## Subgroup Conjugacy Separability for Groups

Oleg Bogopolski and Kai-Uwe Bux

Webinar "GT", NY, 3.04.14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Content

- 1. New residual properties of groups
- 2. Proof that free groups are SICS
- 3. Proof that surface groups are SICS

- 4. Hurwitz' problem
- 5. Problems on SCS and SICS

# Part I. New residual properties of groups

1

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

**Def.** A group G is called LERF, if any two different f.g. subgroups  $H_1, H_2 \leq G$  remain different in some finite quotient of G.

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

**Def.** A group G is called LERF, if any two different f.g. subgroups  $H_1, H_2 \leq G$  remain different in some finite quotient of G.

$$\begin{array}{ccc} H_1 \neq H_2 \Longrightarrow & \text{there exists a fin. quotient } \overline{G} : & \overline{H_1} \neq \overline{H_2} \\ \overline{G} \end{array}$$

New residual property of groups (SCS-property):

A group G is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups  $H_1, H_2 \leq G$  remain non-conjugate in some finite quotient of G.

New residual property of groups (SCS-property):

A group *G* is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups  $H_1, H_2 \leq G$  remain non-conjugate in some finite quotient of *G*.

$$H_1 \underset{G}{\sim} H_2 \Longrightarrow$$
 there exists a fin. quotient  $\overline{G}$ :  $\overline{H_1} \underset{\overline{G}}{\sim} \overline{H_2}$ 

New residual property of groups (SCS-property):

A group *G* is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups  $H_1, H_2 \leq G$  remain non-conjugate in some finite quotient of *G*.

$$H_1 \underset{G}{\sim} H_2 \Longrightarrow$$
 there exists a fin. quotient  $\overline{G}$ :  $\overline{H_1} \underset{\overline{G}}{\sim} \overline{H_2}$ 

The following groups are SCS:

- virtually polycyclic groups (Grunewald and Segal)
- free groups and some virtually free groups (B. and Grunewald)
- orientable surface groups (B. and Bux)
- A \* B if A, B are SCS and LERF (B. and Elsawy)

#### Another useful property: SICS

For  $A, B \leq G$ , we say that A is conjugate into B if there exists  $g \in G$  with  $A^g \leq B$ . We write

$$A \underset{G}{\leadsto} B$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another useful property: SICS

For  $A, B \leq G$ , we say that A is conjugate into B if there exists  $g \in G$  with  $A^g \leq B$ . We write

$$A \underset{G}{\leadsto} B$$

**Def.** A group *G* is called subgroup into-conjugacy separable (SICS), if for any two f.g. subgroups  $H_1, H_2 \leq G$  the following implication holds:

$$\begin{array}{ccc} H_2 \not \rightarrowtail \to & \mathrm{there \ exists \ a \ fin. \ quotient \ } \overline{G} : & \overline{H_2} \not \leadsto \to \overline{H_1} \\ \overline{G} \end{array}$$

How to prove that G is SCS (a strategy):

1. Prove that SICS  $\implies$  SCS (this holds not for any G)

2. Use the following reformulation of SICS:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

How to prove that G is SCS (a strategy):

- 1. Prove that SICS  $\implies$  SCS (this holds not for any G)
- 2. Use the following reformulation of SICS:



3. Use coverings if G is "geometric".

For which groups SICS implies SCS?

Lem. Suppose that a group G does not contain a f.g. subgroup H and an element g such that  $H < H^g$ . Then for G we have (SICS  $\implies$  SCS).

#### For which groups SICS implies SCS?

Lem. Suppose that a group G does not contain a f.g. subgroup H and an element g such that  $H < H^g$ . Then for G we have (SICS  $\implies$  SCS).

Cor. For free and surface groups, we have (SICS  $\implies$  SCS). *Proof (for free groups).* If the assumption of Lemma is not satisfied, then

 $H < H^g < H^{g^2} < \dots$ 

This contradicts Takahasi's result that for any strictly ascending infinite chain of f.g. subgroups in a free group the ranks of the members of this chain are unbounded.

