\mathbb{Z}^n -free groups are CAT(0)

Inna Bumagin joint work with Olga Kharlampovich

to appear in the Journal of the LMS

February 6, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lyndon Length Function

Let G be a group and let Λ be a totally ordered abelian group.

Definition

A Lyndon length function is a mapping $\ell: G \to \Lambda$ such that

$$\begin{array}{ll} (\mathsf{L1}) \ \forall \ g \in G : \ \ell(g) \ge 0 \ \text{and} \ \ell(1) = 0; \\ (\mathsf{L2}) \ \forall \ g \in G : \ \ell(g) = \ell(g^{-1}); \\ (\mathsf{L3}) \ \forall \ g, f, h \in G : \ c(g, f) > c(g, h) \to c(g, h) = c(f, h), \\ & \text{where} \ c(g, f) = \frac{1}{2}(\ell(g) + \ell(f) - \ell(g^{-1}f)). \end{array}$$

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 2 / 24

Introduction

Free Regular Lyndon Length Function

The length function $\ell : G \to \Lambda$ is *free* if also

 $\begin{array}{ll} (\mathsf{L4}) \ \forall \ g,f \in G: \ c(g,f) \in \Lambda. \\ (\mathsf{L5}) \ \forall \ g \in G: \ g \neq 1 \rightarrow \ell(g^2) > \ell(g). \end{array}$

Introduction

Free Regular Lyndon Length Function

The length function $\ell: {\it G} \rightarrow \Lambda$ is *free* if also

$$\begin{array}{ll} (\mathsf{L4}) \ \forall \ g,f \in G: \ c(g,f) \in \Lambda. \\ (\mathsf{L5}) \ \forall \ g \in G: \ g \neq 1 \rightarrow \ell(g^2) > \ell(g). \end{array}$$

The length function $\ell : G \to \Lambda$ is *regular* if also

(L6)
$$\forall g, f \in G, \exists u, g_1, f_1 \in G :$$

 $g = ug_1, \ \ell(g) = \ell(u) + \ell(g_1); \ f = uf_1$
 $\ell(f) = \ell(u) + \ell(f_1); \ \ell(u) = c(g, f).$

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 3 / 24

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Introduction

Λ-free group

Definition

By a Λ -free group we mean a finitely generated group G equipped with a free Lyndon Λ -length function. We call G a regular Λ -free group if the length function is free and regular.

Λ-free group

Definition

By a Λ -free group we mean a finitely generated group G equipped with a free Lyndon Λ -length function. We call G a regular Λ -free group if the length function is free and regular.

Definition

A Λ -tree is a geodesic Λ -metric space such that:

- 1. If two segments in X intersect in a single point, which is an endpoint of both, then their union is a segment,
- 2. The intersection of two segments with a common endpoint is also a segment.

 Λ -free groups can be thought of as groups acting freely on Λ -trees, and regular Λ -free groups are precisely those acting with a unique orbit of branch points.

I. Bumagin, O. Kharlampovich ()

Group actions on Λ -trees

Some history

- ▶ introduced by Morgan and Shalen in 1984.
- studied by Alperin and Bass. In 1991 Bass proved a version of a combination theorem for finitely generated groups acting freely on (A ⊕ Z)-trees. For instance, by Bass' Theorem, the group G = ⟨x₁, x₁²x₂⟩ *<sub>⟨x₁²x₂=(x₂x₃²)⁻¹⟩ ⟨x₂x₃², x₃⟩ is Z²-free. Note that G = ⟨x₁, x₂, x₃ | x₁²x₂²x₃² = 1⟩.
 </sub>
- the combination theorem was generalized by Martino and O'Rourke in 2004.

