Cayley graphs of relatively hyperbolic groups

Yago Antolín

Vanderbilt University

Webinar, February 20th 2014

▲ 同 ▶ | ▲ 三 ▶

This talk is based in a joint work with Laura Ciobanu:

Finite generating sets of relatively hyperbolic groups and applications to geodesic languages. arXiv:1402.2985

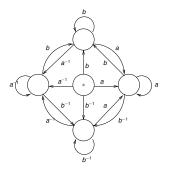
Outline

- 2 Regular Conjugacy geodesics and BCD
- 3 Generating sets of relatively hyperbolic groups
- 4 Relatively hyperbolic groups with FFTP
- 5 Relatively hyperbolic groups with BCD or NSC

- B

The language of geodesics of a free group is regular

Let $\mathbf{F} = \langle a, b \mid \rangle$ and $X = \{a, b\}^{\pm 1}$. An automaton recognizing Geo(\mathbf{F}, X).



 $\operatorname{Geo}(\mathbf{F}, X) = [(X^* a A X^*) \cup (X^* A a X^*) \cup (X^* b B X^*) \cup (X^* B b X^*)]^c$

- E 🕨

FFTP

A Cayley graph $\Gamma(G, X)$ has k-FFTP if every non-geodesic path k-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

- all possible positions of a companion with respect to our actual position (a ball of radius *k* in the Cayley graph)
- together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

- all possible positions of a companion with respect to our actual position (a ball of radius *k* in the Cayley graph)
- together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

- all possible positions of a companion with respect to our actual position (a ball of radius *k* in the Cayley graph)
- together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

 all possible positions of a companion with respect to our actual position (a ball of radius k in the Cayley graph)

• together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

 all possible positions of a companion with respect to our actual position (a ball of radius k in the Cayley graph)

 together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{\mathbb{B}(k)|}$ states).

イロト イポト イヨト イヨト

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

- all possible positions of a companion with respect to our actual position (a ball of radius k in the Cayley graph)
- together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

イロト イポト イヨト イヨト

FFTP

A Cayley graph $\Gamma(G, X)$ has *k*-FFTP if every non-geodesic path *k*-fellow travels with a shorter path with same end points.

Building an automaton for the language of geodesics

If $\Gamma(G, X)$ has *k*-FFTP, we do not need to remember the whole path to know if we are following a geodesics. Suppose we know

- all possible positions of a companion with respect to our actual position (a ball of radius k in the Cayley graph)
- together with the time difference for reaching our position and the time the companion needed to reach its position. Notice that if we are on a geodesic, the time differences can not exceed *k*.

Use all that information to build an automaton (at most $2k^{|\mathbb{B}(k)|}$ states).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cayley graphs with FFTP

FFTP depends on the generating set

There is a virtually abelian group such for which some Cayley graphs have FFTP and some don't.

Examples

- Abelian and Hyperbolic groups have FFTP with respect to any generating set.
- Virtually abelian and geometrically finite hyperbolic groups have FFTP with respect to some generating sets [Neumann-Shapiro].
- Coxeter groups [Noskov], Garside groups [Holt], Artin groups of large type [Holt-Rees] with respect to the standard generators.
- Groups with certain group actions of Buildings and CAT(0) Cubical Complexes [Noskov].

Cayley graphs with FFTP

FFTP depends on the generating set

There is a virtually abelian group such for which some Cayley graphs have FFTP and some don't.

Examples

- Abelian and Hyperbolic groups have FFTP with respect to any generating set.
- Virtually abelian and geometrically finite hyperbolic groups have FFTP with respect to some generating sets [Neumann-Shapiro].
- Coxeter groups [Noskov], Garside groups [Holt], Artin groups of large type [Holt-Rees] with respect to the standard generators.
- Groups with certain group actions of Buildings and CAT(0) Cubical Complexes [Noskov].

< ロ > < 同 > < 回 > < 回 >

Properties of (G, X) with FFTP.

Properties

Let G be a group, X a finite generating and such that (G, X) has FFTP.

- (*G*, *X*) has a regular language of geodesic words. (*G*, *X*) has finitely many cone types [Neumann, Shapiro]
- G has a finite presentation with a Dehn function that is at most quadratic [Elder]
- G is of type F_3 [Elder].

不同 トイモトイモ

For simplicity, we say that G has FFTP if there is some finite generating set X such that (G, X) has FFTP.

Theorem (Antolin, Ciobanu)

If G is hyperbolic relative to groups with FFTP, then G has FFTP.

Corollary

FFTP is preserved under free products with finite amalgamation and HNN extensions with finite associate subgroups.

Corollary

Groups hyperbolic relative to virtually abelian have FFTP.

For simplicity, we say that *G* has FFTP if there is some finite generating set *X* such that (G, X) has FFTP.

Theorem (Antolin, Ciobanu)

If G is hyperbolic relative to groups with FFTP, then G has FFTP.

Corollary

FFTP is preserved under free products with finite amalgamation and HNN extensions with finite associate subgroups.

Corollary

Groups hyperbolic relative to virtually abelian have FFTP.

