Stallings graphs for quasi-convex subgroups of automatic groups

Pascal Weil (CNRS, Université de Bordeaux) Joint work with Olga Kharlampovich (CUNY) and Alexei Miasnikov (Stevens Institute)

Webinar, Stevens Inst. of Technology, November 2013

Stallings graphs

- Stallings graphs have become a standard for representing finitely generated subgroups of free groups and solving algorithmic problems on them

Stallings graphs

- Stallings graphs have become a standard for representing finitely generated subgroups of free groups and solving algorithmic problems on them
- They are effectively computable, they help solve efficiently the membership problem, compute intersections, decide finite index, and many other problems.

Stallings graphs

- Stallings graphs have become a standard for representing finitely generated subgroups of free groups and solving algorithmic problems on them
- They are effectively computable, they help solve efficiently the membership problem, compute intersections, decide finite index, and many other problems.
- Efficient solutions because of automata-theoretic flavor

Stallings graphs

- Stallings graphs have become a standard for representing finitely generated subgroups of free groups and solving algorithmic problems on them
- They are effectively computable, they help solve efficiently the membership problem, compute intersections, decide finite index, and many other problems.
- Efficient solutions because of automata-theoretic flavor
- We would like something similar for finitely generated subgroups of other groups

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.
- Let A be the finite alphabet of generators, with $A=A^{-1}$. A reduced rooted graph $(\Gamma, 1)$ consists of

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.
- Let A be the finite alphabet of generators, with $A=A^{-1}$. A reduced rooted graph $(\Gamma, 1)$ consists of
- a finite graph Γ whose edges are labeled by elements of A and a distinguished vertex 1 of Γ

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.
- Let A be the finite alphabet of generators, with $A=A^{-1}$. A reduced rooted graph $(\Gamma, 1)$ consists of
- a finite graph Γ whose edges are labeled by elements of A and a distinguished vertex 1 of Γ
- such that, in addition, if $a \in A$ labels an edge from vertex p to vertex q, then a^{-1} labels an edge from q to p (so we need only draw positively labeled edges),

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.
- Let A be the finite alphabet of generators, with $A=A^{-1}$. A reduced rooted graph $(\Gamma, 1)$ consists of
- a finite graph Γ whose edges are labeled by elements of A and a distinguished vertex 1 of Γ
- such that, in addition, if $a \in A$ labels an edge from vertex p to vertex q, then a^{-1} labels an edge from q to p (so we need only draw positively labeled edges),
- for each vertex $p, a \in A$ labels at most one edge starting (resp. ending) at p,

Reduced rooted graphs

- More precisely, a Stallings graph is a constructible reduced rooted graph canonically associated with each subgroup, solving at least the membership problem.
- Let A be the finite alphabet of generators, with $A=A^{-1}$. A reduced rooted graph $(\Gamma, 1)$ consists of
- a finite graph Γ whose edges are labeled by elements of A and a distinguished vertex 1 of Γ
- such that, in addition, if $a \in A$ labels an edge from vertex p to vertex q, then a^{-1} labels an edge from q to p (so we need only draw positively labeled edges),
- for each vertex $p, a \in A$ labels at most one edge starting (resp. ending) at p,
- all vertices, except possibly for the distinguished vertex, are the origins of at least 2 edges

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea
- Kapovich, Miasnikov, Weidmann (2005): the membership problem for subgroups of certain graphs of groups

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea
- Kapovich, Miasnikov, Weidmann (2005): the membership problem for subgroups of certain graphs of groups
- Markus-Epstein (2007) constructs a Stallings graph for the subgroups of amalgamated products of finite groups

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea
- Kapovich, Miasnikov, Weidmann (2005): the membership problem for subgroups of certain graphs of groups
- Markus-Epstein (2007) constructs a Stallings graph for the subgroups of amalgamated products of finite groups
- Silva, Soler-Escriva, Ventura (2011) for the subgroups of virtually free groups

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea
- Kapovich, Miasnikov, Weidmann (2005): the membership problem for subgroups of certain graphs of groups
- Markus-Epstein (2007) constructs a Stallings graph for the subgroups of amalgamated products of finite groups
- Silva, Soler-Escriva, Ventura (2011) for the subgroups of virtually free groups
- In all three cases: rely on a folding process - and we do not

