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Automatic groups

Automatic groups were introduced by Thurston in 1986 motivated by
earlier results of Cannon.

Initial motivation was:

understand fundamental groups of compact 3-manifolds

make them tractable for computing
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Formal Languages

X – finite alphabet
X ∗ – set of all finite words over X
X∞ – set of all infinite words over X

Definition

A formal language is a collection of words in X ∗.
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Automata – Acceptors and Regular Languages

Definition

A formal language is called regular if it is accepted by finite state
automaton-acceptor.

Example

1

1 1

0 0

The language L accepted by this automaton is

{1n01m01k | n ≥ 0,m ≥ 0, k ≥ 0}
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Definition (Informal)

A group G = 〈S〉 (with S = S−1) is automatic if

there is a regular language L over S such that u 7→ u from L to G is
onto

right multiplication by each s ∈ S ∪ {id} can be performed by finite
automaton
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“Pros” of automatic groups

If G is automatic, then

Word problem in G is decidable in quadratic time

For any word w ∈ S∗ one can find its representative in L in quadratic
time

G is finitely presented

The Dehn function of G is at most quadratic

if G is biautomatic, then the conjugacy problem is decidable

hyperbolic (in particular free); braid; Artin groups of finite type;
Coxeter groups; most of 3-manifold groups are automatic
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“Cons” of automatic groups

The following groups are NOT automatic

infinite torsion groups

f.g. nilpotent groups (not virtually abelian)

some π1(3-manifold)s

non-abelian torsion free polycyclic groups

SLn(Z)

Baumslag-Solitar groups BS(p, q) = 〈x , y | y−1xpy = xq〉 unless
p = 0, q = 0 or p = ±q

So the class of automatic groups is NICE but NOT WIDE ENOUGH
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Suggested generalizations

Combable groups (relax requirement on the language)

Geometric generalization of automaticity that covers all 3-manifold
groups (Bridson-Gilman)

Stackable groups (Brittenham-Hermiller)

C-graph automatic groups (Elder-Taback)
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Combable groups (relax requirement on the language)

Geometric generalization of automaticity that covers all 3-manifold
groups (Bridson-Gilman)

Stackable groups (Brittenham-Hermiller)

C-graph automatic groups (Elder-Taback)

We look at:

Graph automatic groups (relax restriction on the alphabet) -
Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g.
nilpotent of class 2 and some of higher nilpotency classes; BS(1, n); many
metabelian and solvable groups; infinitely presented groups
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Combable groups (relax requirement on the language)

Geometric generalization of automaticity that covers all 3-manifold
groups (Bridson-Gilman)

Stackable groups (Brittenham-Hermiller)

C-graph automatic groups (Elder-Taback)

We look at:

Graph automatic groups (relax restriction on the alphabet) -
Kharlampovich, Khoussainov, Miasnikov (2011)

Retains nice algorithmic properties and includes many more examples: f.g.
nilpotent of class 2 and some of higher nilpotency classes; BS(1, n); many
metabelian and solvable groups; infinitely presented groups

Question

Are there graph automatic groups of intermediate growth?
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Let’s be more specific!

X⋄ = X ∪ {⋄}, ⋄ 6∈ X - padded alphabet.

Definition

For (w1,w2) ∈ (X ∗)2 a convolution ⊗(w1,w2) is a word over (X⋄)
2 of

length max{|w1|, |w2|}, whose j-th symbol is (σ1, σ2), where

σi =

{

the j-th symbol of wi , if j ≤ |wi |
⋄, otherwise

Example

⊗(011, 00110) =

(

0
0

)(

1
0

)(

1
1

)(

⋄
1

)(

⋄
0

)
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Regular Binary relations

Definition

Let R be a binary relation on X ∗. The convolution of R is the language
over (X⋄)

2 defined by

⊗R = {⊗(w1,w2) | (w1,w2) ∈ R} ⊂ (X 2
⋄
)∗

Definition

A binary relation R on X ∗ is called regular if its convolution ⊗R is a
regular language over (X⋄)

2.
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Automatic vs. Graph Automatic groups

Definition (Automatic (Thurston))

A f.g. group G = 〈S〉 is called automatic if

There exists a regular language L ⊂ S∗ such that : L → G is onto

The relations Es = {(u, v) | u, v ∈ L, u = vs} on S∗ are regular for
s ∈ S ∪ {id}

Definition (Graph Automatic (KKM))

A f.g. group G = 〈S〉 is called Graph automatic if there is a finite
alphabet X such that

There exists a regular language L ⊂ X ∗ and an onto map : L → G

The relations Es = {(u, v) | u, v ∈ L, u = vs} on X ∗ are regular for
s ∈ S ∪ {id}

X need not coincide with a generating set S .
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More general definition of graph automaticity

Let Γ = (V ,E , σ : E → S) be a labeled graph.
We interpreted it as a system of |S | binary relations Es on V :

Es = {(v , v ′) | (v , v ′) ∈ E and the label of (v , v ′) is s}.