Group actions on Λ -trees

Some history

- introduced by Morgan and Shalen in 1984.
- studied by Alperin and Bass. In 1991 Bass proved a version of a combination theorem for finitely generated groups acting freely on (A ⊕ Z)-trees. For instance, by Bass' Theorem, the group G = ⟨x₁, x₁²x₂⟩ *<sub>⟨x₁²x₂=(x₂x₃²)⁻¹⟩ ⟨x₂x₃², x₃⟩ is Z²-free. Note that G = ⟨x₁, x₂, x₃ | x₁²x₂²x₃² = 1⟩.
 </sub>
- the combination theorem was generalized by Martino and O'Rourke in 2004.

Major progress

- Work by Chiswell.
- ► Work by Kharlampovich, Miasnikov, Remeslennikov and Serbin.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

イロト イポト イヨト イヨト 二日

Examples of Λ -free groups

- ► Z-free groups are f.g. free groups (Bass-Serre theory).
- ▶ ℝ-free groups are free products of free abelian groups and surface groups (Rips' theory).
- Let F be a free group and let u, v ∈ F be such that |u| = |v| and u is not conjugate to v⁻¹. Then G = ⟨F, t | tut⁻¹ = v⟩ is a regular Z²-free group (follows from a recent result by Miasnikov, Remeslennikov and Serbin).
- ► F.g. fully residually free (or limit) groups act freely on Zⁿ-trees with the lexicographic order (Kharlampovich and Miasnikov, 1998)

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

Basic properties of \mathbb{Z}^n -free groups

- ► Torsion-free,
- Commutative transitive: $[a, b] = 1, [b, c] = 1 \Rightarrow [a, c] = 1 \forall a, b, c \in G,$

Basic properties of \mathbb{Z}^n -free groups

- ► Torsion-free,
- Commutative transitive:

$$[a,b]=1, [b,c]=1 \Rightarrow [a,c]=1 \; orall a, b,c \in G$$
 ,

Definition

A group G is residually free if for any $1 \neq g \in G$ there is $\phi: G \to F$ so that $\phi(g) \neq 1$. G is fully residually free if for any finite set of elements $g_1, \ldots, g_m \in G$ there is $\phi: G \to F$ so that the images $\phi(g_1), \ldots, \phi(g_m)$ are all distinct.

Basic properties of \mathbb{Z}^n -free groups

- Torsion-free,
- Commutative transitive:

$$[a,b]=1, [b,c]=1 \Rightarrow [a,c]=1 \; orall a, b,c \in G$$
 ,

Definition

A group G is residually free if for any $1 \neq g \in G$ there is $\phi: G \to F$ so that $\phi(g) \neq 1$. G is fully residually free if for any finite set of elements $g_1, \ldots, g_m \in G$ there is $\phi: G \to F$ so that the images $\phi(g_1), \ldots, \phi(g_m)$ are all distinct.

Remark. By a theorem of B.Baumslag, a *residually free* group G is fully residually free if and only if G is commutative transitive.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

Non-residually free \mathbb{Z}^n -free groups

Theorem (Kharlampovich and Miasnikov, 1998)

F.g. fully residually free (or limit) groups act freely on \mathbb{Z}^n -trees with the lexicographic order.

Example. A \mathbb{Z}^2 -free group that is not residually free:

$$G = \langle x_1, x_2, x_3 \mid x_1^2 x_2^2 x_3^2 = 1 \rangle$$

In a free group, $x_1^2 x_2^2$ is not a proper square unless $[x_1, x_2] = 1$ hence, G is not residually free.

We have seen that G is \mathbb{Z}^2 -free.

I. Bumagin, O. Kharlampovich ()

\mathbb{Z}^n -free groups are relatively hyperbolic

Theorem (Guirardel, 2004)

A f.g. freely indecomposable \mathbb{R}^n -free group G is the fundamental group of a finite graph of groups with cyclic edge groups, where each vertex group is a f.g. \mathbb{R}^{n-1} -free subgroup of G.

\mathbb{Z}^n -free groups are relatively hyperbolic

Theorem (Guirardel, 2004)

A f.g. freely indecomposable \mathbb{R}^n -free group G is the fundamental group of a finite graph of groups with cyclic edge groups, where each vertex group is a f.g. \mathbb{R}^{n-1} -free subgroup of G.