Many results already

- Extending the idea of Stallings graphs to non-free groups is not a new idea
- Kapovich, Miasnikov, Weidmann (2005): the membership problem for subgroups of certain graphs of groups
- Markus-Epstein (2007) constructs a Stallings graph for the subgroups of amalgamated products of finite groups
- Silva, Soler-Escriva, Ventura (2011) for the subgroups of virtually free groups
- In all three cases: rely on a folding process - and we do not
- [Markus-Epstein] and [Silva, Soler-Escriva, Ventura] rely on a well-chosen set of representatives

Assumptions on G and H

- Need to impose constraints on G and $H \leq G$: in general not even the word problem for G is decidable

Assumptions on G and H

- Need to impose constraints on G and $H \leq G$: in general not even the word problem for G is decidable
- and even in good situations (e.g. G is automatic, or even hyperbolic), not every finitely generated subgroup admits a regular set of representatives

Assumptions on G and H

- Need to impose constraints on G and $H \leq G$: in general not even the word problem for G is decidable
- and even in good situations (e.g. G is automatic, or even hyperbolic), not every finitely generated subgroup admits a regular set of representatives
- We want $G=\langle A \mid R\rangle$ to be automatic (e.g. hyperbolic, RAAG),

Assumptions on G and H

- Need to impose constraints on G and $H \leq G$: in general not even the word problem for G is decidable
- and even in good situations (e.g. G is automatic, or even hyperbolic), not every finitely generated subgroup admits a regular set of representatives
- We want $G=\langle A \mid R\rangle$ to be automatic (e.g. hyperbolic, RAAG),
- and H to be quasi-convex.

Assumptions on G and H

- Need to impose constraints on G and $H \leq G$: in general not even the word problem for G is decidable
- and even in good situations (e.g. G is automatic, or even hyperbolic), not every finitely generated subgroup admits a regular set of representatives
- We want $G=\langle A \mid R\rangle$ to be automatic (e.g. hyperbolic, RAAG),
- and H to be quasi-convex.
- Note that in [Markus-Epstein] or [Silva, Soler-Escriva, Ventura], we are dealing with locally quasi-convex groups: where all finitely generated subgroups are quasi-convex

More precisely: hypothesis on G

- Let $G=\langle A \mid R\rangle$, with $A=A^{-1} \subseteq G$, and $\mu: A^{*} \rightarrow G$ the canonical onto morphism

More precisely: hypothesis on G

- Let $G=\langle A \mid R\rangle$, with $A=A^{-1} \subseteq G$, and $\mu: A^{*} \rightarrow G$ the canonical onto morphism
- We assume that G is automatic, and that we are given an automatic structure:

More precisely: hypothesis on G

- Let $G=\langle A \mid R\rangle$, with $A=A^{-1} \subseteq G$, and $\mu: A^{*} \rightarrow G$ the canonical onto morphism
- We assume that G is automatic, and that we are given an automatic structure:
- a finite state automaton on alphabet A computing a set L of representatives - that is $\mu(L)=G$

More precisely: hypothesis on G

- Let $G=\langle A \mid R\rangle$, with $A=A^{-1} \subseteq G$, and $\mu: A^{*} \rightarrow G$ the canonical onto morphism
- We assume that G is automatic, and that we are given an automatic structure:
- a finite state automaton on alphabet A computing a set L of representatives - that is $\mu(L)=G$
- and automata \mathcal{A}_{a} to compute a-multiplication for each $a \in A$: technically, an automaton on alphabet $(A \cup\{\square\})^{2}$, accepting all pairs of the form $\left(u \square^{n}, v \square^{m}\right)$ such that $u, v \in L$, $\mu(u a)=\mu(v),|u|+n=|v|+m$ and $\min n, m=0$

More precisely: hypothesis on G

- Let $G=\langle A \mid R\rangle$, with $A=A^{-1} \subseteq G$, and $\mu: A^{*} \rightarrow G$ the canonical onto morphism
- We assume that G is automatic, and that we are given an automatic structure:
- a finite state automaton on alphabet A computing a set L of representatives - that is $\mu(L)=G$
- and automata \mathcal{A}_{a} to compute a-multiplication for each $a \in A$: technically, an automaton on alphabet $(A \cup\{\square\})^{2}$, accepting all pairs of the form $\left(u \square^{n}, v \square^{m}\right)$ such that $u, v \in L$, $\mu(u a)=\mu(v),|u|+n=|v|+m$ and $\min n, m=0$
- L is a regular set of representatives, not necessarily the set $L_{\text {geod }}$ of geodesics (hyperbolic groups are geodesically automatic, that is, with $L=L_{\text {geod }}$)

