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The complexity zoo

• Google it! It’s fun!
• “There are now 495 classes and counting”
• Questions.

• Which is the right class for my needs?
• Which classes are popular?
• Why?
• What makes a ‘good’ class?
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What makes a complexity class ‘good’?

• Robustness (e.g., closed under composition)
• Containing interesting problems
• Based on a ‘reasonable’ model of computation
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A visitor’s guide to the zoo

What are the characteristics of a complexity class?
• The model of computation

• Turing machine
• Boolean circuit
• Random Access Machine (RAM)

• The resource being restricted
• Time
• Space
• Depth
• Fan-in

• The type of problem
• decision problem
• counting problem
• function problem (aka search problem)
• promise problem
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Who is popular?

• P – the class of polynomial-time decidable functions
• NP – the class of functions decidable in polynomial time by a

non-deterministic Turing machine.
• L – the class of functions decidable by a Turing machine using

only space of logarithmic size in the input.
• TC0 – the class of functions decidable by a boolean circuit of

polynomial size and constant depth.
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The ‘right’ complexity class
So every beast finds a mate, and from the same fact comes the proverb,
‘There is no [problem], however ugly, that does not one day find a [class].
(Balzac, The maid of Thilouse)

• Reducing problems.
• Given A,B ⊆ N and a set of functions F , closed under

composition, A is reducible to B if

∃ f ∈ F ∀x ∈ N, x ∈ A⇔ f (x) ∈ B

• A is F−equivalent to B if A is reducible to B and B is reducible to
A.

• Completeness. A problem P is complete in a class C if it is
equivalent to every problem in this class with a ‘suitable’ choice
for F .

• ‘suitable’: the functions from F have to be ‘efficient’ with
respect to the given class.
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Examples of completeness from group theory
• Undecidable problems (void: they are all impossible)

• some word problems (Novikov and Boone)
• membership in free solvable groups of degree ≥ 3 (Umirbaev)

• NP-complete problems
• The word problem for a (specific, complicated) finitely presented

group (Birget, Olshanskii, Rips, Sapir)
• The solvability problem for quadratic equations over free

/hyperbolic groups (Kharlampovich, Lysenok, Miasnikov,
Touikan /Kharlampovich, Mohajeri, Taam, Vdovina)

• The subset sum problem in BS(1, 2), Z o Z, free metabelian
groups, Thompson’s group (Miasnikov, Nikolaev, Ushakov)

• P-space complete problems
• The existential theory of equations with rational constraints in

free groups (Diekert, Gutierrez, Hagenah)
• TC0-complete problems

• Conjugacy problem in BS(1, 2) (Diekert, Miasnikov, Weiss)
• Nothing else known
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The next best thing

• Completeness is precious and hard to prove
• Prove the lowest possible upper bound
• A typical progression

polynomial time⇒ ‘linear time’ =⇒ logarithmic space =⇒ TC0



About complexity Log-space complexity Conjugacy in wreath products Corollaries Conjugacy in Grigorchuk group

Why space?

• Handling large data sets.
• RAM vs. external storage
• DNA sequencing
• working with databases
• the internet graph

• Time complexity can really be due to space issues.
• Gröbner bases
• Start with basis for ideal and “blow it up” by adding polynomials
• The number of polynomials︸ ︷︷ ︸

space

we add is large

⇒ the time complexity is large



About complexity Log-space complexity Conjugacy in wreath products Corollaries Conjugacy in Grigorchuk group

Log-space⇒ P-time.

• Configurations cannot be repeated.
• Total number of configurations ≤ k(n + 2c log n) ∼ nc

• P-time ?⇒ log-space: open problem.
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Log-space transducers

input tape read only

work tape read/write

output tape write only
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Example: sorting is in log-space

11 15 12 10

15

current candidate

latest printed
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Log-space functions can be composed

f : g :

x1 x2 x3 xn. . .
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Log-space functions can be composed

f ◦ g :

x1 x2 x3 . . . xn

g(x)[i]

p = i
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Some log-space computable problems

• WP in linear groups is log-space decidable (Zalcstein, Lipton).

