Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group 000000 0000

Logarithmic space complexity and the conjugacy problem

Svetla Vassileva McGill University Joint work with A. Miasnikov

Group Theory International Webinar October 31, 2013

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The complexity zoo

- Google it! It's fun!
- "There are now 495 classes and counting"
- Questions.
 - Which is the right class for my needs?
 - Which classes are popular?
 - Why?
 - What makes a 'good' class?

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

What makes a complexity class 'good'?

- Robustness (e.g., closed under composition)
- Containing interesting problems
- Based on a 'reasonable' model of computation

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

A visitor's guide to the zoo

What are the characteristics of a complexity class?

- The model of computation
 - Turing machine
 - Boolean circuit
 - Random Access Machine (RAM)
- The resource being restricted
 - Time
 - Space
 - Depth
 - Fan-in
- The type of problem
 - decision problem
 - counting problem
 - function problem (aka search problem)
 - promise problem

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Who is popular?

- P the class of polynomial-time decidable functions
- NP the class of functions decidable in polynomial time by a non-deterministic Turing machine.
- L the class of functions decidable by a Turing machine using only space of logarithmic size in the input.
- TC⁰ the class of functions decidable by a boolean circuit of polynomial size and constant depth.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The 'right' complexity class

So every beast finds a mate, and from the same fact comes the proverb, 'There is no [problem], however ugly, that does not one day find a [class]. (Balzac, The maid of Thilouse)

- Reducing problems.
 - Given *A*, *B* ⊆ ℕ and a set of functions *F*, closed under composition, *A* is *reducible* to *B* if

 $\exists f \in \mathcal{F} \quad \forall x \in \mathbb{N}, \quad x \in A \Leftrightarrow f(x) \in B$

- A is \mathcal{F} -equivalent to B if A is reducible to B and B is reducible to A.
- Completeness. A problem *P* is complete in a class *C* if it is equivalent to every problem in this class with a 'suitable' choice for *F*.
- 'suitable': the functions from \mathcal{F} have to be 'efficient' with respect to the given class.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Examples of completeness from group theory

- Undecidable problems (void: they are all impossible)
 - some word problems (Novikov and Boone)
 - membership in free solvable groups of degree \geq 3 (Umirbaev)
- NP-complete problems
 - The word problem for a (specific, complicated) finitely presented group (Birget, Olshanskii, Rips, Sapir)
 - The solvability problem for quadratic equations over free /hyperbolic groups (Kharlampovich, Lysenok, Miasnikov, Touikan /Kharlampovich, Mohajeri, Taam, Vdovina)
 - The subset sum problem in BS(1,2), ℤ ≀ ℤ, free metabelian groups, Thompson's group (Miasnikov, Nikolaev, Ushakov)
- P-space complete problems
 - The existential theory of equations with rational constraints in free groups (Diekert, Gutierrez, Hagenah)
- TC⁰-complete problems
 - Conjugacy problem in BS(1,2) (Diekert, Miasnikov, Weiss)
 - Nothing else known

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The next best thing

- Completeness is precious and hard to prove
- Prove the lowest possible upper bound
- A typical progression

polynomial time \Rightarrow 'linear time' \Longrightarrow logarithmic space \Longrightarrow TC⁰

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Why space?

- Handling large data sets.
 - RAM vs. external storage
 - DNA sequencing
 - working with databases
 - the internet graph
- Time complexity can really be due to space issues.
 - Gröbner bases
 - Start with basis for ideal and "blow it up" by adding polynomials
 - The number of polynomials we add is large

 \Rightarrow the time complexity is large

Log-space complexity 000000 Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

```
Log-space \Rightarrow P-time.
```

- Configurations cannot be repeated.
- Total number of configurations $\leq k(n + 2^{c \log n}) \sim n^c$
- P-time $\stackrel{?}{\Rightarrow}$ log-space: open problem.

