspond to Aut(Fn)-orbits
of Hom(Fn,G ) under the natural right action of Aut(Fn) .
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Nielsen Equivalence

Above fact is a reformulation of the classical result of Nielsen that states
that Aut(Fn) is generated by automorhisms of the following types (now
called Nielsen automorphisms):

1 Fn → Fn, xi 7→ xσ(i) for 1 ≤ i ≤ n and some σ ∈ Sn.
2 Fn → Fn, xi 7→ x−1

i for some i and xj 7→ xj for j 6= i .
3 Fn → Fn, xi 7→ xixj for some i 6= j and xk 7→ xk for k 6= i .

We will be mostly interested in Nielsen equivalence classes of generating
tuples, i.e. in Aut(Fn)-orbits of Epi(Fn,G ).
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Nielsen Equivalence

Fix a group G . There are a number of natural problems:

1 Is there an algorithm that decides whether two given (generating)
n-tuples of G are Nielsen equivalent?

2 Are there at most finitely many Nielsen classes of generating n-tuples
of G for given n?

3 Classify all Nielsen-classes of generating n-tuples of G for given n.

Problems are usually very hard and often undecidable.

First problem is at least as hard as the generalized word problem as

(g1, . . . , gn, 1) ∼ (g1, . . . , gn, h) ⇐⇒ h ∈ 〈g1, . . . , gn〉.

Thus the Rips construction shows that Nielsen-equivalence is undecidable
even in small cancellation groups.
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Nielsen Equivalence

Nielsen equivalence plays an important role in finite groups, in particular in
relation to the product replacement algorithm. We will only focus on
infinite groups.

Some positive results:

1 Nielsen: An generating n-tuple of Fk is Nielsen-quivalent to
(x1, . . . , xk , 1, . . . , 1︸ ︷︷ ︸

n−k times

).

2 Grushko: Any generating tuple of A ∗ B is Nielsen equivalent to a
tuple (g1, . . . , gn) with gi ∈ A ∪ B for 1 ≤ i ≤ n.

3 An analogue of Nielsen’s result for surface groups due to Zieschang
and Louder.

Many related results. All proofs are similar. They rely on replacing a given
generating tuple with a reduced one by cancellation/folding methods. No
need to distinguish Nielsen classes.
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Nielsen Equivalence

Distinguishing Nielsen classes is difficult. An exception is the case n = 2,
i.e. the case of pairs of elements. There is test provided the conjugace
problem is solvable:

If (g1, g2) ∼ (h1, h2) then [g1, g2] is conjugate to [h1, h2]±1.

No such test for n ≥ 3.

However there are a number of ways to distinguish classes in very specific
situations, see work of Zieschang, Rost, Rosenberger, Noskov,
Lustig-Moriah, Evans, ....
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Nielsen Equivalence

If T = (g1, . . . , gn) ∈ Gn then we call the (n + k)-tuple

(g1, . . . , gn, 1, . . . , 1︸ ︷︷ ︸
k times

)

the k-th stabilisation of T .

Often the first stabilisation of two generating tuples are Nielsen equivalent,
even if the tuples aren’t. Moreover the following is trivial:

If (g1, . . . , gn) and (g ′1, . . . , g
′
n) are generating n-tuples of G then

(g1, . . . , gn, 1, . . . , 1︸ ︷︷ ︸
n times

) ∼ (g ′1, . . . , g
′
n, 1, . . . , 1︸ ︷︷ ︸

n times

).

Work of Evans implies that in general many stabilisations are needed to
make two generating tuples Nielsen equivalent:
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Nielsen Equivalence

Theorem 2 (Evans)

For every k ≥ 1 there exists a (2k + k + 1) generated metabelian group G
and generating 2k+1-tuples T and T ′ such that the k-th stabilisations of T
and T ′ are Nielsen-inequivalent.

Note there is still a large gap between the trivial upper bound on the
number of stabilisations needed to make two generating tuples equivalent
and the number given by Evans.

The result presented in this talk shows that the trivial upper bound is in
fact the best possible.

While Evans’ methods are algebraic/homological, ours are
combinatorial/geometric with a dose of randomness.
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Toy case

Recall that we consider groups of type

G = 〈a1, . . . , an, b1, . . . , bn|ai = ui (b), bi = vi (a), for i = 1, . . . , n〉.

where the ui and vi are long random words of the same length N.

We may assume that the presentation is a C ′(1/λ) small cancellation
presentation for λ arbitrarily large. Thus for any α < 1 we may assume
that any reduced word w in the a±1

i and b±1
i that represents the trivial

element contains a subword of a cyclic conjugate of some defining relator
(or its inverse) of length at least α · N.

It follows in particular that any word w in the a±1
i such that w =G bi for

some i contains a long subword of some vj(a).
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We may assume that the presentation is a C ′(1/λ) small cancellation
presentation for λ arbitrarily large. Thus for any α < 1 we may assume
that any reduced word w in the a±1

i and b±1
i that represents the trivial

element contains a subword of a cyclic conjugate of some defining relator
(or its inverse) of length at least α · N.
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Toy case

We will first argue that (generically) (a1, . . . , an) 6∼ (b1, . . . , bn). The proof
of the Main Theorem follows a similar strategy.