< ロ > < 同 > < 回 > < 回 >

For simplicity, we say that *G* has FFTP if there is some finite generating set *X* such that (G, X) has FFTP.

Theorem (Antolin, Ciobanu)

If G is hyperbolic relative to groups with FFTP, then G has FFTP.

Corollary

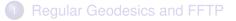
FFTP is preserved under free products with finite amalgamation and HNN extensions with finite associate subgroups.

Corollary

Groups hyperbolic relative to virtually abelian have FFTP.

< ロ > < 同 > < 回 > < 回 >

Outline



2 Regular Conjugacy geodesics and BCD

- 3 Generating sets of relatively hyperbolic groups
- 4 Relatively hyperbolic groups with FFTP
- 5 Relatively hyperbolic groups with BCD or NSC

- B

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

AbaBaBa

aBBaabA

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

4 **A** N A **B** N A **B** N

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

AbaBaBa

aBBaabA

Reduce cyclically the first word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

baBaB

aBBaabA

Reduce cyclically the first word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

aBa

aBBaabA

Reduce cyclically the first word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

aBa

BBaab

Reduce cyclically the first word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

aBa

Baa

Permute cyclically one of the words.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $ConjGeo(\mathbf{F}, X) = Geo(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

Baa

Baa

They are conjugate if they are the same word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

Baa

Baa

They are conjugate if they are the same word. A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{P}, X = \{a, b, A, B\})$ is regular.

 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

Let $\mathbb{F} = \langle a, b \mid \rangle$ be a free group of rank 2.

Baa

Baa

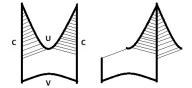
They are conjugate if they are the same word.

A *conjugacy geodesic* over (G, X) is a geodesic word that has minimal length among the elements in its conjugacy class. The language of conjucagy geodesics in a $(\mathbb{F}, X = \{a, b, A, B\})$ is regular.

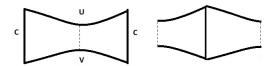
 $\mathsf{ConjGeo}(\mathbf{F}, X) = \mathsf{Geo}(\mathbf{F}, X) \cap (aX^*A)^c \cap (AX^*a)^c \cap (bX^*B)^c \cap (bX^*B)^c$

4 D N 4 B N 4 B N 4 B N

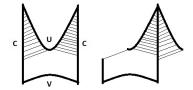
U is in the 2δ-neighbourhood of the other three sides.
If N_{2δ}(U) ∩ V = Ø, U is not a cyclic geodesic.



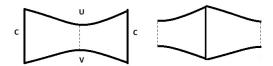
 If N_{2δ}(U) ∩ V ≠ Ø, up to cyclic permutation, there is a conjugator of length ≤ 2δ.



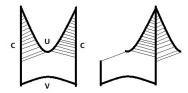
- U is in the 2δ -neighbourhood of the other three sides.
- If $\mathcal{N}_{2\delta}(U) \cap V = \emptyset$, U is not a cyclic geodesic.



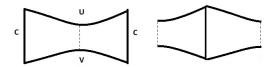
 If N_{2δ}(U) ∩ V ≠ Ø, up to cyclic permutation, there is a conjugator of length ≤ 2δ.



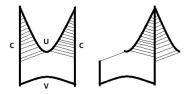
- *U* is in the 2δ -neighbourhood of the other three sides.
- If $\mathcal{N}_{2\delta}(U) \cap V = \emptyset$, *U* is not a cyclic geodesic.



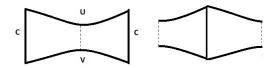
 If N_{2δ}(U) ∩ V ≠ Ø, up to cyclic permutation, there is a conjugator of length ≤ 2δ.



- *U* is in the 2δ -neighbourhood of the other three sides.
- If $\mathcal{N}_{2\delta}(U) \cap V = \emptyset$, *U* is not a cyclic geodesic.



If N_{2δ}(U) ∩ V ≠ Ø, up to cyclic permutation, there is a conjugator of length ≤ 2δ.



BCD

Let $A \ge 0$. We say that (G, X) has A-BCD (Bounded conjugacy diagrams) if for every $U, V \in CycGeo(G, X), gUg^{-1} =_G V$ for some $g \in G$, there exists $h \in G$ and cyclic shifts U' and V' of U and V such that $hU'h_G^{-1} = V'$ and

 $\min\{\max\{\ell(U),\ell(V)\},|h|_X\}\leq A.$

Examples

- Free groups have 0-BCD with respect to free basis.
- Hyperbolic groups have $(8\delta + 1)$ -BCD.
- Abelian groups have 0-BCD.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has A-FFTP and A-BCD.

BCD

Let $A \ge 0$. We say that (G, X) has A-BCD (Bounded conjugacy diagrams) if for every $U, V \in CycGeo(G, X), gUg^{-1} =_G V$ for some $g \in G$, there exists $h \in G$ and cyclic shifts U' and V' of U and V such that $hU'h_G^{-1} = V'$ and

 $\min\{\max\{\ell(U),\ell(V)\},|h|_X\}\leq A.$

Examples

- Free groups have 0-BCD with respect to free basis.
- Hyperbolic groups have $(8\delta + 1)$ -BCD.
- Abelian groups have 0-BCD.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has A-FFTP and A-BCD.