Log-space complexity 0000000

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Example: sorting is in log-space

15			
----	--	--	--

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Log-space functions can be composed

|--|

Log-space complexity 0000000

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Log-space functions can be composed

Log-space complexity 0000000 Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Some log-space computable problems

- WP in linear groups is log-space decidable (Zalcstein, Lipton).
- Normal forms in free groups are log-space computable (Lohrey, Ondrush/ Elder, Elston, Ostheimer).
- Normal forms in abelian groups are log-space computable (Elder, Elston, Ostheimer).
- Normal forms in wreath products are log-space computable (Elder, Elston, Ostheimer).
- Normal forms in RAAG are log-space computable (Diekert, Kausch, Lohrey).
- Normal forms in free metabelian groups (V.)

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The conjugacy problem in log-space

- Grigorchuk group (Miasnikov, V.)
 - Double exponential time upper bound (Grigorchuk)
 - Polynomial time (Lysenok, Miasnikov, Ushakov)
 - Log-space (Miasnikov, V.)
- Wreath products
 - Decidable (Matthews)
 - Polynomial time (V.)
 - Log-space (Miasnikov, V.)
- Free solvable groups
 - Decidable (Remeslennikov, Sokolov)
 - Polynomial time (V.)
 - Log-space (Miasnikov, V.)

it complexity	Log-space complexity	Conjugacy in wreath products	Corollaries	C
0000	0000000	00	0000	0
		000		0

Conjugacy in Grigorchuk group

Conjugacy in Wreath Products and Important Corollaries

Log-space complexity

Conjugacy in wreath products ••• ••• Corollaries 0000 Conjugacy in Grigorchuk group

Wreath products

The *restricted wreath product* is the group:

$$A\wr B=\{bf\mid b\in B,\,f\in A^{(B)}\},$$

with multiplication defined by

$$bf \cdot cg = bc f^c g,$$

where

•
$$f^c(x) = f(xc^{-1})$$
 for $x \in B$.

- $A^{(B)}$ is the set of all functions from B to A of *finite support*.
- Multiplication in $A^{(B)}$ is given by $f \cdot g(x) = f(x)g(x)$.
- $1_{A^{(B)}}$ is the function $1: B \to 1_A$.

Remark. *B* acts on $A^{(B)}$, so $A \wr B \simeq B \ltimes A^{(B)}$

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

A presentation for $A \wr B$

Let
$$A = \langle X | R_A \rangle$$
, $B = \langle Y | R_B \rangle$. Then
 $A \wr B = \left\langle X \cup Y | R_A, R_B, [a_1^{b_1}, a_2^{b_2}] \right\rangle$,

where $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

$$a^b \longleftrightarrow f_{a,b}(x) = \begin{cases} a & \text{if } x = b \\ 1 & \text{otherwise.} \end{cases}$$

- Any function $f \in A^{(B)}$ can be given as $\{(b_1, a_1), \dots, (b_n, a_n)\}$
- Equivalently, $f = f_{a_1,b_1} \dots f_{a_n,b_n} = f_{a_1,1}^{b_1} \dots f_{a_n,1}^{b_n} \iff a_1^{b_1} \dots a_n^{b_n}$.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Conjugacy in wreath products

- Let $x = bf, y = cg \in A \wr B$ be given.
- There exists $z = dh \in A \wr B$ such that $z^{-1}xz = y$ iff

$$d^{-1}bd = c$$
 and $g^d = h^b f h^{-1}$.

•
$$g^d = h^b f h^{-1} \Leftrightarrow \forall x \in B, g^d(x) = h^b f h^{-1}(x).$$

- Problems:
 - $\forall x \in B$ is a lot of elements to check for (but finite support).
 - Get rid of *h*.
 - Get rid of d.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

A conjugacy criterion

- $T = \{t_i\}$ set of $\langle b \rangle$ coset representatives for supp $(f) \cup$ supp(g)
- S = {s_i} set of ⟨c⟩- coset representatives for supp(f) ∪ supp(g)

• Define

$$\beta_i(f) = \prod_j f(t_i b^j) \text{ and } \gamma_i(f) = \prod_j f(s_i c^j).$$

Theorem (Matthews (modified))

In $A \wr B$, $bf \sim cg$ if and only if

- $b \sim c$ in B and
- $\beta_i(f) \sim \gamma_i(g)$ in A for all i.

