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Linear equations

A system of homogeneous linear equations over Z/pZ:
a1x + b1y + · · · = 0
a2x + b2y + · · · = 0

. . . . . . . . .

If it has less equations than unknowns, then the number of
solutions is divisible by p.
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Solomon’s theorem

A system of homogeneous linear equations over Z/pZ:
a1x + b1y + · · · = 0
a2x + b2y + · · · = 0

. . . . . . . . .

If it has less equations than unknowns, then the number of
solutions is divisible by p.

What about groups? Z/pZ is a group. . .

Louis Solomon’s theorem (1969)

If a system of coefficient-free equations over a group G has less
equations than unknowns, then the number of solutions is divisible
by |G |.

{
x2y3[x , z ] · · · = 1

. . . . . . . . .
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Tribes

Corollary-Example (K & Anna Mkrtchyan)

We say that two elements of a group belong to the same tribe if
their squares are equal.

Clearly, the total size of all tribes is the
order of the group. It is less obvious that
the sum of 2013th powers of tribe sizes is a multiple of the order
of the group.

S3 = { e, (12), (23), (13), (123), (321) }

Our squares are e. Our squares are (321). Our squares are (123).

4 + 1 + 1 = 6 (it is obvious)

42013 + 12013 + 12013 is divisible by 6 (it is less obvious)
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Tribes. Magic trick revealed

Corollary-Example (K & Anna Mkrtchyan)

We say that two elements of a group belong to the same tribe if
their squares are equal. Clearly, the total size of all tribes is the
order of the group. It is less obvious that
the sum of 2013th powers of tribe sizes is a multiple of the order
of the group.

Proof. x21 = · · · = x22013.
A solution is a tuple (g1, . . . , g2013) such that all gi s belong to the
same tribe. The number of solutions is the sum of 2013th powers
of tribe sizes. On the other hand, the number of equations is less
than that of unknowns. So, the statement is a corollary of the
Solomon theorem.
2013 is an arbitrary positive integer; the squares (in the definition
of tribes) can also be replaced by any positive integer powers.
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A discouraging example

z = (x−1zx)(y−1zy)

Solutions in the symmetric group G = S3.

With z = 1, there are 36 solutions (x and y can be arbitrary).

With z = (123), there are 3 · 3 = 9 solutions (x and y are arbitrary
transpositions).

With z = (321), there are also 9 solutions.

If z is a transposition, then there are no solutions (by parity).

Thus, the total amount of solutions is 36 + 2 · 9.

This is (and must be) divisible by |G | = 6 but not divisible by |G |2
(though the number of equations is two less than that of
unknowns).
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Back to high school

A system of homogeneous linear equations over Z/pZ:
a1x + b1y + · · · = 0
a2x + b2y + · · · = 0

. . . . . . . . .

The number of solutions is divisible by p if
there are less equations than unknowns.
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. . . . . . . . .

The number of solutions is divisible by p if
there are less equations than unknowns. the rank of the matrix a1 b1 . . .

a2 b2 . . .
. . . . . . . . .


is less than the number of unknowns.
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Gordon–Rodriguez-Villegas theorem

A system of coefficient-free equations over a group G
x3y3x−1y [x , y ] = 1

(x , y2)5 = 1

The exponent-sum matrix

A =

(
2 4
5 10

)
aij is the sum of exponents of ith unknown in jth equation.

Theorem (Cameron Gordon & Fernando Rodriguez-Villegas, 2012)

If rankA is less than the number of unknowns, then the number of
solutions is divisible by |G |.
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Non-homogeneous linear equations

A system of homogeneous linear equations over Z/pZ:
a1x + b1y + · · · = 0
a2x + b2y + · · · = 0

. . . . . . . . .

The number of solutions is divisible by p if the rank of the matrix a1 b1 . . .
a2 b2 . . .
. . . . . . . . .


is less than the number of unknowns.

Over arbitrary group G , this corresponds to equations with
coefficients.
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Equations with coefficients

A system of coefficient-free equations over a group G

3 a, b, c , . . .


x3y3x−1y [x , y ] = 1

(x , y2)5 = 1

The exponent-sum matrix A =

(
2 4
5 10

)
aij is the sum of exponents of ith unknown in jth equation.
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Equations with coefficients

A system of coefficient-free equations over a group G3 a, b, c , . . .
x3ay3x−1by [x , y ]c = 1

(xd , y2)5 = 1

The exponent-sum matrix A =

(
2 4
5 10

)
aij is the sum of exponents of ith unknown in jth equation.

Theorem (FALSE!!!)

If rankA is less than the number of unknowns, then the number of
solutions is divisible by |G |.

[x , a] = 1. The exponent-sum matrix is 0 but
|{solutions}| = |C (a)| < |G |
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Equations with coefficients

A system of coefficient-free equations over a group G3 a, b, c , . . .
x3ay3x−1by [x , y ]c = 1

(xd , y2)5 = 1

The exponent-sum matrix A =

(
2 4
5 10

)
aij is the sum of exponents of ith unknown in jth equation.

Theorem (K & Anna Mkrtchyan)

If rankA is less than the number of unknowns, then the number of
solutions is divisible by |C ({a, b, . . . })|.

C (X ) is the centraliser of a set X .
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Roots of subgroups

Theorem (K & Anna Mkrtchyan)

If rank(exponent-sum matrix) is less than the number of unknowns,
then the number of solutions is divisible by |C ({a, b, . . . })|.