## Part II. Proof that free groups are SICS

7

Step 0. (Notations) We realize  $F = \pi_1(R)$ . For each  $H \leq F$ , there is a covering  $\Gamma_H \to R$  with  $\pi_1(\Gamma_H) = H$ . There are edges in  $\Gamma_H$ , which we call entries in and exists from  $Core(\Gamma_H)$ .



 $H := \langle [a, b], [a, b^{-1}], [a^{-1}, b], [a^{-1}, b^{-1}] \rangle \leqslant F(a, b)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remember, that we have  $H_1, H_2 \leqslant F$  such that  $H_2 \nleftrightarrow H_1$ .

Step 1. (M.Hall theorem for  $H_1$ ) We construct a subgroup  $D \leq F$  of finite index in F which contains  $H_1$  as a free factor.

1.1. Take the covering space  $\Gamma_{H_1}$ .



1.2. Cut out infinite trees as it shown below.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1.3. Take an arbitrary finite covering  $\Gamma_K \to R$ .



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

1.4. Glue these two pieces.



1.5. Delete the edge with the label a.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

We get a finite covering  $\Gamma_D$  containing  $Core(\Gamma_{H_1})$ . Thus, D is a subgroup of finite index in F containing  $H_1$  as a free factor.



Step 2. (Put  $H_2$  in the play) Let  $H_2 = \langle h_1, h_2, \ldots, h_n \rangle$ . We don't want the situation that is shown below, since it would mean that  $H_2^g \leq D$ .



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへぐ

Step 2. (Put  $H_2$  in the play) Let  $H_2 = \langle h_1, h_2, \ldots, h_n \rangle$ . We don't want the situation that is shown below, since it would mean that  $H_2^g \leq D$ .



To avoid this situation, we take  $\Gamma_K$  that does not contain small loops, i.e., nontrivial loops of length up to  $C := max\{|h_i|\} + 1$ .

Step 3. (End of the proof) We prove that if we take  $\Gamma_K$  without loops of length up to C, then  $H_2 = \langle h_1, \ldots, h_n \rangle$  is not conjugate into D.

Suppose the contrary:  $H_2^g \leq D$ . Where the loops with labels  $h_i$  can lie?

Case 1. This cannot happen.



# Hence we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Case 2. This cannot happen.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Case 3. This cannot happen.



◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Case 4. This can happen.





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case 4. This can happen. But in this case  $H_2^{\tilde{g}} \leq H_1$  that contradicts our assumption. Thus,  $H_2$  is not conjugate into D.



# Part III. Proof that surface groups are SICS

#### Visualization of subgroups

Let G be a group. For any fin.gen. subgroup  $H \leq G$ , we choose

$$H \leqslant H^* \stackrel{fin.ind}{\leqslant} G.$$

**Useful**: If G is a "geometric group", then, given  $H \leq G$ , we will choose  $H^*$  so that H is "geometrically embedded" in  $H^*$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### Visualization of subgroups

Let G be a group. For any fin.gen. subgroup  $H \leq G$ , we choose

$$H \leqslant H^* \stackrel{fin.ind}{\leqslant} G.$$

**Useful**: If G is a "geometric group", then, given  $H \leq G$ , we will choose  $H^*$  so that H is "geometrically embedded" in  $H^*$ .

#### Ex:

M. Hall Thm. For any fin. gen. subgroup H of a free group G, there exists a finite index subgroup H\* in G such that H is a free factor of H\*.
 P. Scott Thm. A similar, but not the same statement for surface groups.

## Recall the Definition of SICS

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

**Def.** Suppose that for any fin.gen.  $H_1 \leq G$  and for any fin.gen.  $H_2 \leq G$  we have

 $\begin{array}{ccc} H_2 \not \rightsquigarrow \to & H_1 \Longrightarrow & \text{there exists a fin. quotient } \overline{G} : & \overline{H_2} \not \rightsquigarrow \to & \overline{H_1}. \end{array}$ 

Then G is called SICS.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a group. For any fin.gen. subgroup  $H \leq G$ , we choose

$$H \leqslant H^* \stackrel{fin.ind}{\leqslant} G.$$

**Lem.** Suppose that for any fin.gen.  $H_1 \leq G$  and for any fin.gen.  $H_2 \leq H_1^*$  we have

 $\begin{array}{ccc} H_2 \not \rightarrowtail & H_1 \Longrightarrow & \text{there exists a fin. quotient } \overline{H_1^*}: & \overline{H_2} \not \leadsto & \overline{H_1}. \end{array}$ 

Then G is SICS.