More precisely: hypothesis on H

- If $H \leq_{f g} G$, then $\mu^{-1}(H)$ is a subgroup of $F(A)$, not always finitely generated - that is: not always regular

More precisely: hypothesis on H

- If $H \leq_{f g} G$, then $\mu^{-1}(H)$ is a subgroup of $F(A)$, not always finitely generated - that is: not always regular
- We assume that H is L-quasi-convex: i.e., $L \cap \mu^{-1}(H)$ is a regular language

More precisely: hypothesis on H

- If $H \leq_{f g} G$, then $\mu^{-1}(H)$ is a subgroup of $F(A)$, not always finitely generated - that is: not always regular
- We assume that H is L-quasi-convex: i.e., $L \cap \mu^{-1}(H)$ is a regular language
- H is quasi-convex if it is $L_{\text {geod-quasi-convex }}$

More precisely: hypothesis on H

- If $H \leq_{f g} G$, then $\mu^{-1}(H)$ is a subgroup of $F(A)$, not always finitely generated - that is: not always regular
- We assume that H is L-quasi-convex: i.e., $L \cap \mu^{-1}(H)$ is a regular language
- H is quasi-convex if it is $L_{\text {geod }}$-quasi-convex
- Equivalent property: H is L-quasi-convex if there exists a constant k such that every L-representative of an element of H stays within the k-neighborhood of H

More precisely: hypothesis on H

- If $H \leq_{f g} G$, then $\mu^{-1}(H)$ is a subgroup of $F(A)$, not always finitely generated - that is: not always regular
- We assume that H is L-quasi-convex: i.e., $L \cap \mu^{-1}(H)$ is a regular language
- H is quasi-convex if it is $L_{\text {geod-quasi-convex }}$
- Equivalent property: H is L-quasi-convex if there exists a constant k such that every L-representative of an element of H stays within the k-neighborhood of H
- k is a constant of L-quasi-convexity of H

General outline of our results

- If G is automatic, L is the corresponding regular set of representatives and $H \leq G$ is L-quasi-convex, we construct effectively a Stallings graph for H

General outline of our results

- If G is automatic, L is the corresponding regular set of representatives and $H \leq G$ is L-quasi-convex, we construct effectively a Stallings graph for H
- we solve the membership problem

General outline of our results

- If G is automatic, L is the corresponding regular set of representatives and $H \leq G$ is L-quasi-convex, we construct effectively a Stallings graph for H
- we solve the membership problem
- we find the constant of L-quasi-convexity

General outline of our results

- If G is automatic, L is the corresponding regular set of representatives and $H \leq G$ is L-quasi-convex, we construct effectively a Stallings graph for H
- we solve the membership problem
- we find the constant of L-quasi-convexity
- we decide finite index (with an extra assumption on L)

General outline of our results

- If G is automatic, L is the corresponding regular set of representatives and $H \leq G$ is L-quasi-convex, we construct effectively a Stallings graph for H
- we solve the membership problem
- we find the constant of L-quasi-convexity
- we decide finite index (with an extra assumption on L)
- we compute finite intersections

The case of hyperbolic groups

- If G is hyperbolic, one can compute an automatic structure for which the set of representatives is $L_{\text {geod }}$

The case of hyperbolic groups

- If G is hyperbolic, one can compute an automatic structure for which the set of representatives is $L_{\text {geod }}$
- Then L-quasi-convexity is quasi-convexity

The case of hyperbolic groups

- If G is hyperbolic, one can compute an automatic structure for which the set of representatives is $L_{\text {geod }}$
- Then L-quasi-convexity is quasi-convexity
- So we can decide membership and finite index (with extra assumption), compute finite intersections for quasi-convex subgroups of a hyperbolic group

The case of hyperbolic groups

- If G is hyperbolic, one can compute an automatic structure for which the set of representatives is $L_{\text {geod }}$
- Then L-quasi-convexity is quasi-convexity
- So we can decide membership and finite index (with extra assumption), compute finite intersections for quasi-convex subgroups of a hyperbolic group
- These are not new results, but our construction provides a unified tool - which surely can be used for other decision problems