BCD

Let $A \ge 0$. We say that (G, X) has A-BCD (Bounded conjugacy diagrams) if for every $U, V \in CycGeo(G, X), gUg^{-1} =_G V$ for some $g \in G$, there exists $h \in G$ and cyclic shifts U' and V' of U and V such that $hU'h_G^{-1} = V'$ and

 $\min\{\max\{\ell(U),\ell(V)\},|h|_X\}\leq A.$

Examples

- Free groups have 0-BCD with respect to free basis.
- Hyperbolic groups have $(8\delta + 1)$ -BCD.
- Abelian groups have 0-BCD.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has A-FFTP and A-BCD.

NSC

Neighboring shorter conjugate property

(G, X) has A-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees) If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regula

Skecth of the proof

With a the same idea as for FFTP we build automatons accepting

$$\mathcal{L}_g = \{ W \in \operatorname{Geo}(G, X) \mid |gWg^{-1}|_X \geq |W|_X \}$$

 $\operatorname{ConjGeo}(G,X) = (\operatorname{Cyc}(\operatorname{Geo}(G,X)^c))^c \cap (\cup_{|g|_X \leq A} \mathcal{L}_g)^c.$

NSC

Neighboring shorter conjugate property

(G, X) has *A*-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees)

If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regular.

Skecth of the proof

With a the same idea as for FFTP we build automatons accepting

$$\mathcal{L}_g = \{ W \in \operatorname{Geo}(G, X) \mid |gWg^{-1}|_X \geq |W|_X \}$$

 $\operatorname{ConjGeo}(G,X) = (\operatorname{Cyc}(\operatorname{Geo}(G,X)^c))^c \cap (\cup_{|g|_X \leq A} \mathcal{L}_g)^c.$

Neighboring shorter conjugate property

(G, X) has *A*-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees) If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regular.

Skecth of the proof

With a the same idea as for FFTP we build automatons accepting

$$\mathcal{L}_g = \{ W \in \operatorname{Geo}(G, X) \mid |gWg^{-1}|_X \geq |W|_X \}$$

 $\operatorname{ConjGeo}(G,X) = (\operatorname{Cyc}(\operatorname{Geo}(G,X)^c))^c \cap (\cup_{|g|_X \leq A} \mathcal{L}_g)^c.$

Neighboring shorter conjugate property

(G, X) has A-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees)

If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regular.

Skecth of the proof

With a the same idea as for FFTP we build automatons accepting

$$\mathcal{L}_g = \{ W \in \operatorname{Geo}(G, X) \mid |gWg^{-1}|_X \geq |W|_X \}$$

 $\operatorname{ConjGeo}(G,X) = (\operatorname{Cyc}(\operatorname{Geo}(G,X)^c))^c \cap (\cup_{|g|_X \leq A} \mathcal{L}_g)^c.$

Neighboring shorter conjugate property

(G, X) has *A*-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees) If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regular.

Theorem (Antolin, Ciobanu)

Let G be hyperbolic relative to virtually abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has A-FFTP and A-NSC. In particular, ConjGeo(G, X) is regular.

Neighboring shorter conjugate property

(G, X) has *A*-NSC if for any $U \in CycGeo(G, X) - ConjGeo(G, X)$, there exists words *C* and *V* and a cyclic permutation *U'* of *U*, such that $\ell(V) < \ell(U), \ell(C) \le A$ and $CU'C^{-1} =_G V$.

A-BCD implies A-NSC

Lemma (Ciobanu, Hermiller, Holt, Rees) If (G, X) has A-FFTP and A-NSC, ConjGeo(G, X) is regular.

Theorem (Antolin, Ciobanu)

Let G be hyperbolic relative to virtually abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has A-FFTP and A-NSC. In particular, ConjGeo(G, X) is regular.

Outline

- 2 Regular Conjugacy geodesics and BCD
- 3 Generating sets of relatively hyperbolic groups
- 4 Relatively hyperbolic groups with FFTP
- 5 Relatively hyperbolic groups with BCD or NSC

Relatively hyperbolic groups

Let *G* be a group, $\{H_{\omega}\}_{\omega \in \Omega}$ a family of subgroups and $\mathcal{H} = \cup H_{\omega}$.

G is hyperbolic relative to $\{H_{\omega}\}_{\omega \in \Omega}$, if there is a finite subset $X \subseteq G$ such that

- $\pi \colon F = \langle X \mid \rangle * (*_{\omega \in \Omega} H_{\omega}) \to G$ is surjective
- ker $(\pi) = \langle R^F \rangle$ for a finite set *R* of *F*.
- there is *D* such that for every $f \in F$ such that $\pi(f) = 1$,

$$f=\prod_{i=1}^{D|f|_{X\cup\mathcal{H}}}f_ir_if_i^{-1},$$

 $r_i \in R, f_i \in F.$

The Cayley graph $\Gamma(G, X \cup \mathcal{H})$ is δ -hyperbolic.