Thm. (P. Scott) Let S be a closed surface. For any fin. gen. subgroup  $H \leq \pi_1(S, x)$ , there exists a finitely sheeted covering map  $p: (\widetilde{S}, \widetilde{x}) \to (S, x)$  such that H is realized by a subsurface in  $\widetilde{S}$ .

The latter means that there exists an incompressible compact subsurface  $A \subseteq \widetilde{S}$  containing  $\widetilde{x}$  such that  $p_*(\pi_1(A, \widetilde{x})) = H$ .

Thus, we can set  $H^* := p_*(\pi_1(\widetilde{S}, \widetilde{x})).$ 

(日) (同) (三) (三) (三) (○) (○)

#### Example 1 to Scott' Theorem



 $\pi_1(S, x) = \langle x_1, x_2, y_1, y_2 | [x_1, y_1] [x_2, y_2] = 1 \rangle, \quad \text{where } {}_{[a, b] := a^{-1}b^{-1}ab}$ The subgroup  $\langle x_1, y_1 \rangle$  can be realized by a subsurface in S.



・ロト・日本・日本・日本・日本・日本

#### Example 2 to Scott' Theorem



The cyclic subgroup  $\langle y_1 x_2^{-1} \rangle \leq \pi_1(S, x)$  cannot be realized by a subsurface in *S*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

#### Example 2 to Scott' Theorem



The cyclic subgroup  $\langle y_1 x_2^{-1} \rangle \leq \pi_1(S, x)$  cannot be realized by a subsurface in *S*.



▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()~

How to construct a covering  $\widetilde{S} \to S$  such that the subgroup  $\langle y_1 x_2^{-1} \rangle \leq \pi_1(S, x)$  is realized by a subsurface in  $\widetilde{S}$ ?



How to construct a covering  $\widetilde{S} \to S$  such that the subgroup  $\langle y_1 x_2^{-1} \rangle \leq \pi_1(S, x)$  is realized by a subsurface in  $\widetilde{S}$ ?











▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで







**P.Scott Theorem (improved)**. Let *S* be a closed surface with  $\chi(S) < 0$ . For any finitely generated subgroup  $H \leq \pi_1(S, x)$ , there exists a finitely sheeted covering map  $p : (\widetilde{S}, \widetilde{x}) \to (S, x)$  such that 1) *H* is **realized** in  $\widetilde{S}$ , i.e., there exists an incompressible compact subsurface  $A \subseteq \widetilde{S}$  containing  $\widetilde{x}$  with  $p_*(\pi_1(A, \widetilde{x})) = H$ ; 2) *A* has a **good shape**, i.e.,  $B := S \setminus A$  is a connected surface and *genus*(*B*) > 0.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙





▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで



・ロト ・聞ト ・ヨト ・ヨト

э



### Creating a genus in all components of $S \setminus A$



・ロト ・聞ト ・ヨト ・ヨト

æ

### Creating a genus in all components of $S \setminus A$



Creating a unique complementary component to A



# Creating a unique complementary component to A $A^{42}$ C = A = B C = A = B C = A = BC = A = B

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで







# Proof that surface groups are SICS (a preparation)



We want to prove that  $G := \pi_1(S)$  is SICS. Let  $H_1, H_2 \leq \pi_1(S)$  be fin. gen. and such that  $H_2 \not\sim H_1$ . Using the Star Lemma and the improvement of Scott' Theorem, we may assume the following:

Assumption.  $H_1 \leq \pi_1(S)$  is realized by an incompressible subsurface  $A \subset S$  s.t.  $B := S \setminus A$  is a connected surface with genus(B) > 0. What we want to prove for  $G = \pi_1(S)$ 



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

#### Proof in three steps



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.