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$
- w labels a loop at vertex H if and only if $\mu(w) \in H$

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$
- w labels a loop at vertex H if and only if $\mu(w) \in H$
- Stallings graph for H with respect to L : the fragment $\Gamma_{L}(H)$ of the Schreier graph, spanned by the loops labeled by the L-representatives of the elements of H

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$
- w labels a loop at vertex H if and only if $\mu(w) \in H$
- Stallings graph for H with respect to L : the fragment $\Gamma_{L}(H)$ of the Schreier graph, spanned by the loops labeled by the L-representatives of the elements of H
- $\Gamma_{L}(H)$ is uniquely associated with H (and L)

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$
- w labels a loop at vertex H if and only if $\mu(w) \in H$
- Stallings graph for H with respect to L : the fragment $\Gamma_{L}(H)$ of the Schreier graph, spanned by the loops labeled by the L-representatives of the elements of H
- $\Gamma_{L}(H)$ is uniquely associated with H (and L)
- Generalizes the free group case, and the results of [Markus-Epstein] and [Silva, Soler-Escriva, Ventura]

Definition of a Stallings graph!

- Schreier (G, H), the Schreier graph of H : vertex set $=$ $\{H g \mid g \in G\}$; a-labeled edge $H g \longrightarrow H g \mu(a)(a \in A, g \in G)$
- w labels a loop at vertex H if and only if $\mu(w) \in H$
- Stallings graph for H with respect to L : the fragment $\Gamma_{L}(H)$ of the Schreier graph, spanned by the loops labeled by the L-representatives of the elements of H
- $\Gamma_{L}(H)$ is uniquely associated with H (and L)
- Generalizes the free group case, and the results of [Markus-Epstein] and [Silva, Soler-Escriva, Ventura]
- It is with this definition in mind that we proceed with the construction

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph
- $\left(\Gamma_{i+1}, 1\right)$ is obtained from $\left(\Gamma_{i}, 1\right)$ by gluing every relator at every vertex and then folding

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph
- $\left(\Gamma_{i+1}, 1\right)$ is obtained from $\left(\Gamma_{i}, 1\right)$ by gluing every relator at every vertex and then folding
- a sequence of reduced rooted graphs; usually infinite

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph
- $\left(\Gamma_{i+1}, 1\right)$ is obtained from $\left(\Gamma_{i}, 1\right)$ by gluing every relator at every vertex and then folding
- a sequence of reduced rooted graphs; usually infinite
- If \mathcal{L}_{i} is the language of loops of Γ_{i} at vertex 1 , then $\mathcal{L}_{i} \subseteq \mathcal{L}_{i+1}$ and $\mu\left(\mathcal{L}_{i}\right)=H$

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph
- $\left(\Gamma_{i+1}, 1\right)$ is obtained from $\left(\Gamma_{i}, 1\right)$ by gluing every relator at every vertex and then folding
- a sequence of reduced rooted graphs; usually infinite
- If \mathcal{L}_{i} is the language of loops of Γ_{i} at vertex 1 , then $\mathcal{L}_{i} \subseteq \mathcal{L}_{i+1}$ and $\mu\left(\mathcal{L}_{i}\right)=H$
- and the \mathcal{L}_{i} gradually include all of $\mu^{-1}(H)$: if $\mu(w) \in H$, then $w \in \mathcal{L}_{i}$ for all i large enough (i depends on the number of relators needed to turn w into an element of H_{0})

First, a completion process $1 / 2$

- Recall $G=\langle A \mid R\rangle$
- Given $h_{1}, \ldots h_{k} \in F(A)$ such that $H=\left\langle\mu\left(h_{1}\right), \ldots, \mu\left(h_{k}\right)\right\rangle$: let $H_{0}=\left\langle h_{1}, \cdots, h_{k}\right\rangle \leq F(A)$ and $\left(\Gamma_{0}, 1\right)$ be its Stallings graph
- $\left(\Gamma_{i+1}, 1\right)$ is obtained from $\left(\Gamma_{i}, 1\right)$ by gluing every relator at every vertex and then folding
- a sequence of reduced rooted graphs; usually infinite
- If \mathcal{L}_{i} is the language of loops of Γ_{i} at vertex 1 , then $\mathcal{L}_{i} \subseteq \mathcal{L}_{i+1}$ and $\mu\left(\mathcal{L}_{i}\right)=H$
- and the \mathcal{L}_{i} gradually include all of $\mu^{-1}(H)$: if $\mu(w) \in H$, then $w \in \mathcal{L}_{i}$ for all i large enough (i depends on the number of relators needed to turn w into an element of H_{0})
- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H
- By definition of L-quasi-convexity, $L \cap \mu^{-1}(H) \subseteq K$