From this and the combination theorem for relatively hyperbolic groups (F. Dahmani; E. Alibegovič):

Theorem (Guirardel, 2004)

A finitely generated \mathbb{R}^n -free group G is hyperbolic relative to Abelian subgroups.

\mathbb{Z}^n -free groups are relatively hyperbolic

Theorem (Guirardel, 2004)

A f.g. freely indecomposable \mathbb{R}^n -free group G is the fundamental group of a finite graph of groups with cyclic edge groups, where each vertex group is a f.g. \mathbb{R}^{n-1} -free subgroup of G.

From this and the combination theorem for relatively hyperbolic groups (F. Dahmani; E. Alibegovič):

Theorem (Guirardel, 2004)

A finitely generated \mathbb{R}^n -free group G is hyperbolic relative to Abelian subgroups.

Theorem (Nikolaev, 2010)

If G is a \mathbb{Z}^n -free group then the membership problem for finitely generated subgroups of G is decidable.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 9 / 24

Let X be a geodesic metric space, and let $x_1, x_2, x_3 \in X$ be three points in X.

Consider a geodesic triangle $x_1x_2x_3$ in X and a comparison triangle $x'_1x'_2x'_3$ in the Euclidean plane E^2 : $d_X(x_i, x_j) = d_E(x'_i, x'_j)$, for all i, j.

CAT(0) spaces

Let X be a geodesic metric space, and let $x_1, x_2, x_3 \in X$ be three points in X.

Consider a geodesic triangle $x_1x_2x_3$ in X and a *comparison triangle* $x'_1x'_2x'_3$ in the Euclidean plane E^2 : $d_X(x_i, x_j) = d_E(x'_i, x'_j)$, for all i, j.

Choose two arbitrary points $y_1 \in [x_3, x_1]$ and $y_2 \in [x_3, x_2]$, and let $y'_i \in [x'_3, x'_i]$ be such that $d_X(x_3, y_i) = d_E(x'_3, y'_i)$ for i = 1, 2.

Let X be a geodesic metric space, and let $x_1, x_2, x_3 \in X$ be three points in X.

Consider a geodesic triangle $x_1x_2x_3$ in X and a *comparison triangle* $x'_1x'_2x'_3$ in the Euclidean plane E^2 : $d_X(x_i, x_j) = d_E(x'_i, x'_j)$, for all i, j.

Choose two arbitrary points $y_1 \in [x_3, x_1]$ and $y_2 \in [x_3, x_2]$, and let $y'_i \in [x'_3, x'_i]$ be such that $d_X(x_3, y_i) = d_E(x'_3, y'_i)$ for i = 1, 2.

Definition

We say that X satisfies the CAT(0) inequality if $d_X(y_1, y_2) \le d_E(y'_1, y'_2)$, for any choice of x_1, x_2, x_3, y_1 and y_2 in X. The space X is *locally CAT(0)* if every point $x \in X$ has a neighborhood that satisfies the CAT(0) inequality. By a CAT(0) space we mean a simply connected locally CAT(0) space.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 10 / 24

Examples of CAT(0) spaces:

- Simplicial trees, where each edge is assigned a finite length.
- E^n , for all integer *n*.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 11 / 24

Examples of CAT(0) spaces:

- Simplicial trees, where each edge is assigned a finite length.
- E^n , for all integer *n*.

Examples of locally CAT(0) spaces:

- Finite graphs, where each edge is assigned a finite length.
- Tori T^n , for all integer n.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

February 6, 2014 11 / 24

CAT(0) groups

Let G be a discrete group acting on a topological space X.

Definition

We say that an action of G on X is properly discontinuous if every point $x \in X$ has a neighbourhood U_x such that there are only finitely many elements $g \in G$ with $g.U_x \cap U_x \neq \emptyset$.

We say that the action of G on X is *cocompact* if the quotient $G \setminus X$ is compact.