Relating generating sets

A word *W* over *X* has *trivial shortenings* if contains subwords in some $X \cap H_{\omega}$ that are not geodesics.

Construction

To a word W over X with no trivial shortenings we associated a word \widehat{W} over $X \cup \mathcal{H}, W =_G \widehat{W}$ in the following way.

- $S(W) = \{ U \text{ subword of } W \mid U \in (X \cap H_{\omega})^* \text{ for some } \omega \in \Omega \}$
- Choose $V \in S(W)$, $\ell(V) = \max_{U \in S(W)} \ell(U)$.
- If $\ell(V) \leq 1$, we put $\widehat{W} \equiv W$.
- If $\ell(V) > 1$, $V =_G h \in H_{\omega}$, and $W \equiv AVB$, $\widehat{W} \equiv \widehat{A}h\widehat{B}$.

Lemma

There is a finite subset $\mathcal{H}_0 \subseteq \mathcal{H}$, such that for any subset $\mathcal{H}_0 \subseteq \mathcal{H}' \subseteq \mathcal{H}$ and for any 2-local geodesic word with no trivial shortenings W over $X \cup \mathcal{H}'$, \widehat{W} is a 2-local geodesic.

Relating generating sets

A word *W* over *X* has *trivial shortenings* if contains subwords in some $X \cap H_{\omega}$ that are not geodesics.

Construction

To a word W over X with no trivial shortenings we associated a word \widehat{W} over $X \cup \mathcal{H}$, $W =_G \widehat{W}$ in the following way.

- $S(W) = \{U \text{ subword of } W \mid U \in (X \cap H_{\omega})^* \text{ for some } \omega \in \Omega\}$
- Choose $V \in S(W)$, $\ell(V) = \max_{U \in S(W)} \ell(U)$.
- If $\ell(V) \leq 1$, we put $\widehat{W} \equiv W$.
- If $\ell(V) > 1$, $V =_G h \in H_{\omega}$, and $W \equiv AVB$, $\widehat{W} \equiv \widehat{A}h\widehat{B}$.

Lemma

There is a finite subset $\mathcal{H}_0 \subseteq \mathcal{H}$, such that for any subset $\mathcal{H}_0 \subseteq \mathcal{H}' \subseteq \mathcal{H}$ and for any 2-local geodesic word with no trivial shortenings W over $X \cup \mathcal{H}'$, \widehat{W} is a 2-local geodesic.

Relating generating sets

A word *W* over *X* has *trivial shortenings* if contains subwords in some $X \cap H_{\omega}$ that are not geodesics.

Construction

To a word W over X with no trivial shortenings we associated a word \widehat{W} over $X \cup \mathcal{H}$, $W =_G \widehat{W}$ in the following way.

- $S(W) = \{U \text{ subword of } W \mid U \in (X \cap H_{\omega})^* \text{ for some } \omega \in \Omega\}$
- Choose $V \in S(W)$, $\ell(V) = \max_{U \in S(W)} \ell(U)$.

• If
$$\ell(V) \leq 1$$
, we put $\widehat{W} \equiv W$.

• If
$$\ell(V) > 1$$
, $V =_G h \in H_{\omega}$, and $W \equiv AVB$, $\widehat{W} \equiv \widehat{A}h\widehat{B}$.

Lemma

There is a finite subset $\mathcal{H}_0 \subseteq \mathcal{H}$, such that for any subset $\mathcal{H}_0 \subseteq \mathcal{H}' \subseteq \mathcal{H}$ and for any 2-local geodesic word with no trivial shortenings W over $X \cup \mathcal{H}'$, \widehat{W} is a 2-local geodesic.

There is a finite set of non-geodesic words $\widehat{\Phi}$ over $X \cup \mathcal{H}$, such that if $W \in (X \cup \mathcal{H})^*$ is 2-local geodesic and does not contain subwords of $\widehat{\Phi}$ then W labels a (λ, c) -quasi-geodesic in $\Gamma(G, X \cup \mathcal{H})$.

Idea of the proof.

There is a k > 0 such that every k-local geodesic is a (λ, c) -quasi-geodesic.

Let Δ be the set of all the relations in $\Gamma(G, X \cup \mathcal{H})$ of length at most 2k and with all components isolated.

The set Δ is finite, and a 2-local geodesic path is *k*-local geodesic if its label does not contain more than half of some relation in Δ .

There is a finite set of non-geodesic words $\widehat{\Phi}$ over $X \cup \mathcal{H}$, such that if $W \in (X \cup \mathcal{H})^*$ is 2-local geodesic and does not contain subwords of $\widehat{\Phi}$ then W labels a (λ, c) -quasi-geodesic in $\Gamma(G, X \cup \mathcal{H})$.

Idea of the proof.

There is a k > 0 such that every *k*-local geodesic is a (λ, c) -quasi-geodesic.

Let Δ be the set of all the relations in $\Gamma(G, X \cup \mathcal{H})$ of length at most 2k and with all components isolated.

The set Δ is finite, and a 2-local geodesic path is *k*-local geodesic if its label does not contain more than half of some relation in Δ .