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H
- By definition of L-quasi-convexity, $L \cap \mu^{-1}(H) \subseteq K$
- So, for i large enough, $L \cap \mu^{-1}(H) \subseteq \mathcal{L}_{i}$

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H
- By definition of L-quasi-convexity, $L \cap \mu^{-1}(H) \subseteq K$
- So, for i large enough, $L \cap \mu^{-1}(H) \subseteq \mathcal{L}_{i}$
- We say that a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L if $L \cap \mu^{-1}(H) \subseteq \mathcal{L}(\Gamma, 1) \subseteq \mu^{-1}(H)$

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H
- By definition of L-quasi-convexity, $L \cap \mu^{-1}(H) \subseteq K$
- So, for i large enough, $L \cap \mu^{-1}(H) \subseteq \mathcal{L}_{i}$
- We say that a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L if $L \cap \mu^{-1}(H) \subseteq \mathcal{L}(\Gamma, 1) \subseteq \mu^{-1}(H)$
- So, for i large enough, $\left(\Gamma_{i}, 1\right)$ is Stallings-like for H

First, a completion process $2 / 2$

- if $K \leq_{f g} F(A)$ is such that $\mu(K)=H$, then $K \leq \mathcal{L}_{i}$ for all i large enough
- Apply this to the subgroup $K \leq F(A)$ whose Stallings graph is Schreier $_{k}(G, H)$, the finite subgraph of $\operatorname{Schreier}(G, H)$ at distance at most k from vertex H, where k is a constant of L-quasi-convexity of H
- By definition of L-quasi-convexity, $L \cap \mu^{-1}(H) \subseteq K$
- So, for i large enough, $L \cap \mu^{-1}(H) \subseteq \mathcal{L}_{i}$
- We say that a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L if $L \cap \mu^{-1}(H) \subseteq \mathcal{L}(\Gamma, 1) \subseteq \mu^{-1}(H)$
- So, for i large enough, $\left(\Gamma_{i}, 1\right)$ is Stallings-like for H
- But... when are we done? How do we know when to stop the completion process?

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L
- Decide, for each reduced word w labeling a loop at 1 , whether the L-representatives of $\mu\left(w h_{i}\right)$ also label loops

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L
- Decide, for each reduced word w labeling a loop at 1 , whether the L-representatives of $\mu\left(w h_{i}\right)$ also label loops
- Use the automatic structure of G : given $h=a_{1} \cdots a_{r} \in F(A)$ and a regular subset K of L, one can construct an automaton for $L \cap \mu(K h)$ - we pipeline the multiplyer automata for a_{1}, \ldots, a_{r} to construct an h-multiplyer

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L
- Decide, for each reduced word w labeling a loop at 1 , whether the L-representatives of $\mu\left(w h_{i}\right)$ also label loops
- Use the automatic structure of G : given $h=a_{1} \cdots a_{r} \in F(A)$ and a regular subset K of L, one can construct an automaton for $L \cap \mu(K h)$ - we pipeline the multiplyer automata for a_{1}, \ldots, a_{r} to construct an h-multiplyer
- The we can check whether $L \cap \mu(K h) \subseteq K$

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L
- Decide, for each reduced word w labeling a loop at 1 , whether the L-representatives of $\mu\left(w h_{i}\right)$ also label loops
- Use the automatic structure of G : given $h=a_{1} \cdots a_{r} \in F(A)$ and a regular subset K of L, one can construct an automaton for $L \cap \mu(K h)$ - we pipeline the multiplyer automata for a_{1}, \ldots, a_{r} to construct an h-multiplyer
- The we can check whether $L \cap \mu(K h) \subseteq K$
- For each i, when $\left(\Gamma_{i}, 1\right)$ is constructed, check whether it is Stallings-like, and if so, stop

