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Stallings graphs

I Stallings graphs have become a standard for representing
finitely generated subgroups of free groups and solving
algorithmic problems on them

I They are effectively computable, they help solve efficiently the
membership problem, compute intersections, decide finite
index, and many other problems.

I Efficient solutions because of automata-theoretic flavor

I We would like something similar for finitely generated
subgroups of other groups
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Reduced rooted graphs

I More precisely, a Stallings graph is a constructible reduced
rooted graph canonically associated with each subgroup,
solving at least the membership problem.

I Let A be the finite alphabet of generators, with A = A−1. A
reduced rooted graph (Γ, 1) consists of

I a finite graph Γ whose edges are labeled by elements of A and
a distinguished vertex 1 of Γ

I such that, in addition, if a ∈ A labels an edge from vertex p
to vertex q, then a−1 labels an edge from q to p (so we need
only draw positively labeled edges),

I for each vertex p, a ∈ A labels at most one edge starting
(resp. ending) at p,

I all vertices, except possibly for the distinguished vertex, are
the origins of at least 2 edges
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Many results already

I Extending the idea of Stallings graphs to non-free groups is
not a new idea

I Kapovich, Miasnikov, Weidmann (2005): the membership
problem for subgroups of certain graphs of groups

I Markus-Epstein (2007) constructs a Stallings graph for the
subgroups of amalgamated products of finite groups

I Silva, Soler-Escriva, Ventura (2011) for the subgroups of
virtually free groups

I In all three cases: rely on a folding process – and we do not

I [Markus-Epstein] and [Silva, Soler-Escriva, Ventura] rely on a
well-chosen set of representatives
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Assumptions on G and H

I Need to impose constraints on G and H ≤ G : in general not
even the word problem for G is decidable

I and even in good situations (e.g. G is automatic, or even
hyperbolic), not every finitely generated subgroup admits a
regular set of representatives

I We want G = 〈A | R〉 to be automatic (e.g. hyperbolic,
RAAG),

I and H to be quasi-convex.

I Note that in [Markus-Epstein] or [Silva, Soler-Escriva,
Ventura], we are dealing with locally quasi-convex groups:
where all finitely generated subgroups are quasi-convex
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More precisely: hypothesis on G

I Let G = 〈A | R〉, with A = A−1 ⊆ G , and µ : A∗ → G the
canonical onto morphism

I We assume that G is automatic, and that we are given an
automatic structure:

I a finite state automaton on alphabet A computing a set L of
representatives – that is µ(L) = G

I and automata Aa to compute a-multiplication for each a ∈ A:
technically, an automaton on alphabet (A ∪ {�})2, accepting
all pairs of the form (u�n, v�m) such that u, v ∈ L,
µ(ua) = µ(v), |u|+ n = |v |+ m and min n,m = 0

I L is a regular set of representatives, not necessarily the set
Lgeod of geodesics (hyperbolic groups are geodesically
automatic, that is, with L = Lgeod)
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More precisely: hypothesis on H

I If H ≤fg G , then µ−1(H) is a subgroup of F (A), not always
finitely generated – that is: not always regular

I We assume that H is L-quasi-convex: i.e., L ∩ µ−1(H) is a
regular language

I H is quasi-convex if it is Lgeod-quasi-convex

I Equivalent property: H is L-quasi-convex if there exists a
constant k such that every L-representative of an element of
H stays within the k-neighborhood of H

I k is a constant of L-quasi-convexity of H
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General outline of our results

I If G is automatic, L is the corresponding regular set of
representatives and H ≤ G is L-quasi-convex, we construct
effectively a Stallings graph for H

I we solve the membership problem

I we find the constant of L-quasi-convexity

I we decide finite index (with an extra assumption on L)

I we compute finite intersections
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The case of hyperbolic groups

I If G is hyperbolic, one can compute an automatic structure
for which the set of representatives is Lgeod

I Then L-quasi-convexity is quasi-convexity

I So we can decide membership and finite index (with extra
assumption), compute finite intersections for quasi-convex
subgroups of a hyperbolic group

I These are not new results, but our construction provides a
unified tool – which surely can be used for other decision
problems
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Definition of a Stallings graph!

