Subgroup Conjugacy Separability for Groups

Oleg Bogopolski and Kai-Uwe Bux

Webinar "GT", NY, 3.04.14

Content

1. New residual properties of groups
2. Proof that free groups are SICS
3. Proof that surface groups are SICS
4. Hurwitz' problem
5. Problems on SCS and SICS

Part I.
 New residual properties of groups

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

Def. A group G is called LERF, if any two different f.g. subgroups $H_{1}, H_{2} \leqslant G$ remain different in some finite quotient of G.

Known residual properties of groups:

- residually finite groups (RF)
- conjugacy separable groups (CS)
- locally extended residually finite groups (LERF)

Def. A group G is called LERF, if any two different f.g. subgroups $H_{1}, H_{2} \leqslant G$ remain different in some finite quotient of G.
$H_{1} \underset{G}{\neq} H_{2} \Longrightarrow$ there exists a fin. quotient $\bar{G}: \overline{H_{1}} \underset{\bar{G}}{\neq \bar{H}_{2}}$

New residual property of groups (SCS-property):

A group G is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups $H_{1}, H_{2} \leqslant G$ remain non-conjugate in some finite quotient of G.

New residual property of groups (SCS-property):

A group G is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups $H_{1}, H_{2} \leqslant G$ remain non-conjugate in some finite quotient of G.
$H_{1} \underset{G}{\nsim} H_{2} \Longrightarrow$ there exists a fin. quotient $\bar{G}: \overline{H_{1}} \underset{\bar{G}}{\nsim} \overline{H_{2}}$

New residual property of groups (SCS-property):

A group G is called subgroup conjugacy separable (SCS), if any two f.g. and non-conjugate subgroups $H_{1}, H_{2} \leqslant G$ remain non-conjugate in some finite quotient of G.
$H_{1} \underset{G}{\nsim} H_{2} \Longrightarrow$ there exists a fin. quotient $\bar{G}: \overline{H_{1}} \underset{\bar{G}}{\nsim} \overline{H_{2}}$

The following groups are SCS:

- virtually polycyclic groups (Grunewald and Segal)
- free groups and some virtually free groups (B. and Grunewald)
- orientable surface groups (B. and Bux)
- $A * B$ if A, B are SCS and LERF (B. and Elsawy)

Another useful property: SICS

For $A, B \leqslant G$, we say that A is conjugate into B if there exists $g \in G$ with $A^{g} \leqslant B$. We write

$$
A \underset{G}{\rightsquigarrow} B
$$

Another useful property: SICS

For $A, B \leqslant G$, we say that A is conjugate into B if there exists $g \in G$ with $A^{g} \leqslant B$. We write

$$
A \underset{G}{\rightsquigarrow} B
$$

Def. A group G is called subgroup into-conjugacy separable (SICS), if for any two f.g. subgroups $H_{1}, H_{2} \leqslant G$ the following implication holds:
$\underset{G}{H_{2}} \underset{G}{\nrightarrow} H_{1} \Longrightarrow$ there exists a fin. quotient $\bar{G}: \overline{H_{2}} \underset{\bar{G}}{\nsim} \overline{H_{1}}$

How to prove that G is SCS (a strategy):

1. Prove that SICS \Longrightarrow SCS (this holds not for any G)
2. Use the following reformulation of SICS:

How to prove that G is SCS (a strategy):

1. Prove that SICS \Longrightarrow SCS (this holds not for any G)
2. Use the following reformulation of SICS:

3. Use coverings if G is "geometric".

For which groups SICS implies SCS?

Lem. Suppose that a group G does not contain a f.g. subgroup H and an element g such that $H<H^{g}$. Then for G we have (SICS
$\Longrightarrow S C S$).

For which groups SICS implies SCS?

Lem. Suppose that a group G does not contain a f.g. subgroup H and an element g such that $H<H^{g}$. Then for G we have (SICS
$\Longrightarrow S C S$).
Cor. For free and surface groups, we have (SICS \Longrightarrow SCS).
Proof (for free groups). If the assumption of Lemma is not satisfied, then

$$
H<H^{g}<H^{g^{2}}<\ldots
$$

This contradicts Takahasi's result that for any strictly ascending infinite chain of f.g. subgroups in a free group the ranks of the members of this chain are unbounded.