Constructing a Stallings-like graph for H wrt L

- To decide when to stop $=$ decide whether a reduced rooted graph $(\Gamma, 1)$ is Stallings-like for H wrt L
- Decide, for each reduced word w labeling a loop at 1 , whether the L-representatives of $\mu\left(w h_{i}\right)$ also label loops
- Use the automatic structure of G : given $h=a_{1} \cdots a_{r} \in F(A)$ and a regular subset K of L, one can construct an automaton for $L \cap \mu(K h)$ - we pipeline the multiplyer automata for a_{1}, \ldots, a_{r} to construct an h-multiplyer
- The we can check whether $L \cap \mu(K h) \subseteq K$
- For each i, when $\left(\Gamma_{i}, 1\right)$ is constructed, check whether it is Stallings-like, and if so, stop
- Now we have constructed a Stallings-like graph ($\Gamma, 1$)

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in Γ

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in Γ
- Note that there is no reason why $(\Gamma, 1)$ should be embedded in Schreier (G, H)

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in 「
- Note that there is no reason why $(\Gamma, 1)$ should be embedded in Schreier (G, H)
- But a quotient of $(\Gamma, 1)$ embeds in $(\operatorname{Schreier}(G, H), H)$

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in Γ
- Note that there is no reason why $(\Gamma, 1)$ should be embedded in Schreier (G, H)
- But a quotient of $(\Gamma, 1)$ embeds in $(\operatorname{Schreier}(G, H), H)$
- Map Γ to $\operatorname{Schreier}(G, H)$: map vertex 1 to vertex H. If u_{p} labels a path in Γ from 1 to vertex p, map p to $H \mu\left(u_{p}\right)$. Decide for all (p, q) whether $\mu\left(u_{p} u_{q}^{-1}\right) \in H$

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in Γ
- Note that there is no reason why $(\Gamma, 1)$ should be embedded in Schreier (G, H)
- But a quotient of $(\Gamma, 1)$ embeds in $(\operatorname{Schreier}(G, H), H)$
- Map Γ to $\operatorname{Schreier}(G, H)$: map vertex 1 to vertex H. If u_{p} labels a path in Γ from 1 to vertex p, map p to $H \mu\left(u_{p}\right)$. Decide for all (p, q) whether $\mu\left(u_{p} u_{q}^{-1}\right) \in H$
- Now we have constructed a subgraph of $\operatorname{Schreier}(G, H)$ which contains $\Gamma_{L}(H)$, and which is Stallings-like

Finally: construct the Stallings graph of H wrt L

- First, use the Stallings-like graph $(\Gamma, 1)$ to solve the membership problem for H : given w, find an L-representative, decide whether it labels a loop at 1 in Γ
- Note that there is no reason why $(\Gamma, 1)$ should be embedded in Schreier (G, H)
- But a quotient of $(\Gamma, 1)$ embeds in $(\operatorname{Schreier}(G, H), H)$
- Map Γ to $\operatorname{Schreier}(G, H)$: map vertex 1 to vertex H. If u_{p} labels a path in Γ from 1 to vertex p, map p to $H \mu\left(u_{p}\right)$. Decide for all (p, q) whether $\mu\left(u_{p} u_{q}^{-1}\right) \in H$
- Now we have constructed a subgraph of $\operatorname{Schreier}(G, H)$ which contains $\Gamma_{L}(H)$, and which is Stallings-like
- Since $\left(\Gamma_{L}, H\right)$ is the least rooted subgraph of the Schreier graph which is Stallings-like: we verify for each vertex whether removing it still yields a Stallings-like graph

Complexity issues $1 / 2$

- Finding a Stallings-like graph gives us an L-quasi-convexity constant for H; computing $\Gamma_{L}(H)$ gives us the least

Complexity issues $1 / 2$

- Finding a Stallings-like graph gives us an L-quasi-convexity constant for H; computing $\Gamma_{L}(H)$ gives us the least
- But the time needed to do that is not bounded by any computable function of the size of the input ($n=$ sum of the lengths of the generators)