There is a finite set of non-geodesic words $\widehat{\Phi}$ over $X \cup \mathcal{H}$, such that if $W \in (X \cup \mathcal{H})^*$ is 2-local geodesic and does not contain subwords of $\widehat{\Phi}$ then W labels a (λ, c) -quasi-geodesic in $\Gamma(G, X \cup \mathcal{H})$.

Idea of the proof.

There is a k > 0 such that every *k*-local geodesic is a

 (λ, c) -quasi-geodesic.

Let Δ be the set of all the relations in $\Gamma(G, X \cup H)$ of length at most 2k and with all components isolated.

The set Δ is finite, and a 2-local geodesic path is *k*-local geodesic if its label does not contain more than half of some relation in Δ .

< ロ > < 同 > < 回 > < 回 >

There is a finite set of non-geodesic words $\widehat{\Phi}$ over $X \cup \mathcal{H}$, such that if $W \in (X \cup \mathcal{H})^*$ is 2-local geodesic and does not contain subwords of $\widehat{\Phi}$ then W labels a (λ, c) -quasi-geodesic in $\Gamma(G, X \cup \mathcal{H})$.

Idea of the proof.

There is a k > 0 such that every *k*-local geodesic is a

 (λ, c) -quasi-geodesic.

Let Δ be the set of all the relations in $\Gamma(G, X \cup H)$ of length at most 2k and with all components isolated.

The set Δ is finite, and a 2-local geodesic path is *k*-local geodesic if its label does not contain more than half of some relation in Δ .

< ロ > < 同 > < 回 > < 回 >

Lemma (Generating Set Lemma)

There is a finite subset \mathcal{H}' of \mathcal{H} such that for every finite subset Y of G

 $X \cup \mathcal{H}' \subseteq Y \subseteq X \cup \mathcal{H}$

there is a finite subset Φ of non-geodesic words over Y such that if W has no trivial shortenings and does not contain words of Φ as subwords then \widehat{W} is a 2-local geodesic (λ , c)-quasi-geodesic.

Proof.

Let \mathcal{H}' satisfying that $\mathcal{H}_0 \subseteq \mathcal{H}$ and for every word $V \in \widehat{\Phi}$ there is a shorter $U \in (X \cup \mathcal{H}')^*$, $U =_G V$. Fix Y and take Φ the set of words V with non trivial shortenings such that $\widehat{V} \in \widehat{\Phi}$.

• Φ is a finite set of non-geodesic words.

• The result follows from the previous lemmas and that $\Gamma(G, Y \cup \mathcal{H}) = \Gamma(G, X \cup \mathcal{H}).$

Lemma (Generating Set Lemma)

There is a finite subset \mathcal{H}' of \mathcal{H} such that for every finite subset Y of G

 $X \cup \mathcal{H}' \subseteq Y \subseteq X \cup \mathcal{H}$

there is a finite subset Φ of non-geodesic words over Y such that if W has no trivial shortenings and does not contain words of Φ as subwords then \widehat{W} is a 2-local geodesic (λ , c)-quasi-geodesic.

Proof.

Let \mathcal{H}' satisfying that $\mathcal{H}_0 \subseteq \mathcal{H}$ and for every word $V \in \widehat{\Phi}$ there is a shorter $U \in (X \cup \mathcal{H}')^*$, $U =_G V$. Fix Y and take Φ the set of words V with non trivial shortenings such that $\widehat{V} \in \widehat{\Phi}$.

- Φ is a finite set of non-geodesic words.
- The result follows from the previous lemmas and that $\Gamma(G, Y \cup \mathcal{H}) = \Gamma(G, X \cup \mathcal{H}).$

Outline

- 2 Regular Conjugacy geodesics and BCD
- 3 Generating sets of relatively hyperbolic groups
- 4 Relatively hyperbolic groups with FFTP
- 5 Relatively hyperbolic groups with BCD or NSC

- B

If G is hyperbolic relative to groups $\{H_{\omega}\}_{\omega\in\Omega}$ with FFTP, then G has FFTP.

Lemma

If H has FFTP, then any finite generating set Y can be completed to a finite set Z, such that (H, Z) is FFTP.

From the Generating Set Lemma and the previous Lemma, G admits a finite generating set X satisfying:

- $(H_{\omega}, H_{\omega} \cap X)$ is FFTP
- there is a finite subset of non-geodesic words Φ, such that if W does not contain subwords of Φ and has no trivial shortening, W is a (λ, c)-quasigeodesics over X ∩ H.

If G is hyperbolic relative to groups $\{H_{\omega}\}_{\omega\in\Omega}$ with FFTP, then G has FFTP.

Lemma

If H has FFTP, then any finite generating set Y can be completed to a finite set Z, such that (H, Z) is FFTP.

From the Generating Set Lemma and the previous Lemma, G admits a finite generating set X satisfying:

- $(H_{\omega}, H_{\omega} \cap X)$ is FFTP
- there is a finite subset of non-geodesic words Φ, such that if W does not contain subwords of Φ and has no trivial shortening, W is a (λ, c)-quasigeodesics over X ∩ H.