Part II.

Proof that free groups are SICS

Proof that F is SICS

Step 0. (Notations) We realize $F=\pi_{1}(R)$. For each $H \leqslant F$, there is a covering $\Gamma_{H} \rightarrow R$ with $\pi_{1}\left(\Gamma_{H}\right)=H$. There are edges in Γ_{H}, which we call entries in and exists from $\operatorname{Core}\left(\Gamma_{H}\right)$.

$$
H:=\left\langle[a, b],\left[a, b^{-1}\right],\left[a^{-1}, b\right],\left[a^{-1}, b^{-1}\right]\right\rangle \leqslant F(a, b)
$$

Proof that F is SICS

Remember, that we have $H_{1}, H_{2} \leqslant F$ such that $H_{2} \nsim H_{1}$.
Step 1. (M.Hall theorem for H_{1}) We construct a subgroup $D \leqslant F$ of finite index in F which contains H_{1} as a free factor.
1.1. Take the covering space $\Gamma_{H_{1}}$.

Proof that F is SICS

1.2. Cut out infinite trees as it shown below.

Proof that F is SICS

1.3. Take an arbitrary finite covering $\Gamma_{K} \rightarrow R$.

Proof that F is SICS

1.4. Glue these two pieces.

Proof that F is SICS

1.5. Delete the edge with the label a.

Proof that F is SICS

We get a finite covering Γ_{D} containing $\operatorname{Core}\left(\Gamma_{H_{1}}\right)$.
Thus, D is a subgroup of finite index in F containing H_{1} as a free factor.

Proof that F is SICS

Step 2. (Put H_{2} in the play) Let $H_{2}=\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle$. We don't want the situation that is shown below, since it would mean that $H_{2}^{g} \leqslant D$.

Proof that F is SICS

Step 2. (Put H_{2} in the play) Let $H_{2}=\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle$. We don't want the situation that is shown below, since it would mean that $H_{2}^{g} \leqslant D$.

To avoid this situation, we take Γ_{K} that does not contain small loops, i.e., nontrivial loops of length up to $C:=\max \left\{\left|h_{i}\right|\right\}+1$.

Proof that F is SICS

Step 3. (End of the proof) We prove that if we take Γ_{K} without loops of length up to C, then $H_{2}=\left\langle h_{1}, \ldots, h_{n}\right\rangle$ is not conjugate into D.

Suppose the contrary: $H_{2}^{g} \leqslant D$. Where the loops with labels h_{i} can lie?
Case 1. This cannot happen.

Proof that F is SICS

Hence we have

Proof that F is SICS

Case 2. This cannot happen.

Proof that F is SICS

Case 3. This cannot happen.

Proof that F is SICS

Case 4. This can happen.

Proof that F is SICS

Case 4. This can happen. But in this case $H_{2}^{\widetilde{g}} \leqslant H_{1}$ that contradicts our assumption. Thus, H_{2} is not conjugate into D.

Part III.
Proof that surface groups are SICS

Let G be a group. For any fin.gen. subgroup $H \leqslant G$, we choose

$$
H \leqslant H^{*} \stackrel{\text { fin.ind }}{\leqslant} G .
$$

Useful: If G is a "geometric group", then, given $H \leqslant G$, we will choose H^{*} so that H is "geometrically embedded" in H^{*}.

Visualization of subgroups

Let G be a group. For any fin.gen. subgroup $H \leqslant G$, we choose

$$
H \leqslant H^{*} \stackrel{\text { fin.ind }}{\leqslant} G
$$

Useful: If G is a "geometric group", then, given $H \leqslant G$, we will choose H^{*} so that H is "geometrically embedded" in H^{*}.

Ex:

1) M. Hall Thm. For any fin. gen. subgroup H of a free group G, there exists a finite index subgroup H^{*} in G such that H is a free factor of H^{*}.
2) P. Scott Thm. A similar, but not the same statement for surface groups.