CAT(0) groups

Let G be a discrete group acting on a topological space X.

Definition

We say that an action of G on X is properly discontinuous if every point $x \in X$ has a neighbourhood U_x such that there are only finitely many elements $g \in G$ with $g.U_x \cap U_x \neq \emptyset$.

We say that the action of G on X is *cocompact* if the quotient $G \setminus X$ is compact.

Definition

A group G is called a CAT(0) group if it acts properly discontinuously and cocompactly on a CAT(0) space.

CAT(0) groups

Examples of CAT(0) groups

- Finitely generated free groups.
- Finitely generated free abelian groups.
- Free products of CAT(0) groups.
- (Alibegović and Bestvina, 2006) Limit groups.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

< ■ ト イ ■ ト ■ 少 Q (ペ February 6, 2014 13 / 24

イロト イポト イヨト イヨト

Main Results

Main Results

Theorem (B., Kharlampovich, 2013)

A f.g. \mathbb{Z}^n -free group G acts properly discontinuously and cocompactly on a CAT(0) space.

Main Results

Main Results

Theorem (B., Kharlampovich, 2013)

A f.g. \mathbb{Z}^n -free group G acts properly discontinuously and cocompactly on a CAT(0) space.

Using a criterion proved by Hruska and Kleiner:

Theorem (B., Kharlampovich, 2013)

A finitely generated \mathbb{Z}^n -free group G acts properly discontinuously and cocompactly on a CAT(0) space with isolated flats.

Main Results

Main Results

Theorem (B., Kharlampovich, 2013)

A f.g. \mathbb{Z}^n -free group G acts properly discontinuously and cocompactly on a CAT(0) space.

Using a criterion proved by Hruska and Kleiner:

Theorem (B., Kharlampovich, 2013)

A finitely generated \mathbb{Z}^n -free group G acts properly discontinuously and cocompactly on a CAT(0) space with isolated flats.

Theorem (Alibegović and Bestvina, 2006)

A limit group G acts properly discontinuously and cocompactly on a CAT(0) space with isolated flats.

Motivation: Are (word) hyperbolic groups CAT(0)?

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

Outline of proof

Main Theorem

Theorem (B., Kharlampovich, 2013)

If G is a regular \mathbb{Z}^n -free group then G is the fundamental group of a compact connected locally CAT(0) geometrically coherent space.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 15 / 24

イロト 不得 トイヨト イヨト 二日

Main Theorem

Theorem (B., Kharlampovich, 2013)

If G is a regular \mathbb{Z}^n -free group then G is the fundamental group of a compact connected locally CAT(0) geometrically coherent space.

Definition (Alibegović, Bestvina; Wise)

Let X be a connected locally CAT(0) space, and let C be a connected subspace of X. C is a core of X if C is compact, locally CAT(0), and the inclusion $C \hookrightarrow X$ induces a π_1 -isomorphism. Let Y be a connected locally CAT(0) space. Y is called *geometrically coherent* if every covering space $X \to Y$ with X connected and $\pi_1(X)$ finitely generated has the following property. For every compact subset $K \subset X$ there is a core C of X containing K.

I. Bumagin, O. Kharlampovich ()

Embedding

Theorem (Kharlampovich, Miasnikov, Remeslennikov and Serbin 2010)

Every f.g. \mathbb{Z}^n -free group embeds by a length-preserving monomorphism into a f.g. regular \mathbb{Z}^m -free group, for some m.

Embedding

Theorem (Kharlampovich, Miasnikov, Remeslennikov and Serbin 2010)

Every f.g. \mathbb{Z}^n -free group embeds by a length-preserving monomorphism into a f.g. regular \mathbb{Z}^m -free group, for some m.

Definition

A group G is called *coherent* if every finitely generated subgroup of G is finitely presented.

Corollary

If G is a regular \mathbb{Z}^n -free group then G is coherent.