• Normal forms in free groups are log-space computable (Lohrey,
Ondrush/ Elder, Elston, Ostheimer).

• Normal forms in abelian groups are log-space computable
(Elder, Elston, Ostheimer).

• Normal forms in wreath products are log-space computable
(Elder, Elston, Ostheimer).

• Normal forms in RAAG are log-space computable (Diekert,
Kausch, Lohrey).

• Normal forms in free metabelian groups (V.)
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The conjugacy problem in log-space

• Grigorchuk group (Miasnikov, V.)
• Double exponential time upper bound (Grigorchuk)
• Polynomial time (Lysenok, Miasnikov, Ushakov)
• Log-space (Miasnikov, V.)

• Wreath products
• Decidable (Matthews)
• Polynomial time (V.)
• Log-space (Miasnikov, V.)

• Free solvable groups
• Decidable (Remeslennikov, Sokolov)
• Polynomial time (V.)
• Log-space (Miasnikov, V.)
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Conjugacy in Wreath Products and Important Corollaries
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Wreath products

The restricted wreath product is the group:

A o B = {bf | b ∈ B, f ∈ A(B)},

with multiplication defined by

bf · cg = bc f cg,

where
• f c(x) = f (xc−1) for x ∈ B.
• A(B) is the set of all functions from B to A of finite support.
• Multiplication in A(B) is given by f · g(x) = f (x)g(x).
• 1A(B) is the function 1 : B→ 1A.

Remark. B acts on A(B), so A o B ' Bn A(B)
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A presentation for A o B

Let A = 〈X | RA〉, B = 〈Y | RB〉. Then

A o B =
〈

X ∪ Y | RA, RB, [ab1
1 , a

b2
2 ]
〉
,

where a1, a2 ∈ A and b1, b2 ∈ B.

ab ! fa,b(x) =

{
a if x = b
1 otherwise.

• Any function f ∈ A(B) can be given as {(b1, a1), . . . , (bn, an)}
• Equivalently, f = fa1,b1 . . . fan,bn = f b1

a1,1 . . . f
bn
an,1 ! ab1

1 . . . abn
n .



About complexity Log-space complexity Conjugacy in wreath products Corollaries Conjugacy in Grigorchuk group

Conjugacy in wreath products

• Let x = bf , y = cg ∈ A o B be given.

• There exists z = dh ∈ A o B such that z−1xz = y iff

d−1bd = c and gd = hbfh−1.

• gd = hbfh−1 ⇔ ∀x ∈ B, gd(x) = hbfh−1(x).

• Problems:
• ∀x ∈ B is a lot of elements to check for (but finite support).
• Get rid of h.
• Get rid of d.



About complexity Log-space complexity Conjugacy in wreath products Corollaries Conjugacy in Grigorchuk group

A conjugacy criterion

• T = {ti} – set of 〈b〉- coset representatives for supp(f ) ∪ supp(g)

• S = {si} – set of 〈c〉- coset representatives for supp(f ) ∪ supp(g)

• Define

βi(f ) =
∏

j

f (tibj) and γi(f ) =
∏

j

f (sicj).

Theorem (Matthews (modified))
In A o B, bf ∼ cg if and only if

• b ∼ c in B and

• βi(f ) ∼ γi(g) in A for all i.
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CP in wreath products

Theorem (Miasnikov, V.)
Suppose that
• the conjugacy problem in A is log-space decidable,
• the conjugacy problem in B is log-space decidable and
• the power problem in B is computable in log-space.

Then the conjugacy problem in A o B is also log-space decidable.

Power problem in G: Given two words x and y in generators of G, find
the smallest integer n such that xn = y.
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Direct corollaries

Corollary
The conjugacy problem in a wreath product of two abelian groups is
log-space decidable.

Example. The conjugacy problem in the lamplighter group Z o Z2 is
decidable in log-space.

Corollary

The conjugacy problem in the wreath product F o Z2 of a free group F
and a free abelian group is decidable in log-space.
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Iterated wreath products

Definition
The left iterated wreath product, A noB, of two groups A and B
inductively as follows.
• A 1oB = A o B
• A noB = A o (A n−1oB)

Corollary
Suppose that
• the conjugacy problem in A is log-space decidable,
• the conjugacy problem in B is log-space decidable and
• the power problem in A and B is computable in log-space.