Recall the Definition of SICS

Recall the Definition of SICS

Def. Suppose that for any fin.gen. $H_{1} \leqslant G$ and for any fin.gen. $H_{2} \leqslant G$ we have

Then G is called SICS.

Star Lemma for SICS

Let G be a group. For any fin.gen. subgroup $H \leqslant G$, we choose

$$
H \leqslant H^{*} \stackrel{\text { fin.ind }}{\leqslant} G
$$

Lem. Suppose that for any fin.gen. $H_{1} \leqslant G$ and for any fin.gen. $H_{2} \leqslant H_{1}^{*}$ we have

Then G is SICS.

Scott' Theorem

Thm. (P. Scott) Let S be a closed surface. For any fin. gen. subgroup $H \leqslant \pi_{1}(S, x)$, there exists a finitely sheeted covering map $p:(\widetilde{S}, \widetilde{x}) \rightarrow(S, x)$ such that H is realized by a subsurface in \widetilde{S}.

The latter means that there exists an incompressible compact subsurface $A \subseteq \widetilde{S}$ containing \widetilde{x} such that $p_{*}\left(\pi_{1}(A, \widetilde{x})\right)=H$.

Thus, we can set $H^{*}:=p_{*}\left(\pi_{1}(\widetilde{S}, \widetilde{x})\right)$.

Example 1 to Scott' Theorem

$\pi_{1}(S, x)=\left\langle x_{1}, x_{2}, y_{1}, y_{2} \mid\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right]=1\right\rangle, \quad$ where $[a, b]:=a^{-1} b^{-1} a b$ The subgroup $\left\langle x_{1}, y_{1}\right\rangle$ can be realized by a subsurface in S.

Example 2 to Scott' Theorem

The cyclic subgroup $\left\langle y_{1} x_{2}^{-1}\right\rangle \leqslant \pi_{1}(S, x)$ cannot be realized by a subsurface in S.

Example 2 to Scott' Theorem

The cyclic subgroup $\left\langle y_{1} x_{2}^{-1}\right\rangle \leqslant \pi_{1}(S, x)$ cannot be realized by a subsurface in S.

Example 2 to Scott' Theorem (continuation)

How to construct a covering $\widetilde{S} \rightarrow S$ such that the subgroup $\left\langle y_{1} x_{2}^{-1}\right\rangle \leqslant \pi_{1}(S, x)$ is realized by a subsurface in \widetilde{S} ?

Example 2 to Scott' Theorem (continuation)

How to construct a covering $\widetilde{S} \rightarrow S$ such that the subgroup $\left\langle y_{1} x_{2}^{-1}\right\rangle \leqslant \pi_{1}(S, x)$ is realized by a subsurface in \widetilde{S} ?

Example 2 to Scott' Theorem (continuation)

Example 2 to Scott' Theorem (continuation)

Example 2 to Scott' Theorem (continuation)

$$
\downarrow
$$

Example 2 to Scott' Theorem (continuation)

\downarrow

An improvement of Scott' Theorem

P.Scott Theorem (improved). Let S be a closed surface with $\chi(S)<0$. For any finitely generated subgroup $H \leqslant \pi_{1}(S, x)$, there exists a finitely sheeted covering map $p:(\widetilde{S}, \widetilde{x}) \rightarrow(S, x)$ such that 1) H is realized in \widetilde{S}, i.e., there exists an incompressible compact subsurface $A \subseteq \widetilde{S}$ containing \widetilde{x} with $p_{*}\left(\pi_{1}(A, \widetilde{x})\right)=H$;
2) A has a good shape, i.e., $B:=S \backslash A$ is a connected surface and $\operatorname{genus}(B)>0$.