49



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

*Proof.* We may assume that  $H_2$  is noncyclic.

The decomposition S = A ∪ B induces a graph of groups decomposition of π<sub>1</sub>(S) with two vertex groups π<sub>1</sub>(A) and π<sub>1</sub>(B), and with cyclic edge groups corresponding to the common boundary components R<sub>1</sub>,..., R<sub>n</sub> of A and B.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

*Proof.* We may assume that  $H_2$  is noncyclic.

- The decomposition S = A ∪ B induces a graph of groups decomposition of π<sub>1</sub>(S) with two vertex groups π<sub>1</sub>(A) and π<sub>1</sub>(B), and with cyclic edge groups corresponding to the common boundary components R<sub>1</sub>,..., R<sub>n</sub> of A and B.
- $G = \pi_1(S)$  acts on the Bass-Serre tree T with vertex stabilizers conjugate to  $\pi_1(A)$  and to  $\pi_1(B)$ .

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

*Proof.* We may assume that  $H_2$  is noncyclic.

- The decomposition S = A ∪ B induces a graph of groups decomposition of π<sub>1</sub>(S) with two vertex groups π<sub>1</sub>(A) and π<sub>1</sub>(B), and with cyclic edge groups corresponding to the common boundary components R<sub>1</sub>,..., R<sub>n</sub> of A and B.
- $G = \pi_1(S)$  acts on the Bass-Serre tree T with vertex stabilizers conjugate to  $\pi_1(A)$  and to  $\pi_1(B)$ .
- Each  $g \in H_2$  acts elliptically on T (since  $g \rightsquigarrow H_1 = \pi_1(A)$ ). Hence  $H_2$  has a global fixed vertex in T.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Continuation of the proof.

If H<sub>2</sub> fixes a vertex of type A, then H<sub>2</sub> is conjugate of π<sub>1</sub>(A) and we are done. Suppose that H<sub>2</sub> fixes a vertex of type B. Recall that each g ∈ H<sub>2</sub> fixes a vertex of type A.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Continuation of the proof.

- If H<sub>2</sub> fixes a vertex of type A, then H<sub>2</sub> is conjugate of π<sub>1</sub>(A) and we are done. Suppose that H<sub>2</sub> fixes a vertex of type B. Recall that each g ∈ H<sub>2</sub> fixes a vertex of type A.
- Then each element g ∈ H<sub>2</sub> fixes an edge of T. If this edge is of type R<sub>i</sub>, then g is conjugate into π<sub>1</sub>(R<sub>i</sub>). Let π<sub>1</sub>(R<sub>i</sub>) = ⟨a<sub>i</sub>⟩.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Continuation of the proof.

- If H<sub>2</sub> fixes a vertex of type A, then H<sub>2</sub> is conjugate of π<sub>1</sub>(A) and we are done. Suppose that H<sub>2</sub> fixes a vertex of type B. Recall that each g ∈ H<sub>2</sub> fixes a vertex of type A.
- Then each element g ∈ H<sub>2</sub> fixes an edge of T. If this edge is of type R<sub>i</sub>, then g is conjugate into π<sub>1</sub>(R<sub>i</sub>). Let π<sub>1</sub>(R<sub>i</sub>) = ⟨a<sub>i</sub>⟩.
- Thus, each g ∈ H<sub>2</sub> is conjugate to a power of some a ∈ {a<sub>1</sub>,..., a<sub>n</sub>}.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .



Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

Continuation of the proof.

 Each g ∈ H<sub>2</sub> is conjugate to a power of some a ∈ {a<sub>1</sub>,..., a<sub>n</sub>}.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

#### Continuation of the proof.

- Each g ∈ H<sub>2</sub> is conjugate to a power of some a ∈ {a<sub>1</sub>,..., a<sub>n</sub>}.
- Let G<sup>(i)</sup> be the *i*-th commutator subgroup of G. Since H<sub>2</sub> is a noncyclic free group, there exists an infinite subset I ⊂ N such that G<sup>(i)</sup> \ G<sup>(i+1)</sup> contains an element x<sub>i</sub> ∈ H<sub>2</sub> for each i ∈ I. We may assume that each x<sub>i</sub> is conjugate to a power of the same a. Since G<sup>(i)</sup>/G<sup>(i+1)</sup> is torsionfree, a ∈ G<sup>(i)</sup> \ G<sup>(i+1)</sup> for each i ∈ I. A contradiction.