Then the conjugacy problem in A noB is also log-space decidable.
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Free solvable groups

Definition
• The nth derived (commutator) subgroup of a group G is

G(n) = [G(n−1),G(n−1)],

where G(1) = G′ = [G,G] = 〈[g, g′] | g, g′ ∈ G〉.
• The free solvable group Sd,r of degree d and rank r is given by

Sd,r = Fr
/

F(d)
r
.
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Conjugacy in free solvable groups
Corollary
The conjugacy problem in a free solvable group, Sd,r, of fixed rank r
and degree d is decidable in logarithmic space.

Proof.
• The Magnus embedding is a map φ : Sd,r ↪→ Zr o Sd−1,r.
• The Magnus embedding is a Frattini embedding, i.e.,

x ∼Sd,r y⇐⇒ φ(x) ∼ZroSd−1,r φ(y).

• Iterate the embedding to get

Sd,r ↪→ Zr o Sd−1,r ↪→ Zr o
(
Zr o Sd−2,r

)
= Zr 2o Sd−2,r ↪→

· · ·
↪→ Zr d−1o S1,r = Zr d−1oZr.
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Conjugacy in the Grigorchuk group
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The binary tree, T
∅

0 1

00 01 10 11

000 001 010 011 100 101 110 111
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Automorphisms of the binary tree

• a acts by swapping the subtrees rooted at 0 and 1.

• ψ : StAut(T )(1) −→ Aut(T )× Aut(T )

• For α ∈ StAut(T )(1), write (α0, α1)

• Properties. For g, h ∈ StAut(T )(1)
• gh = (g0h0, g1h1)
• aga = (g1, g0)
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The Grigorchuk group, Γ

Γ = 〈a, b, c, d〉

• a swaps subtrees rooted at 0 and 1.
• b, c, d ∈ St(1), with

b = (a, c), c = (a, d), d = (1, b).

• Obvious relations:
• a2 = b2 = c2 = d2 = 1
• bc = cb = d
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Reduced words

• 〈a〉 ' Z2, 〈b, c, d〉 ' Z2 × Z2

• F = Z2 ∗
(
Z2 × Z2

)
• Γ = F/S.

• Every w ∈ F can be written as

w = u0au1a . . . uk−1auk,

ui ∈ {b, c, d} and u0, uk maybe trivial
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The stabilizer subgroup and splitting

StΓ(1) = StAut(T )(1) ∩ Γ

StΓ(1) = 〈b, c, d, aba, aca, ada〉

ψ : StΓ(1) −→ Γ× Γ

• ψ is an injective homomorphism
• It is not surjective.
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Conjugacy reduction

Let u, v ∈ F be two given reduced words.
• Assume (for simplicity) u, v ∈ StΓ(1).
• If ∃x x−1ux = v,

• x ∈ StΓ(1), so x = (x0, x1).

x−1ux = v ⇔ (x−1
0 u0x0, x−1

1 u1x1) = (v0, v1)

⇔ u0 ∼ v0 and u1 ∼ v1

• x /∈ StΓ(1), ax = (y0, y1).

x−1ux = v ⇔ (x−1a)(aua)(ax) = v

⇔ (y−1
0 , y−1

1 )(u1, u0)(y0, y1) = (v0, v1)

⇔ u1 ∼ v0 and u0 ∼ v1
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Conjugacy reduction (ctd)

• If u, v ∈ StΓ(1), we can deduce the conjugacy of u and v by
considering conjugacy between u0, u1, v0, v1.

• If u, v /∈ StΓ(1), similar situation.
• If one of u, v is in StΓ(1) and the other is not, then u � v.

• Question. How much do we need to split?
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(u, v)
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• The height of this tree is logarithmic
• Introduce a notion of length
• Show this length decreases by half every time we split

• This means the tree can be traversed in log-space
• It follows we can deduce information about the root using the

tree in log-space
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