Branched coverings of graphs (Example 1)

Branched coverings of graphs (Example 1)

Branched coverings of graphs (Example 2)

Branched coverings of graphs (Example 2)

Creating a genus in all components of $S \backslash A$

Creating a genus in all components of $S \backslash A$

Creating a unique complementary component to A

Creating a unique complementary component to A

Creating a unique complementary component to A

Creating a unique complementary component to A

Creating a unique complementary component to A

Proof that surface groups are SICS (a preparation)

We want to prove that $G:=\pi_{1}(S)$ is SICS. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin. gen. and such that $H_{2} \nsim H_{1}$. Using the Star Lemma and the improvement of Scott' Theorem, we may assume the following:

Assumption. $H_{1} \leqslant \pi_{1}(S)$ is realized by an incompressible subsurface $A \subset S$ s.t. $B:=S \backslash A$ is a connected surface with $\operatorname{genus}(B)>0$.

What we want to prove for $G=\pi_{1}(S)$

Proof in three steps

$$
\begin{array}{lll}
G & & \\
\text { V/ fin.ind. } & \\
D & & \\
\text { V/ } & \text { y } & \\
H_{1} & & H_{2}
\end{array}
$$

Step $1 \quad \Downarrow \exists g \in H_{2}$
Step 3

Step 1

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Step 1

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Proof. We may assume that H_{2} is noncyclic.

- The decomposition $S=A \cup B$ induces a graph of groups decomposition of $\pi_{1}(S)$ with two vertex groups $\pi_{1}(A)$ and $\pi_{1}(B)$, and with cyclic edge groups corresponding to the common boundary components R_{1}, \ldots, R_{n} of A and B.

Step 1

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Proof. We may assume that H_{2} is noncyclic.

- The decomposition $S=A \cup B$ induces a graph of groups decomposition of $\pi_{1}(S)$ with two vertex groups $\pi_{1}(A)$ and $\pi_{1}(B)$, and with cyclic edge groups corresponding to the common boundary components R_{1}, \ldots, R_{n} of A and B.
- $G=\pi_{1}(S)$ acts on the Bass-Serre tree T with vertex stabilizers conjugate to $\pi_{1}(A)$ and to $\pi_{1}(B)$.

Step 1

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Proof. We may assume that H_{2} is noncyclic.

- The decomposition $S=A \cup B$ induces a graph of groups decomposition of $\pi_{1}(S)$ with two vertex groups $\pi_{1}(A)$ and $\pi_{1}(B)$, and with cyclic edge groups corresponding to the common boundary components R_{1}, \ldots, R_{n} of A and B.
- $G=\pi_{1}(S)$ acts on the Bass-Serre tree T with vertex stabilizers conjugate to $\pi_{1}(A)$ and to $\pi_{1}(B)$.
- Each $g \in H_{2}$ acts elliptically on T (since $g \rightsquigarrow H_{1}=\pi_{1}(A)$). Hence H_{2} has a global fixed vertex in T.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- If H_{2} fixes a vertex of type A, then H_{2} is conjugate of $\pi_{1}(A)$ and we are done. Suppose that H_{2} fixes a vertex of type B. Recall that each $g \in H_{2}$ fixes a vertex of type A.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- If H_{2} fixes a vertex of type A, then H_{2} is conjugate of $\pi_{1}(A)$ and we are done. Suppose that H_{2} fixes a vertex of type B. Recall that each $g \in H_{2}$ fixes a vertex of type A.
- Then each element $g \in H_{2}$ fixes an edge of T. If this edge is of type R_{i}, then g is conjugate into $\pi_{1}\left(R_{i}\right)$. Let $\pi_{1}\left(R_{i}\right)=\left\langle a_{i}\right\rangle$.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- If H_{2} fixes a vertex of type A, then H_{2} is conjugate of $\pi_{1}(A)$ and we are done. Suppose that H_{2} fixes a vertex of type B. Recall that each $g \in H_{2}$ fixes a vertex of type A.
- Then each element $g \in H_{2}$ fixes an edge of T. If this edge is of type R_{i}, then g is conjugate into $\pi_{1}\left(R_{i}\right)$. Let $\pi_{1}\left(R_{i}\right)=\left\langle a_{i}\right\rangle$.
- Thus, each $g \in H_{2}$ is conjugate to a power of some $a \in\left\{a_{1}, \ldots, a_{n}\right\}$.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- Each $g \in H_{2}$ is conjugate to a power of some $a \in\left\{a_{1}, \ldots, a_{n}\right\}$.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- Each $g \in H_{2}$ is conjugate to a power of some $a \in\left\{a_{1}, \ldots, a_{n}\right\}$.
- Let $G^{(i)}$ be the i-th commutator subgroup of G. Since H_{2} is a noncyclic free group, there exists an infinite subset $I \subset \mathbb{N}$ such that $G^{(i)} \backslash G^{(i+1)}$ contains an element $x_{i} \in H_{2}$ for each $i \in I$. We may assume that each x_{i} is conjugate to a power of the same a. Since $G^{(i)} / G^{(i+1)}$ is torsionfree, $a \in G^{(i)} \backslash G^{(i+1)}$ for each $i \in I$. A contradiction.