I Schreier(G ,H), the Schreier graph of H: vertex set =
{Hg | g ∈ G}; a-labeled edge Hg −→ Hgµ(a) (a ∈ A, g ∈ G )

I w labels a loop at vertex H if and only if µ(w) ∈ H

I Stallings graph for H with respect to L: the fragment ΓL(H)
of the Schreier graph, spanned by the loops labeled by the
L-representatives of the elements of H

I ΓL(H) is uniquely associated with H (and L)

I Generalizes the free group case, and the results of
[Markus-Epstein] and [Silva, Soler-Escriva, Ventura]

I It is with this definition in mind that we proceed with the
construction
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First, a completion process 1/2

I Recall G = 〈A | R〉

I Given h1, . . . hk ∈ F (A) such that H = 〈µ(h1), . . . , µ(hk)〉: let
H0 = 〈h1, · · · , hk〉 ≤ F (A) and (Γ0, 1) be its Stallings graph

I (Γi+1, 1) is obtained from (Γi , 1) by gluing every relator at
every vertex and then folding

I a sequence of reduced rooted graphs; usually infinite

I If Li is the language of loops of Γi at vertex 1, then
Li ⊆ Li+1 and µ(Li ) = H

I and the Li gradually include all of µ−1(H): if µ(w) ∈ H, then
w ∈ Li for all i large enough (i depends on the number of
relators needed to turn w into an element of H0)

I if K ≤fg F (A) is such that µ(K ) = H, then K ≤ Li for all i
large enough
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First, a completion process 2/2

I if K ≤fg F (A) is such that µ(K ) = H, then K ≤ Li for all i
large enough

I Apply this to the subgroup K ≤ F (A) whose Stallings graph is
Schreierk(G ,H), the finite subgraph of Schreier(G ,H) at
distance at most k from vertex H, where k is a constant of
L-quasi-convexity of H

I By definition of L-quasi-convexity, L ∩ µ−1(H) ⊆ K

I So, for i large enough, L ∩ µ−1(H) ⊆ Li
I We say that a reduced rooted graph (Γ, 1) is Stallings-like for

H wrt L if L ∩ µ−1(H) ⊆ L(Γ, 1) ⊆ µ−1(H)

I So, for i large enough, (Γi , 1) is Stallings-like for H

I But. . . when are we done? How do we know when to stop the
completion process?
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Constructing a Stallings-like graph for H wrt L

I To decide when to stop = decide whether a reduced rooted
graph (Γ, 1) is Stallings-like for H wrt L

I Decide, for each reduced word w labeling a loop at 1, whether
the L-representatives of µ(whi ) also label loops

I Use the automatic structure of G : given h = a1 · · · ar ∈ F (A)
and a regular subset K of L, one can construct an automaton
for L ∩ µ(Kh) — we pipeline the multiplyer automata for
a1, . . . , ar to construct an h-multiplyer

I The we can check whether L ∩ µ(Kh) ⊆ K

I For each i , when (Γi , 1) is constructed, check whether it is
Stallings-like, and if so, stop

I Now we have constructed a Stallings-like graph (Γ, 1)
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Finally: construct the Stallings graph of H wrt L

I First, use the Stallings-like graph (Γ, 1) to solve the
membership problem for H: given w , find an L-representative,
decide whether it labels a loop at 1 in Γ

I Note that there is no reason why (Γ, 1) should be embedded
in Schreier(G ,H)

I But a quotient of (Γ, 1) embeds in (Schreier(G ,H),H)

I Map Γ to Schreier(G ,H): map vertex 1 to vertex H. If up
labels a path in Γ from 1 to vertex p, map p to Hµ(up).
Decide for all (p, q) whether µ(upu

−1
q ) ∈ H

I Now we have constructed a subgraph of Schreier(G ,H) which
contains ΓL(H), and which is Stallings-like

I Since (ΓL,H) is the least rooted subgraph of the Schreier
graph which is Stallings-like: we verify for each vertex whether
removing it still yields a Stallings-like graph
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Complexity issues 1/2

I Finding a Stallings-like graph gives us an L-quasi-convexity
constant for H; computing ΓL(H) gives us the least

I But the time needed to do that is not bounded by any
computable function of the size of the input (n = sum of the
lengths of the generators)

I [Otherwise we could decide whether a given tuple of elements
generates a quasi-convex subgroup; and this problem is
undecidable]
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Complexity issues 2/2

I More precisely: if n is the total length of the given generators
for H, then computing Γ0 takes time polynomial in n

I and computing Γi takes time polynomial in n and exponential
in i

I Deciding whether a given (Γ, 1) with N vertices is
Stallings-like takes time polynomial in N and exponential in n

I The previous remark on the undecidability of quasi-convexity
shows that there is no computable bound on the number i of
iterations of the completion process, before we get a
Stallings-like graph

I If this number i is part of the input, then the computation of
ΓL(H) is exponential in i and n
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Applications

I Computing the intersection of two quasi-convex subgroups

I Deciding finite index: for this we use an extra condition on
the set L of representatives, namely. . .

I we assume that, for every u ∈ L, there exists an infinite
sequence (vn)n such that for every n, uvn ∈ L and u is a prefix
of an L-representative of uvnv

−1
m uinv for almost all m

I Then H has finite index if and only if every word of L can be
read in ΓL(H) starting from the base vertex

I This is decidable

I In that case, ΓL(H) is a subgraph of the (finite) Schreier
graph, with all the vertices
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Thank you for your attention!
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