The proof is by contradiction.
Thus we assume that (a1, . . . , an) ∼ (b1, . . . , bn).

Thus there exists a basis (w1, . . . ,wn) of the free group
F (A) = F (a1, . . . , an) such that wi =G bi for 1 ≤ i ≤ n. Note that the wi
are just the images of the ai under some automorphism of F (A).

If Γ is the wedge of n (subdivided) circuits with labels w1, . . . ,wn and Rn
the rose with n loop edges and labels a1, . . . , an then the label preserving
map is π1-surjective.

w1

w2

wn

a1

a2

an

Γ Rn
f
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Toy case

It is a fundamental observation of Stallings (see also Dicks and others) that
f factors as a product of folds.

ai

ai

ai

Any wi must be readable in any graph that occurs in the sequence.
However not everything is readable in the graph that occurs just before Rn.

w1

w2

wn

a1

a2

an

Γ Rn

a1

a1

a2

Figure : a−1
1 a2 is not readable in the graph that appears just before Rn
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Toy case

Thus we have the following:

1 wi contains a subword w of length at least N/2 of some vj(a).
2 For any graph that occurs in a folding sequence just before Rn a word

of length 2 is not readable.
3 wi is readable in any graph occuring in the folding sequence.

This gives a constradiction as w contains all subwords of length 2 with
probabilty tending to 1 as N tends to infinity.

Thus for large N, we have (a1, . . . , an) 6∼ (b1, . . . , bn) with high probability.

Remark: An alternative argument for (2) can be given using the Whitehead
graph.
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sketch for general case

The proof of the general case follows the same strategy. Thus assume that

(a1, . . . , an, 1, . . . , 1︸ ︷︷ ︸
n−1 times

) ∼ (b1, . . . , bn, 1, . . . , 1︸ ︷︷ ︸
n−1 times

).

It follows that (a1, . . . , an, 1, . . . , 1) is in F (A) Nielsen equivalent to
(w1, . . . ,w2n−1) such that wi =G bi for 1 ≤ i ≤ n.

We can now construct Γ as before as the wedge of 2n − 1 circuits with
labels w1, . . . ,w2n−1 and get π1-surjective map to Rn which factors as a
product of folds.

However at some point in the folding sequence a copy of Rn can occur as a
subgraph which means everything is readable. We inspect the last graph in
the folding sequence before this occurs.
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sketch for general case

Let ∆ be the last graph in the folding sequence that does not contain a
copy of Rn. Thus ∆ contains a subgraph Ψ (fat edges) that folds onto Rn
with a single fold.

w1

w2

w2n−1

a1

a2

an

Γ Rn

a1

a1

a2

Ψ ⊂ ∆

We will now explain how the wi (or subwords that are also subwords of the
vj) can be read in ∆. Note that any word can be read in such a graph as
we have no control over the part of ∆ that is the complement of Ψ.
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sketch for general case

Note that the following hold for the finite labeled graph ∆:
1 b(∆) ≤ 2n − 1
2 ∆ does not contain a subgraph that covers Rn.

We call such a graph tame.

Theorem 3
Let ∆ be tame. Then there is a word that is not readable in ∆.
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sketch for general case

Note however that any word is readable in some tame graph. We will see
that generically such words can only be read in a very controlled way.

Definition 4
Let α ∈ [0, 1]. We say that a path γ in some graph Γ is α-injective if γ
crosses at least α · |γ| distinct topological edges.

Remark: 1-injective means no edge (pair) is travelled twice.

Theorem 5

Let α ∈ [0, 1). The set Ω of all reduced words in the a±1
i contains a

generic subset S such that the following holds:
Let s ∈ S and Γ be a tame connected core graph. Then any path in Γ that
reads s is α-injective.
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sketch for general case

This allows us to immediately deal with one more special case, namely the
case that wi = vi for 1 ≤ i ≤ n. Recall that we have the following map:

a1

a1

a2

Ψ ⊂ ∆
wn+1

w2n−1

Γ

w1 = v1

wn = vn

The above theorem implies that the wi = vi are read by essentially injective
paths. Moreover they are distinct generic words, thus for each vi there is
an arc in ∆ outside Ψ that is only travelled once and not travelled by the
other vj . This implies that b(∆) ≥ 2n as b(Ψ) = n, a contradiction.
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sketch for general case

The remaining case is the case where wi 6= vi for some 1 ≤ i ≤ n. In this
case we will see that we can find another graph Γ where the circuits are of
shorter length.

This is achieved by surgery on Γ, a modification introduced by Arzhantseva
and Olshankii. The length considered however is not the usual word length
but significantly more subtle.

a1

a1

a2

Ψ ⊂ ∆
w2

w2n−1

Γ

w1
w

Figure : Replace arc with label w and all its preimages in Γ by arc with label w̄
where |w̄ | < |w | and w̄ =G w .
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sketch for general case

This last case relies on the fact that the presentation

〈a1, . . . , an|U1, . . . ,Un〉

obtained by Tietze transformation eliminating the bi is again (an arbitrarily
good) small cancellation group and that any reduced word representing bi
that is distinct from vi must contain almost all of some cyclic conjugate of
some Uj which must be read α-injectively in ∆ for some α close to 1.
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