Step 1 (continuation)

Claim. Let $H_{1}, H_{2} \leqslant \pi_{1}(S)$ be fin.gen. Suppose that H_{1} is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface.

If each element $g \in H_{2}$ is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

Continuation of the proof.

- Each $g \in H_{2}$ is conjugate to a power of some $a \in\left\{a_{1}, \ldots, a_{n}\right\}$.
- Let $G^{(i)}$ be the i-th commutator subgroup of G. Since H_{2} is a noncyclic free group, there exists an infinite subset $I \subset \mathbb{N}$ such that $G^{(i)} \backslash G^{(i+1)}$ contains an element $x_{i} \in H_{2}$ for each $i \in I$. We may assume that each x_{i} is conjugate to a power of the same a. Since $G^{(i)} / G^{(i+1)}$ is torsionfree, $a \in G^{(i)} \backslash G^{(i+1)}$ for each $i \in I$. A contradiction.
- Thus H_{2} is conjugate into $H_{1}=\pi_{1}(A)$.

Step 2

Claim. Let $\chi(S)<0$. Given a subgroup $H \leqslant \pi_{1}(S)$ that is realized by a surface $A \subset S$ such that $B:=S \backslash A$ is a connected surface with $\operatorname{genus}(B)>0$
and given an element $g \in G$ that is not conjugate into H, there exists $H \leqslant D \stackrel{\text { fin.ind. }}{\leqslant} \pi_{1}(S)$ such that g is not conjugate into D.

Step 2 (geometric formulation)

Claim. Let $\chi(S)<0$. Given a subsurface $A \subset S$ such that $B:=S \backslash A$ is a connected surface with $\operatorname{genus}(B)>0$

and given a loop $\gamma \subset S$ that cannot be freely homotoped into A, there exists a finitely-sheeted covering $\widetilde{S} \rightarrow S$ such that A lifts but γ does not.

Proof. We will construct such \widetilde{S} by gluing several copies of special coverings of A and B.

Construction of \widetilde{S} (form)

Construction of \widetilde{S} (three conditions)

Endow S with a hyperbolic metric ℓ. Then all coverings of pieces of S inherit the metric ℓ. A curve is called short if its length does not exceed $\ell(\gamma)$. So, γ itself and all its lifts are short.

Construction of \widetilde{S} (three conditions)

Endow S with a hyperbolic metric ℓ. Then all coverings of pieces of S inherit the metric ℓ. A curve is called short if its length does not exceed $\ell(\gamma)$. So, γ itself and all its lifts are short.

We will construct a finitely sheeted covering $\widetilde{S} \rightarrow S$ so that each short loop in \widetilde{S} is contained, up to homotopy, in a homeomorphic lift of the A-subsurface.

Then γ will not have closed lifts in \widetilde{S} as desired.

Construction of \widetilde{S} (three conditions)

Endow S with a hyperbolic metric ℓ. Then all coverings of pieces of S inherit the metric ℓ. A curve is called short if its length does not exceed $\ell(\gamma)$. So, γ itself and all its lifts are short.

We will construct a finitely sheeted covering $\widetilde{S} \rightarrow S$ so that each short loop in \widetilde{S} is contained, up to homotopy, in a homeomorphic lift of the A-subsurface.