< ロ > < 同 > < 回 > < 回 >

If G is hyperbolic relative to groups $\{H_{\omega}\}_{\omega\in\Omega}$ with FFTP, then G has FFTP.

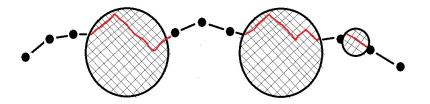
Lemma

If H has FFTP, then any finite generating set Y can be completed to a finite set Z, such that (H, Z) is FFTP.

From the Generating Set Lemma and the previous Lemma, G admits a finite generating set X satisfying:

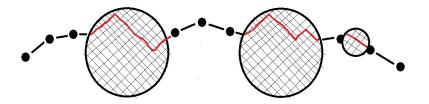
- $(H_{\omega}, H_{\omega} \cap X)$ is FFTP
- there is a finite subset of non-geodesic words Φ, such that if W does not contain subwords of Φ and has no trivial shortening, W
 is a (λ, c)-quasigeodesics over X ∩ H.

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



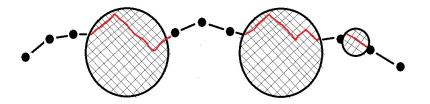
4 D K 4 B K 4 B K 4

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



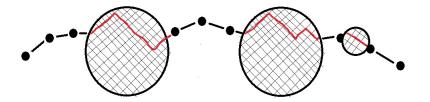
4 D N 4 B N 4 B N 4 B

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



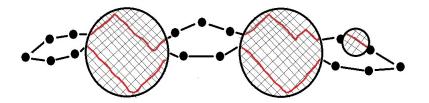
A D N A B N A B N A B N

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



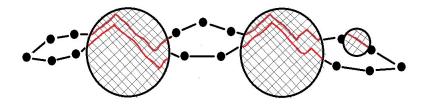
4 **A** N A **B** N A **B** N

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



4 日本 4 周本 4 日本 4 日本

- There is K₁ (depending on (H_ω, X ∩ H_ω) such that if W has trivial shortenings, then it K₁-fellow travels with a shorter word.
- There is K₂ (depending on the finite set Φ) such that if W contains a subword of Φ, W K₂-fellow travels with a shorter word.
- There is K₃ (depending on the Bounded Coset Penetration and K₁) such that if W has no trivial shortenings and does not contain subwords of Φ then it K₃-fellow travels with a geodesic.



4 日本 4 周本 4 日本 4 日本

Outline

- 2 Regular Conjugacy geodesics and BCD
- 3 Generating sets of relatively hyperbolic groups
- 4 Relatively hyperbolic groups with FFTP
- 6 Relatively hyperbolic groups with BCD or NSC

- B

Let G be a f.g., hyp. rel. to $\{H_{\omega}\}_{\omega\in\Omega}$, Y a finite symmetric generating set of G, and $\mathcal{H} = \bigcup_{\omega\in\Omega} H_{\omega}$.

There exists a finite subset $\mathcal{H}' \subseteq \mathcal{H}$ such that, for every finite symmetric generating set *X* of *G* satisfying that

- (i) $Y \cup \mathcal{H}' \subseteq X \subseteq Y \cup \mathcal{H}$ and
- (ii) $(H_{\omega}, H_{\omega} \cap X)$ has the bounded conjugacy diagrams property (resp. neighboring shorter conjugate property) for all $\omega \in \Omega$,

then the pair (G, X) has the bounded conjugacy diagrams property (resp. neighboring shorter conjugate property). Moreover if

```
(iii) (H_{\omega}, H_{\omega} \cap X) has the FFTP for all \omega \in \Omega,
```

```
then (G, X) also has FFTP.
```

Lemma

If H is virtually abelian, any finite generating set can be completed to have FFTP and NSC.

Let G be a f.g., hyp. rel. to $\{H_{\omega}\}_{\omega\in\Omega}$, Y a finite symmetric generating set of G, and $\mathcal{H} = \bigcup_{\omega\in\Omega} H_{\omega}$.

There exists a finite subset $\mathcal{H}' \subseteq \mathcal{H}$ such that, for every finite symmetric generating set *X* of *G* satisfying that

(i) $Y \cup \mathcal{H}' \subseteq X \subseteq Y \cup \mathcal{H}$ and

(ii) $(H_{\omega}, H_{\omega} \cap X)$ has the bounded conjugacy diagrams property (resp. neighboring shorter conjugate property) for all $\omega \in \Omega$,

then the pair (G, X) has the bounded conjugacy diagrams property (resp. neighboring shorter conjugate property). Moreover if

```
(iii) (H_{\omega}, H_{\omega} \cap X) has the FFTP for all \omega \in \Omega,
```

then (G, X) also has FFTP.

Lemma

If H is virtually abelian, any finite generating set can be completed to have FFTP and NSC.