Log-space complexity

Conjugacy in wreath products ○○ ○○● Corollaries 0000 Conjugacy in Grigorchuk group

CP in wreath products

Theorem (Miasnikov, V.)

Suppose that

- the conjugacy problem in A is log-space decidable,
- the conjugacy problem in B is log-space decidable and
- the power problem in B is computable in log-space.

Then the conjugacy problem in $A \wr B$ is also log-space decidable.

Power problem in G: Given two words x and y in generators of G, find the smallest integer n such that $x^n = y$.

Log-space complexity

Conjugacy in wreath products

Corollaries •000 Conjugacy in Grigorchuk group

Direct corollaries

Corollary

The conjugacy problem in a wreath product of two abelian groups is log-space decidable.

Example. The conjugacy problem in the lamplighter group $\mathbb{Z} \wr \mathbb{Z}_2$ is decidable in log-space.

Corollary

The conjugacy problem in the wreath product $F \wr \mathbb{Z}^2$ of a free group F and a free abelian group is decidable in log-space.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Iterated wreath products

Definition

The *left iterated wreath product*, $A^n \wr B$, of two groups A and B inductively as follows.

- $A^1 \wr B = A \wr B$
- $A^n \wr B = A \wr (A^{n-1} \wr B)$

Corollary

Suppose that

- the conjugacy problem in A is log-space decidable,
- the conjugacy problem in B is log-space decidable and
- the power problem in A and B is computable in log-space.

Then the conjugacy problem in $A^n \wr B$ is also log-space decidable.

Log-space complexity

Conjugacy in wreath products

Corollaries

Conjugacy in Grigorchuk group

Free solvable groups

Definition

• The n^{th} derived (commutator) subgroup of a group G is

$$G^{(n)} = [G^{(n-1)}, G^{(n-1)}],$$

where $G^{(1)} = G' = [G, G] = \langle [g, g'] | g, g' \in G \rangle$.

• The *free solvable group* $S_{d,r}$ of degree *d* and rank *r* is given by

$$S_{d,r} = \frac{F_r}{F_r^{(d)}}.$$

Log-space complexity

Conjugacy in wreath products

Corollaries

Conjugacy in Grigorchuk group

Conjugacy in free solvable groups

Corollary

The conjugacy problem in a free solvable group, $S_{d,r}$, of fixed rank r and degree d is decidable in logarithmic space.

Proof.

- The Magnus embedding is a map $\phi : S_{d,r} \hookrightarrow \mathbb{Z}^r \wr S_{d-1,r}$.
- The Magnus embedding is a Frattini embedding, i.e.,

$$x \sim_{S_{d,r}} y \Longleftrightarrow \phi(x) \sim_{\mathbb{Z}^r \wr S_{d-1,r}} \phi(y).$$

• Iterate the embedding to get

$$S_{d,r} \hookrightarrow \mathbb{Z}^r \wr S_{d-1,r} \hookrightarrow \mathbb{Z}^r \wr \left(\mathbb{Z}^r \wr S_{d-2,r}\right) = \mathbb{Z}^{r^2} \wr S_{d-2,r} \hookrightarrow$$
$$\cdots$$
$$\hookrightarrow \mathbb{Z}^{r^{d-1}} \wr S_{1,r} = \mathbb{Z}^{r^{d-1}} \wr \mathbb{Z}^r.$$

About complexity	Log-space complexity	Conjugacy in wreath products	
0000000	000000	00	
		000	

Corollaries

Conjugacy in Grigorchuk group

Conjugacy in the Grigorchuk group

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The binary tree, T

. . .