Corollary (K & Anna Mkrtchyan)

The number of elements of a group G whose squares belong to a
given subgroup H is always divisible by |H|.

Proof. Suppose that H = C (D) for some D ⊆ G .
{[x2, d ] = 1 : d ∈ D}. rankA = 0 is less than the number of
unknowns (one).

Exercise

If H is a subgroup of a group G , then there exists an overgroup
Ĝ ⊇ G ,D,B such that, in Ĝ , H = C (D) and G = C (B).
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Roots of subgroups generalised

Corollary (K & Anna Mkrtchyan)

The number of elements of a group G whose squares belong to a
given subgroup H is always divisible by |H|.

The number of homomorphisms f : Z→ G such that f (2Z) ⊆ H is
divisible by |H|.

Generalisation (K & Anna Mkrtchyan)

Suppose that H is a subgroup of a group G and W is a subgroup
(or a subset) of a finitely generated group F with infinite
abelianisation F/F ′. Then the number of homomorphisms
f : F → G such that f (W ) ⊆ H is always divisible by |H|.
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Roots of subgroups generalised

Corollary (K & Anna Mkrtchyan)
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Roots of subgroups generalised

Corollary (K & Anna Mkrtchyan)

The number of elements of a group G whose 2013th powers
belong to a given subgroup H is always divisible by |H|.

The number of homomorphisms f : Z→ G such that f (2Z) ⊆ H is
divisible by |H|.

Generalisation (K & Anna Mkrtchyan)
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First-order formulae

An arbitrary first-order formula ϕ over a group G 3 a, b, . . . :

∀z∃t
(
z2yx2at−2x2yzb(xy)5 = 1 ∨ t[x , y ]2 6= 1 ∧ (x2y2a)3 6= 1

)

We are free:) We are bound:( We are just elements of G .
Left-hand sides of atomic subformulae:

z2yx2at−2x2yzb(xy)5, t[x , y ]2, (x2y2a)3.

The (generalised) digraph Γ(ϕ):

'

&

$

%
uu

-

�

66 z t

(5, 5) (1, 2) (0, 0)

(2, 1)
6

(6, 6)
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Exponent-sum matrix

An arbitrary first-order formula ϕ over a group G 3 a, b, . . . :

∀z∃t
(
z2yx2at−2x2yzb(xy)5 = 1 ∨ t[x , y ]2 6= 1 ∧ (x2y2a)3 6= 1

)

The (generalised) digraph Γ(ϕ):'

&

$

%
uu

-

�

66 z t

(5, 5) (1, 2) (0, 0)

(2, 1)
6

(6, 6)

The signed sums along generating cycles:

(5, 5); (1, 2) + (2, 1) = (3, 3); (0, 0); (6, 6).

The exponent-sum matrix A(ϕ) =


5 5
3 3
0 0
6 6
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Main theorem

An arbitrary first-order formula ϕ over a group G 3 a, b, . . . :

∀z∃t
(
z2yx2at−2x2yzb(xy)5 = 1 ∨ t[x , y ]2 6= 1 ∧ (x2y2a)3 6= 1

)

The exponent-sum matrix A(ϕ) =


5 5
3 3
0 0
6 6


Theorem (K & Anna Mkrtchyan)

If rank(A(ϕ)) is less than the number of unknowns, then the
number of tuples of elements satisfying ϕ is divisible by
|C ({a, b, . . . })|.
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Rank-free version

Theorem (K & Anna Mkrtchyan)

If rank(A(ϕ)) is less than the number of unknowns, then the
number of tuples of elements satisfying ϕ is divisible by
|C ({a, b, . . . })|.

Calculation-free version (K & Anna Mkrtchyan)

If

#(proper occurrences of bound variables)+

+#(components of Γ(ϕ)) < #(variables),

then the number of tuples of elements satisfying ϕ is divisible by
|C ({a, b, . . . })|.

Proof.

rank(A(ϕ)) 6 #(rows) = · · · − (the Euler characteristic of Γ).
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Some applications

Theorem (K & Anna Mkrtchyan)

If rank(A(ϕ)) is less than the number of unknowns, then the
number of tuples of elements satisfying ϕ is divisible by
|C ({a, b, . . . })|.

The order of any group divides, e.g. the following numbers:

the number of pairs of noncommuting elements whose
product of squares is a cube of a noncentral element;

the number of pairs of noncommuting elements whose
product of squares is a cube if the cube of their product lies in
the centre;

the number of pairs of elements such that either the product
of their squares is a cube or their commutator is not a square;

. . .
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Conjugation theorems

A system of coefficient-free conditions (over a group G 3 a, b, . . . )
x3y3x−1y [x , y ] ∼ a

(x , y2)5 ∼ b

A =

(
2 4
5 10

)

Theorem (Cameron Gordon & Fernando Rodriguez-Villegas, 2012)

If rankA is less than the number of unknowns, then the number of
solutions is divisible by |G | (where ∼ stands for conjugation).

Theorem (K & Anna Mkrtchyan)

If rankA is less than the number of unknowns, then the number of
solutions is divisible by |G | (where ∼ stands for simultaneous
conjugation).
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Links and thanks

A. Klyachko, A. Mkrtchyan, How many tuples of group
elements have a given property? arXiv:1205.2824

A question from Mathoverflow

Another question from Mathoverflow

Thank you!

Anton A. Klyachko Fancy divisibility in group theory
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