Remark. The coherence of a regular \mathbb{Z}^n -free group *G* follows from the structure theorem [KMRS].

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 16 / 24

Gluing locally CAT(0) spaces

Lemma (Bridson and Haefliger, 1999)

Let X and A be locally CAT(0) metric spaces. If A is compact and $\varphi, \phi: A \to X$ are local isometries, then the quotient of $X \coprod (A \times [0, 1])$ by the equivalence relation generated by

$$[(a,0) \sim \varphi(a); (a,1) \sim \phi(a)],$$

for all $a \in A$, is locally CAT(0).

Using this lemma, one can show that regular \mathbb{Z}^n -free groups are fundamental groups of compact connected locally CAT(0) spaces and therefore, are CAT(0) groups.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 17 / 24

Structure Theorem for regular \mathbb{Z}^n -free groups

Theorem (Kharlampovich, Miasnikov, Remeslennikov and Serbin 2010)

Let G be a f.g. group with a regular free Lyndon length function $\ell : G \to \mathbb{Z}^n$. Then G can be represented as a union of a finite series of groups $F_m = G_1 < G_2 < \cdots < G_r = G$, so that

$$G_{i+1} = \langle G_i, s_i \mid s_i^{-1} \ C_i \ s_i = \phi_i(C_i) \rangle,$$

where the maximal abelian subgroup C_i of G_i and the isomorphism ϕ_i are carefully chosen.

In particular, $\ell(\phi_i(w)) = \ell(w) \ \forall w \in C_i$.

I. Bumagin, O. Kharlampovich ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

February 6, 2014

18 / 24

Key Technical Lemma

Lemma (B., Kharlampovich, 2013)

Let G be a regular \mathbb{Z}^n -free group. One can assign positive integer weights to the generators $g_i \in Y$ of G so that in every HNN-extension $t^{-1}Ct = \phi(C)$ in the statement of Theorem [KMRS], for every element $g \in C$, $wm(g) = wm(\phi(g))$.

Key Technical Lemma

Lemma (B., Kharlampovich, 2013)

Let G be a regular \mathbb{Z}^n -free group. One can assign positive integer weights to the generators $g_i \in Y$ of G so that in every HNN-extension $t^{-1}Ct = \phi(C)$ in the statement of Theorem [KMRS], for every element $g \in C$, $wm(g) = wm(\phi(g))$.

Theorem (Gurevich and Kokorin, 1963)

Any two nontrivial ordered abelian groups satisfy the same existential sentences in the language $L = \{0, +, -, <\}$.

$$\sum_{i=1}^{m_u}\ell(g_i)=\sum_{i=1}^{m_v}\ell(f_i)\ \ell(g_i)>0, \ orall g_i\in Y.$$

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^{n} -free groups are CAT(0)

February 6, 2014 19 / 24

Outline of proof

The CAT(0) space: one step in the construction

Theorem

Let U be a geometrically coherent locally CAT(0) space, let T be a k-torus for some integer $k \ge 1$, and let $\varphi \colon T \to U$ and $\varphi \colon T \to U$ be local isometries. Furthermore, assume that both images $\varphi(T)$ and $\phi(T)$ are locally convex, maximal and separated in U. We also assume that if $\varphi(T) \neq \phi(T)$ then the $\pi_1(U)$ -orbits of $\varphi(T)$ and $\phi(T)$ are disjoint. Let Y be the quotient of

 $U \coprod T \times [0,1]$

by the equivalence relation generated by

 $[(a,0) \sim \varphi(a), (a,1) \sim \phi(a), \forall a \in T].$

Then Y is locally CAT(0) and geometrically coherent.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 20 / 24

The CAT(0) space: the base step

 U_1 is the wedge of circles corresponding to the free group $F = G_1$. Every maximal abelian subgroup C of G_1 is cyclic: $C = \langle c \rangle$. By the Key Technical Lemma, $wm(c) = wm(\phi(c))$.