There is K > 0, such that for any pair of cyclic (λ, c) -quasigeodesics U, V over $X \cup \mathcal{H}$ that are conjugate, there exists cyclic permutations U' of U, V' of V and C a geodesic word over $X \cup \mathcal{H}$ such that

$$CU'C^{-1} =_G V'$$

and

$$\min\{\max\{\ell(U),\ell(V)\},\ell(C)\} < K.$$

- From the Generating Set Lemma, we can assume that if W is a cyclic geodesic, then W is a cyclic (λ, c)-quasigeodesic.
- The proof of the Theorem follows from combining the previous Lemma, analyizing minimal conjugacy diagrams and the following Lemma of Osin.

There is K > 0, such that for any pair of cyclic (λ, c) -quasigeodesics U, V over $X \cup \mathcal{H}$ that are conjugate, there exists cyclic permutations U' of U, V' of V and C a geodesic word over $X \cup \mathcal{H}$ such that

$$CU'C^{-1} =_G V'$$

and

$$\min\{\max\{\ell(U),\ell(V)\},\ell(C)\} < K.$$

- From the Generating Set Lemma, we can assume that if W is a cyclic geodesic, then W is a cyclic (λ, c)-quasigeodesic.
- The proof of the Theorem follows from combining the previous Lemma, analyizing minimal conjugacy diagrams and the following Lemma of Osin.

There is K > 0, such that for any pair of cyclic (λ, c) -quasigeodesics U, V over $X \cup \mathcal{H}$ that are conjugate, there exists cyclic permutations U' of U, V' of V and C a geodesic word over $X \cup \mathcal{H}$ such that

$$CU'C^{-1} =_G V'$$

and

$$\min\{\max\{\ell(U),\ell(V)\},\ell(C)\} < K.$$

- From the Generating Set Lemma, we can assume that if W is a cyclic geodesic, then W is a cyclic (λ, c)-quasigeodesic.
- The proof of the Theorem follows from combining the previous Lemma, analyizing minimal conjugacy diagrams and the following Lemma of Osin.

There exists $D = D(G, X, \lambda, c) > 0$ such that the following hold. Let $\mathcal{P} = p_1 p_2 \dots p_n$ be an n-gon and I a distinguished subset of sides of \mathcal{P} such that if $p_i \in I$, p_i is an isolated component in \mathcal{P} , and if $p_i \notin I$, p_i is a (λ, c) -quasi-geodesic. Then

$$\sum_{i\in I} d_X((\rho_i)_-,(\rho_i)_+) \leq Dn.$$

Suppose that U and V are cyclic geodesics over X and conjugate in G. There are cyclic permutations \widehat{U}' of \widehat{U} and \widehat{V}' of \widehat{V} and \widehat{C} such that $\widehat{C}\widehat{U}'\widehat{C}^{-1} =_G \widehat{V}'$ and

$$\min\{\max\{\ell(\widehat{U}), \ell(\widehat{V})\}, \ell(\widehat{C})\} < K.$$

If all the components in the conjugacy diagram are isolated $\min\{\max\{\ell(U), \ell(V)\}, \ell(C)\} < (2K+3)D.$

< ロ > < 同 > < 回 > < 回 >

There exists $D = D(G, X, \lambda, c) > 0$ such that the following hold. Let $\mathcal{P} = p_1 p_2 \dots p_n$ be an n-gon and I a distinguished subset of sides of \mathcal{P} such that if $p_i \in I$, p_i is an isolated component in \mathcal{P} , and if $p_i \notin I$, p_i is a (λ, c) -quasi-geodesic. Then

$$\sum_{i\in I} d_X((p_i)_-,(p_i)_+) \leq Dn.$$

Suppose that U and V are cyclic geodesics over X and conjugate in G. There are cyclic permutations \widehat{U}' of \widehat{U} and \widehat{V}' of \widehat{V} and \widehat{C} such that $\widehat{C}\widehat{U}'\widehat{C}^{-1} =_G \widehat{V}'$ and

 $\min\{\max\{\ell(\widehat{U}),\ell(\widehat{V})\},\ell(\widehat{C})\} < K.$

If all the components in the conjugacy diagram are isolated $\min\{\max\{\ell(U), \ell(V)\}, \ell(C)\} < (2K+3)D.$

There exists $D = D(G, X, \lambda, c) > 0$ such that the following hold. Let $\mathcal{P} = p_1 p_2 \dots p_n$ be an n-gon and I a distinguished subset of sides of \mathcal{P} such that if $p_i \in I$, p_i is an isolated component in \mathcal{P} , and if $p_i \notin I$, p_i is a (λ, c) -quasi-geodesic. Then

$$\sum_{i\in I} d_X((p_i)_-,(p_i)_+) \leq Dn.$$

Suppose that *U* and *V* are cyclic geodesics over *X* and conjugate in *G*. There are cyclic permutations \hat{U}' of \hat{U} and \hat{V}' of \hat{V} and \hat{C} such that $\hat{C}\hat{U}'\hat{C}^{-1} =_{G}\hat{V}'$ and

$$\min\{\max\{\ell(\widehat{U}),\ell(\widehat{V})\},\ell(\widehat{C})\} < K.$$

If all the components in the conjugacy diagram are isolated $\min\{\max\{\ell(U), \ell(V)\}, \ell(C)\} < (2K+3)D.$