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Automorphisms of the binary tree

- *a* acts by swapping the subtrees rooted at 0 and 1.
- $\psi : \operatorname{St}_{\operatorname{Aut}(\mathcal{T})}(1) \longrightarrow \operatorname{Aut}(\mathcal{T}) \times \operatorname{Aut}(\mathcal{T})$
- For $\alpha \in \operatorname{St}_{\operatorname{Aut}(\mathcal{T})}(1)$, write (α_0, α_1)
- Properties. For $g, h \in \text{St}_{\text{Aut}(\mathcal{T})}(1)$
 - $gh = (g_0h_0, g_1h_1)$
 - $aga = (g_1, g_0)$

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The Grigorchuk group, Γ

 $\Gamma = \langle a, b, c, d \rangle$

- *a* swaps subtrees rooted at 0 and 1.
- $b, c, d \in St(1)$, with

$$b = (a, c), \quad c = (a, d), \quad d = (1, b).$$

• Obvious relations:

•
$$a^2 = b^2 = c^2 = d^2 = 1$$

• bc = cb = d

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Reduced words

- $\langle a \rangle \simeq \mathbb{Z}_2, \langle b, c, d \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\mathcal{F} = \mathbb{Z}_2 * (\mathbb{Z}_2 \times \mathbb{Z}_2)$
- $\Gamma = \mathcal{F}/S.$
- Every $w \in \mathcal{F}$ can be written as

$$w = u_0 a u_1 a \dots u_{k-1} a u_k,$$

 $u_i \in \{b, c, d\}$ and u_0, u_k maybe trivial

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

The stabilizer subgroup and splitting

 $St_{\Gamma}(1) = St_{Aut(\mathcal{T})}(1) \cap \Gamma$

 $\operatorname{St}_{\Gamma}(1) = \langle b, c, d, aba, aca, ada \rangle$

 $\psi: \operatorname{St}_{\Gamma}(1) \longrightarrow \Gamma \times \Gamma$

- ψ is an injective homomorphism
- It is not surjective.

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group

Conjugacy reduction

Let $u, v \in \mathcal{F}$ be two given reduced words.

• Assume (for simplicity) $u, v \in St_{\Gamma}(1)$.

• If
$$\exists x \ x^{-1}ux = v$$
,
• $x \in \operatorname{St}_{\Gamma}(1)$, so $x = (x_0, x_1)$.
 $x^{-1}ux = v \quad \Leftrightarrow \quad (x_0^{-1}u_0x_0, x_1^{-1}u_1x_1) = (v_0, v_1)$
 $\Leftrightarrow \quad u_0 \sim v_0 \text{ and } u_1 \sim v_1$

$$x \notin \operatorname{St}_{\Gamma}(1), ax = (y_0, y_1).$$

$$x^{-1}ux = v \quad \Leftrightarrow \quad (x^{-1}a)(aua)(ax) = v$$

$$\Leftrightarrow \quad (y_0^{-1}, y_1^{-1})(u_1, u_0)(y_0, y_1) = (v_0, v_1)$$

$$\Leftrightarrow \quad u_1 \sim v_0 \quad \text{and} \quad u_0 \sim v_1$$

Log-space complexity

Conjugacy in wreath products

Corollaries 0000 Conjugacy in Grigorchuk group ○○○○○ ○●○○

Conjugacy reduction (ctd)

- If u, v ∈ St_Γ(1), we can deduce the conjugacy of u and v by considering conjugacy between u₀, u₁, v₀, v₁.
- If $u, v \notin St_{\Gamma}(1)$, similar situation.
- If one of u, v is in $St_{\Gamma}(1)$ and the other is not, then $u \approx v$.

• Question. How much do we need to split?

About complexity	Log-space complexity	Conjugacy in wreath products	Corollaries	Conjugacy in Grigorchuk group
0000000	000000	00 000	0000	00000

- The height of this tree is logarithmic
 - Introduce a notion of length
 - Show this length decreases by half every time we split
- This means the tree can be traversed in log-space
- It follows we can deduce information about the root using the tree in log-space