We rescale the metric on S^1 and let $\tau \colon S^1 \to \alpha$ and $\sigma \colon S^1 \to \beta$ be local isometries.

 U_2 is the quotient of $U_1 \coprod S^1 \times [0,1]$ by the equivalence relation generated by $[(a,0) \sim \tau(a), (a,1) \sim \sigma(a), \forall a \in S^1]$.

If $c \neq \phi(c)$ then c^{-1} and $\phi(c)$ are not conjugate in G_1 .

By the previous Theorem, U_2 is locally CAT(0) and geometrically coherent.

The CAT(0) space: coherence

Recall that a connected locally CAT(0) space Y is called *geometrically* coherent if every covering space $X \to Y$ with X connected and $\pi_1(X)$ finitely generated has the following property. For every compact subset $K \subset X$ there is a core C of X containing K.

Let $H \subseteq G$ be finitely generated. $H = \pi_1(X)$ for some connected covering space $X \to Y$. Choose a finite set K of loops representing generators of H. Need to find a core $C \supset K$ in X.

The CAT(0) space: coherence

Recall that a connected locally CAT(0) space Y is called *geometrically* coherent if every covering space $X \to Y$ with X connected and $\pi_1(X)$ finitely generated has the following property. For every compact subset $K \subset X$ there is a core C of X containing K.

Let $H \subseteq G$ be finitely generated. $H = \pi_1(X)$ for some connected covering space $X \to Y$. Choose a finite set K of loops representing generators of H. Need to find a core $C \supset K$ in X.

X can be viewed as a graph of spaces with vertex spaces the components of $p^{-1}(U)$ and edge spaces

$$E=c_1 imes c_2 imes \cdots imes c_p imes \mathbb{R}^q imes \{rac{1}{2}\}, \ p+q=k\geq 0,$$

products of p circles and q lines with $\{\frac{1}{2}\}$, the components of $p^{-1}(T \times \{\frac{1}{2}\})$.

I. Bumagin, O. Kharlampovich ()

 \mathbb{Z}^n -free groups are CAT(0)

February 6, 2014 22 / 24

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Outline of proof

The CAT(0) space: core

Recall that a connected subspace C of a connected locally CAT(0) space X is a *core* of X if C is compact, locally CAT(0), and the inclusion $C \hookrightarrow X$ induces a π_1 -isomorphism.

The CAT(0) space: core

Recall that a connected subspace C of a connected locally CAT(0) space X is a *core* of X if C is compact, locally CAT(0), and the inclusion $C \hookrightarrow X$ induces a π_1 -isomorphism.

Select
$$B_E = c_1 \times \cdots \times c_p \times [a_1, b_1] \times \cdots \times [a_q, b_q] \times \{\frac{1}{2}\}$$

inside each E so that $K \cap E \subset B_E$.
For every vertex space V of X , we have $\pi_1(V)$ is f.g.; we choose a core
 $C(V) \supseteq V \cap K$; also, $C(V) \supseteq V \cap B_E$ for every edge E in X .

The core C is the union of the following spaces:

- the cores C(V) of all vertex spaces, and
- all the products B_E in X.

The CAT(0) space: core

Lemma (Bridson and Haefliger, 1999)

Let A be a compact locally CAT(0) metric space. Let X_0 and X_1 be locally CAT(0) metric spaces. If $\varphi_i : A \to X_i$ is a local isometry for i = 0, 1, then the quotient of $X_0 \coprod (A \times [0, 1]) \coprod X_1$ by the equivalence relation generated by $[(a, 0) \sim \varphi_0(a); (a, 1) \sim \varphi_1(a)]$, for all $a \in A$, is locally CAT(0).

The core C is the union of the cores C(V) of all vertex spaces and of all the products B_E in X.

Corollary

C is locally CAT(0).

C has the same edge groups as X, and $\pi_1(V) = \pi_1(C(V))$, for all V in X. Hence, $\pi_1(C) = \pi_1(X)$.

I. Bumagin, O. Kharlampovich ()