Complexity issues $1 / 2$

- Finding a Stallings-like graph gives us an L-quasi-convexity constant for H; computing $\Gamma_{L}(H)$ gives us the least
- But the time needed to do that is not bounded by any computable function of the size of the input ($n=$ sum of the lengths of the generators)
- [Otherwise we could decide whether a given tuple of elements generates a quasi-convex subgroup; and this problem is undecidable]

Complexity issues $2 / 2$

- More precisely: if n is the total length of the given generators for H, then computing Γ_{0} takes time polynomial in n

Complexity issues $2 / 2$

- More precisely: if n is the total length of the given generators for H, then computing Γ_{0} takes time polynomial in n
- and computing Γ_{i} takes time polynomial in n and exponential in i

Complexity issues $2 / 2$

- More precisely: if n is the total length of the given generators for H, then computing Γ_{0} takes time polynomial in n
- and computing Γ_{i} takes time polynomial in n and exponential in i
- Deciding whether a given $(\Gamma, 1)$ with N vertices is Stallings-like takes time polynomial in N and exponential in n

Complexity issues $2 / 2$

- More precisely: if n is the total length of the given generators for H, then computing Γ_{0} takes time polynomial in n
- and computing Γ_{i} takes time polynomial in n and exponential in i
- Deciding whether a given $(\Gamma, 1)$ with N vertices is Stallings-like takes time polynomial in N and exponential in n
- The previous remark on the undecidability of quasi-convexity shows that there is no computable bound on the number i of iterations of the completion process, before we get a Stallings-like graph

Complexity issues $2 / 2$

- More precisely: if n is the total length of the given generators for H, then computing Γ_{0} takes time polynomial in n
- and computing Γ_{i} takes time polynomial in n and exponential in i
- Deciding whether a given $(\Gamma, 1)$ with N vertices is Stallings-like takes time polynomial in N and exponential in n
- The previous remark on the undecidability of quasi-convexity shows that there is no computable bound on the number i of iterations of the completion process, before we get a Stallings-like graph
- If this number i is part of the input, then the computation of $\Gamma_{L}(H)$ is exponential in i and n

Applications

- Computing the intersection of two quasi-convex subgroups

Applications

- Computing the intersection of two quasi-convex subgroups
- Deciding finite index: for this we use an extra condition on the set L of representatives, namely...

Applications

- Computing the intersection of two quasi-convex subgroups
- Deciding finite index: for this we use an extra condition on the set L of representatives, namely...
- we assume that, for every $u \in L$, there exists an infinite sequence $\left(v_{n}\right)_{n}$ such that for every $n, u v_{n} \in L$ and u is a prefix of an L-representative of $u v_{n} v_{m}^{-1} u_{i} n v$ for almost all m

Applications

- Computing the intersection of two quasi-convex subgroups
- Deciding finite index: for this we use an extra condition on the set L of representatives, namely...
- we assume that, for every $u \in L$, there exists an infinite sequence $\left(v_{n}\right)_{n}$ such that for every $n, u v_{n} \in L$ and u is a prefix of an L-representative of $u v_{n} v_{m}^{-1} u_{i} n v$ for almost all m
- Then H has finite index if and only if every word of L can be read in $\Gamma_{L}(H)$ starting from the base vertex

Applications

- Computing the intersection of two quasi-convex subgroups
- Deciding finite index: for this we use an extra condition on the set L of representatives, namely...
- we assume that, for every $u \in L$, there exists an infinite sequence $\left(v_{n}\right)_{n}$ such that for every $n, u v_{n} \in L$ and u is a prefix of an L-representative of $u v_{n} v_{m}^{-1} u_{i} n v$ for almost all m
- Then H has finite index if and only if every word of L can be read in $\Gamma_{L}(H)$ starting from the base vertex
- This is decidable

Applications

- Computing the intersection of two quasi-convex subgroups
- Deciding finite index: for this we use an extra condition on the set L of representatives, namely...
- we assume that, for every $u \in L$, there exists an infinite sequence $\left(v_{n}\right)_{n}$ such that for every $n, u v_{n} \in L$ and u is a prefix of an L-representative of $u v_{n} v_{m}^{-1} u_{i} n v$ for almost all m
- Then H has finite index if and only if every word of L can be read in $\Gamma_{L}(H)$ starting from the base vertex
- This is decidable
- In that case, $\Gamma_{L}(H)$ is a subgraph of the (finite) Schreier graph, with all the vertices

Thank you for your attention!