Claim. Let  $H_1, H_2 \leq \pi_1(S)$  be fin.gen. Suppose that  $H_1$  is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface.



If each element  $g \in H_2$  is conjugate into  $H_1$ , then the whole  $H_2$  is conjugate into  $H_1$ .

#### Continuation of the proof.

- Each g ∈ H<sub>2</sub> is conjugate to a power of some a ∈ {a<sub>1</sub>,..., a<sub>n</sub>}.
- Let G<sup>(i)</sup> be the *i*-th commutator subgroup of G. Since H<sub>2</sub> is a noncyclic free group, there exists an infinite subset I ⊂ N such that G<sup>(i)</sup> \ G<sup>(i+1)</sup> contains an element x<sub>i</sub> ∈ H<sub>2</sub> for each i ∈ I. We may assume that each x<sub>i</sub> is conjugate to a power of the same a. Since G<sup>(i)</sup>/G<sup>(i+1)</sup> is torsionfree, a ∈ G<sup>(i)</sup> \ G<sup>(i+1)</sup> for each i ∈ I. A contradiction.
- Thus  $H_2$  is conjugate into  $H_1 = \pi_1(A)$ .

Claim. Let  $\chi(S) < 0$ . Given a subgroup  $H \leq \pi_1(S)$  that is realized by a surface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface with genus(B) > 0

and given an element  $g \in G$  that is not conjugate into H, there exists  $H \leq D \stackrel{fin.ind.}{\leq} \pi_1(S)$  such that g is not conjugate into D.

### Step 2 (geometric formulation)

Claim. Let  $\chi(S) < 0$ . Given a subsurface  $A \subset S$  such that  $B := S \setminus A$  is a connected surface with genus(B) > 0



and given a loop  $\gamma \subset S$  that cannot be freely homotoped into A, there exists a finitely-sheeted covering  $\widetilde{S} \to S$  such that A lifts but  $\gamma$  does not.

**Proof.** We will construct such  $\tilde{S}$  by gluing several copies of special coverings of A and B.

(日) (同) (三) (三) (三) (○) (○)

## Construction of $\widetilde{S}$ (form)



### Construction of $\widetilde{S}$ (three conditions)

Endow S with a hyperbolic metric  $\ell$ . Then all coverings of pieces of S inherit the metric  $\ell$ . A curve is called short if its length does not exceed  $\ell(\gamma)$ . So,  $\gamma$  itself and all its lifts are short.

### Construction of $\widetilde{S}$ (three conditions)

Endow S with a hyperbolic metric  $\ell$ . Then all coverings of pieces of S inherit the metric  $\ell$ . A curve is called short if its length does not exceed  $\ell(\gamma)$ . So,  $\gamma$  itself and all its lifts are short.

We will construct a finitely sheeted covering  $\widetilde{S} \to S$  so that each short loop in  $\widetilde{S}$  is contained, up to homotopy, in a homeomorphic lift of the *A*-subsurface.

Then  $\gamma$  will not have closed lifts in  $\widetilde{S}$  as desired.

(日) (同) (三) (三) (三) (○) (○)

### Construction of $\widetilde{S}$ (three conditions)

Endow S with a hyperbolic metric  $\ell$ . Then all coverings of pieces of S inherit the metric  $\ell$ . A curve is called short if its length does not exceed  $\ell(\gamma)$ . So,  $\gamma$  itself and all its lifts are short.

We will construct a finitely sheeted covering  $\widetilde{S} \to S$  so that each short loop in  $\widetilde{S}$  is contained, up to homotopy, in a homeomorphic lift of the *A*-subsurface.

Then  $\gamma$  will not have closed lifts in  $\tilde{S}$  as desired.