Then γ will not have closed lifts in \widetilde{S} as desired.
Therefore we shall

1) put conditions on lengths of closed curves in the covering pieces,
2) put conditions on lengths of curves connecting two boundary components in each covering piece,
3) choose covering pieces so that boundaries of differen pieces under gluing have the same length).

We want: these closed curves must be long

We want: these curves must be long

These curves are allowed to be short

These curves are allowed to be short

Where short curves in \widetilde{S} can be?

Where short curves in \widetilde{S} can be?

Where short curves in \widetilde{S} can be?

A final gluing of large and small pieces

Part IV.

Hurwitz' problem

Example 1

Does such covering exist?

Example 1

Does such covering exist?

No.

Example 2

Does such covering exist?

Example 2

Does such covering exist?

Yes.

Hurwitz' problem (formulation)

Let S be a compact surface with boundary components $B_{i}(i \in I)$. For which numbers d and $d_{i, 1}, \ldots, d_{i, m(i)}(i \in I)$, there exists a covering $\theta: \widetilde{S} \rightarrow S$ such that

1) $\operatorname{deg} \theta=d$,
2) lifts of each boundary component B_{i} cover B_{i} with degrees $d_{i, 1}, \ldots, d_{i, m(i)} ?$

Hurwitz' problem (formulation)

Let S be a compact surface with boundary components $B_{i}(i \in I)$. For which numbers d and $d_{i, 1}, \ldots, d_{i, m(i)}(i \in I)$, there exists a covering $\theta: \widetilde{S} \rightarrow S$ such that

1) $\operatorname{deg} \theta=d$,
2) lifts of each boundary component B_{i} cover B_{i} with degrees $d_{i, 1}, \ldots, d_{i, m(i)} ?$

There are no difficulties for $\operatorname{genus}(S) \geqslant 1$. Partial results for $\operatorname{genus}(S)=0$ are in papers of Hurwitz, Husemoller, Ezell, Singerman, Edmonds, Kulkarni, Stong, Petronio, Pervova,

Hurwitz' problem (necessary and sufficient conditions)
Let $\pi_{1}(S)=$
$\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, x_{1}, x_{2}, \ldots, x_{n} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \cdot x_{1} x_{2} \ldots x_{n}=1\right\rangle$.

Hurwitz' problem (necessary and sufficient conditions)

Let $\pi_{1}(S)=$
$\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, x_{1}, x_{2}, \ldots, x_{n} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \cdot x_{1} x_{2} \ldots x_{n}=1\right\rangle$.
Theorem. There exists a covering $\widetilde{S} \rightarrow S$ of degree d with the $\operatorname{data}\left(\begin{array}{c}d_{11} \\ \vdots \\ d_{1, m_{1}}\end{array}\right), \ldots,\left(\begin{array}{c}d_{n 1} \\ \vdots \\ d_{n, m_{n}}\end{array}\right)$ iff
(1) $\chi(\widetilde{S})=d \cdot \chi(S)$,
(2) $d=d_{i 1}+\cdots+d_{i m_{i}}$ for every $i=1, \ldots, n$,
and there exists a homomorphism $\theta: \pi_{1}(S) \rightarrow \operatorname{Perm}\{1,2, \ldots, d\}$ such that:
(3) $\operatorname{Im}(\theta)$ acts transitively on $\{1,2, \ldots, d\}$,
(4) $\theta\left(x_{i}\right)$ is the product of m_{i} independent cycles of lengths

$$
d_{i 1}, \ldots, d_{i m_{i}}, \quad i=1, \ldots, n
$$

Part V. Problems on SCS and SICS

1) Are limit groups SCS?
2) Let A, B be LERF groups having a common malnormal subgroup C. Is $A *_{C} B$ a SCS-group (a SICS-group)?
3) Which interesting classes of groups are SCS (SICS)?
4) Investigate relations between CS, LERF, SCS, SICS.
5) Whether SCS (SICS) inherits under passing to subgroups and overgroups of finite index?
6) Which interesting classes of groups G possess the following property:
Given fin. gen. $H_{1}, H_{2} \leqslant G$. If each element of H_{2} is conjugate into H_{1}, then the whole H_{2} is conjugate into H_{1}.

THANK YOU!