There exists $D = D(G, X, \lambda, c) > 0$ such that the following hold. Let $\mathcal{P} = p_1 p_2 \dots p_n$ be an n-gon and I a distinguished subset of sides of \mathcal{P} such that if $p_i \in I$, p_i is an isolated component in \mathcal{P} , and if $p_i \notin I$, p_i is a (λ, c) -quasi-geodesic. Then

$$\sum_{i\in I} d_X((p_i)_-,(p_i)_+) \leq Dn.$$

Suppose that *U* and *V* are cyclic geodesics over *X* and conjugate in *G*. There are cyclic permutations \widehat{U}' of \widehat{U} and \widehat{V}' of \widehat{V} and \widehat{C} such that $\widehat{C}\widehat{U}'\widehat{C}^{-1} =_{G}\widehat{V}'$ and

$$\min\{\max\{\ell(\widehat{U}), \ell(\widehat{V})\}, \ell(\widehat{C})\} < K.$$

If all the components in the conjugacy diagram are isolated $\min\{\max\{\ell(U), \ell(V)\}, \ell(C)\} < (2K+3)D.$

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has and A-BCD.

Analyzing the proofs one can get A-BCD, not for cyclic geodesics but for words W that cyclically have no trivial shortenings and contains no subword of Φ .

- To solve the conjugacy problem, given two words $U^{\dagger},~V^{\dagger}$
 - we first obtain reduced words U and V to words in W,
 O(ℓ(U[†]) + ℓ(V[†])) steps.
 - if $\max\{\ell(U), \ell(V)\} < K$ is a finite problem.
 - if max{ℓ(U), ℓ(V)} ≥ K we compare all possible cyclic permutations and for each of them try all conjugators of length less than K (K · ℓ(U) · ℓ(V) computations).
 - since the word problem is solvable in linear time, each computation takes $O(\ell(U) + \ell(V) + 2K)$.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has and A-BCD.

Analyzing the proofs one can get A-BCD, not for cyclic geodesics but for words W that cyclically have no trivial shortenings and contains no subword of Φ .

To solve the conjugacy problem, given two words U^{\dagger}, V^{\dagger}

- we first obtain reduced words *U* and *V* to words in *W*,
 O(ℓ(*U*[†]) + ℓ(*V*[†])) steps.
- if $\max\{\ell(U), \ell(V)\} < K$ is a finite problem.
- if max{ℓ(U), ℓ(V)} ≥ K we compare all possible cyclic permutations and for each of them try all conjugators of length less than K (K · ℓ(U) · ℓ(V) computations).
- since the word problem is solvable in linear time, each computation takes $O(\ell(U) + \ell(V) + 2K)$.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has and A-BCD.

Analyzing the proofs one can get A-BCD, not for cyclic geodesics but for words W that cyclically have no trivial shortenings and contains no subword of Φ .

To solve the conjugacy problem, given two words U^{\dagger}, V^{\dagger}

- we first obtain reduced words *U* and *V* to words in *W*,
 O(ℓ(*U*[†]) + ℓ(*V*[†])) steps.
- if $\max\{\ell(U), \ell(V)\} < K$ is a finite problem.
- if max{ℓ(U), ℓ(V)} ≥ K we compare all possible cyclic permutations and for each of them try all conjugators of length less than K (K · ℓ(U) · ℓ(V) computations).
- since the word problem is solvable in linear time, each computation takes $O(\ell(U) + \ell(V) + 2K)$.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has and A-BCD.

Analyzing the proofs one can get A-BCD, not for cyclic geodesics but for words W that cyclically have no trivial shortenings and contains no subword of Φ .

To solve the conjugacy problem, given two words U^{\dagger}, V^{\dagger}

- we first obtain reduced words *U* and *V* to words in *W*,
 O(ℓ(*U*[†]) + ℓ(*V*[†])) steps.
- if $\max\{\ell(U), \ell(V)\} < K$ is a finite problem.
- if max{ℓ(U), ℓ(V)} ≥ K we compare all possible cyclic permutations and for each of them try all conjugators of length less than K (K · ℓ(U) · ℓ(V) computations).

• since the word problem is solvable in linear time, each computation takes $O(\ell(U) + \ell(V) + 2K)$.

Theorem (Antolin, Ciobanou)

Let G be hyperbolic relative to abelian groups. There is finite generating set X of G and $A \ge 0$ such that (G, X) has and A-BCD.

Analyzing the proofs one can get A-BCD, not for cyclic geodesics but for words W that cyclically have no trivial shortenings and contains no subword of Φ .

To solve the conjugacy problem, given two words U^{\dagger}, V^{\dagger}

- we first obtain reduced words U and V to words in W,
 O(ℓ(U[†]) + ℓ(V[†])) steps.
- if $\max\{\ell(U), \ell(V)\} < K$ is a finite problem.
- if max{ℓ(U), ℓ(V)} ≥ K we compare all possible cyclic permutations and for each of them try all conjugators of length less than K (K · ℓ(U) · ℓ(V) computations).
- since the word problem is solvable in linear time, each computation takes O(ℓ(U) + ℓ(V) + 2K).

Thank You!