#### Therefore we shall

- 1) put conditions on lengths of closed curves in the covering pieces,
- put conditions on lengths of curves connecting two boundary components in each covering piece,
- choose covering pieces so that boundaries of differen pieces under gluing have the same length).

#### We want: these closed curves must be long



### We want: these curves must be long



### These curves are allowed to be short



#### These curves are allowed to be short



## Where short curves in $\tilde{S}$ can be?



## Where short curves in $\tilde{S}$ can be?



## Where short curves in $\tilde{S}$ can be?





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

# Part IV. Hurwitz' problem



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)



No.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで



66

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



Yes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

#### Hurwitz' problem (formulation)

Let S be a compact surface with boundary components  $B_i$   $(i \in I)$ . For which numbers d and  $d_{i,1}, \ldots, d_{i,m(i)}$   $(i \in I)$ , there exists a covering  $\theta : \tilde{S} \to S$  such that

- 1)  $deg\theta = d$ ,
- 2) lifts of each boundary component  $B_i$  cover  $B_i$  with degrees  $d_{i,1}, \ldots, d_{i,m(i)}$ ?

#### Hurwitz' problem (formulation)

Let S be a compact surface with boundary components  $B_i$   $(i \in I)$ . For which numbers d and  $d_{i,1}, \ldots, d_{i,m(i)}$   $(i \in I)$ , there exists a covering  $\theta : \tilde{S} \to S$  such that

- 1)  $deg\theta = d$ ,
- 2) lifts of each boundary component  $B_i$  cover  $B_i$  with degrees  $d_{i,1}, \ldots, d_{i,m(i)}$ ?

There are no difficulties for  $genus(S) \ge 1$ . Partial results for genus(S) = 0 are in papers of Hurwitz, Husemoller, Ezell, Singerman, Edmonds, Kulkarni, Stong, Petronio, Pervova, ....

### Hurwitz' problem (necessary and sufficient conditions) Let $\pi_1(S) =$ $\langle a_1, b_1, \dots, a_g, b_g, x_1, x_2, \dots, x_n | \prod_{i=1}^g [a_i, b_i] \cdot x_1 x_2 \dots x_n = 1 \rangle.$

# Hurwitz' problem (necessary and sufficient conditions) Let $\pi_1(S) =$ $\langle a_1, b_1, \dots, a_g, b_g, x_1, x_2, \dots, x_n | \prod_{i=1}^g [a_i, b_i] \cdot x_1 x_2 \dots x_n = 1 \rangle.$ Theorem. There exists a covering $\widetilde{S} \to S$ of degree d with the data $\begin{pmatrix} d_{11} \\ \vdots \end{pmatrix} = \begin{pmatrix} d_{n1} \\ \vdots \end{pmatrix}$ iff

data 
$$\begin{pmatrix} \vdots \\ d_{1,m_1} \end{pmatrix}$$
, ...,  $\begin{pmatrix} \vdots \\ d_{n,m_n} \end{pmatrix}$  iff  
(1)  $\chi(\widetilde{S}) = d \cdot \chi(S)$ ,  
(2)  $d = d_{i1} + \dots + d_{im_i}$  for every  $i = 1, \dots, n$ ,

and there exists a homomorphism  $\theta : \pi_1(S) \to Perm\{1, 2, ..., d\}$  such that:

# Part V. Problems on SCS and SICS



- 1) Are limit groups SCS?
- Let A, B be LERF groups having a common malnormal subgroup C. Is A \*<sub>C</sub> B a SCS-group (a SICS-group)?
- 3) Which interesting classes of groups are SCS (SICS)?
- 4) Investigate relations between CS, LERF, SCS, SICS.
- 5) Whether SCS (SICS) inherits under passing to subgroups and overgroups of finite index?
- 6) Which interesting classes of groups G possess the following property:
  Given fin. gen. H<sub>1</sub>, H<sub>2</sub> ≤ G. If each element of H<sub>2</sub> is conjugate into H<sub>1</sub>, then the whole H<sub>2</sub> is conjugate into H<sub>1</sub>.

**THANK YOU!**