Each map : V → X ∗ induces |S | binary relations E s on X ∗

E s = {(v , v ′) | (v , v ′) ∈ Es}.

Definition

Γ = (V ,E , σ : E → S) is called automatic, if there is a finite alphabet X
and an injective map : V → X ∗ such that

V is a regular language over X and

E s is a regular binary relation on X ∗ for each s ∈ S .
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More general definition of graph automaticity

Proposition

A f.g. group G = 〈S〉 is graph automatic ⇔ Cayley graph Cay(G ,S) with
respect to S is automatic.

Dmytro Savchuk (USF) Automatic Graph October 3, 2013 13 / 30



Automata – transducers

V (T ) = X ∗, X = {0, . . . , d − 1} – alphabet

G < AutT
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Action on T given by finite initial automaton

Definition (By Example)

S2 = {ε, σ} acts on X = {0, 1}.

PSfrag repla
ementsa
b id11 ""0 0 0; 1�

A — noninitial automaton,
Aq — initial automaton, q ∈ {a, b, id}.

Aq acts on X ∗ (and on T )
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States:

Input:

Output:

PSfrag repla
ements

a
b id11 ""0 0 0; 1�

0 0 0 0 1 0 1 1
1 0 1 0 0 0 1 1##a b a b a id id id
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

The automaton group generated by automaton A is a group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

The automaton group generated by automaton A is a group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗

Example PSfrag repla
ements a�0; 1
a(w) = w . Thus a2 = 1 and G (A) ≃ C2.
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Automata groups as a source of counterexamples

Burnside problem on infinite periodic groups

Milnor problem on groups of intermediate growth

Day problem on amenability

Atiyah conjecture on L2 Betti numbers
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Schreier graphs

Let G = 〈S〉 act transitively on X .

Definition

The Schreier graph Γ(G ,X ,S) of the action of G on X with respect to
generating set S is the graph with set of vertices X and edgesPSfrag repla
ements sx xs
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Schreier Graphs
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Schreier Graphs
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Why Schreier graphs?

Are usually simpler than Cayley graphs

Describe the action at the level of orbits

If Schreier graph of G is non-amenable, then G is non-amenable.

Are used to construct expanders

Connect groups acting on rooted trees and holomorphic dynamics
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IMG (z2 + i)

PSfrag repla
ements
�0;1 0;1 a
b


1

0
01

1

IMG (z2 − 1)PSfrag repla
ementsa0 0b 11 111 0; 1�
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Automaton generating group G

1/11/1

1/0

0/1

0/0

0/0

ab e

Theorem (Bondarenko, Ceccherini-Silberstein, Donno, Nekrashevych,
2012)

All Schreier graphs Γω for ω ∈ {0, 1}∞ of the group G have intermediate

growth. More specifically, the growth function satisfies

n
1
2
log2n � |B(ω, n)| � nlog2n
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Graph Γ(01)∞

0

Theorem (Miasnikov,S.)

The graph Γ(01)∞ is an automatic graph of intermediate growth.
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Definition of

Definition

ω = x1x2x3 . . . and ω′ = y1y2y3 . . . in X∞ are called cofinal if there exists
N > 0 such that xn = yn for all n ≥ N.

Proposition (Bondarenko, Ceccherini-Silberstein, Donno,
Nekrashevych, 2012)

The orbit of ω = (01)∞ coincides with a cofinality class of (01)∞.
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Definition of

Definition

ω = x1x2x3 . . . and ω′ = y1y2y3 . . . in X∞ are called cofinal if there exists
N > 0 such that xn = yn for all n ≥ N.

Proposition (Bondarenko, Ceccherini-Silberstein, Donno,
Nekrashevych, 2012)

The orbit of ω = (01)∞ coincides with a cofinality class of (01)∞.

Thus, each vertex of Γ(01)∞ is labelled by an infinite word over X that is
cofinal with (01)∞.
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Definition of

For
ω = x1 x2 x3 . . . xk 0 1 0 1 . . .
(01)∞ = 0 1 0 . . . 1 0 1 0 1 . . .

where xk 6= 1, define
ω = x1x2x3 . . . xk

Example

(01)∞ = ∅

110011(01)∞ = 11001
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Automaton AV accepting V (Γ(01)∞)

Observation

V (Γ(01)∞) consists of the empty word and words whose last letter is
different from corresponding letter of (01)∞.

i

1

11

1

0

0

00
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Automaton Aa accepting La

(1, 1)

(1, 0)

(0, 1)
(0, 0)

a e

a1a0e0 e1

e2 e3

(1, ⋄)

(⋄, 1)

(⋄, 1)

(0, ⋄)

(0, ⋄)

(⋄, 0)
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Automaton Ab accepting Lb

(1, 1)

(1, 0)

(0, 1)

(0, 0)

(0, 0)

(1, 1)

a

b

e

a1a0e0 e1

e2 e3

e4 e5

e6 e7

a4 a5

a6 a7

b6 b7

(1, ⋄)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(1, ⋄)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(⋄, 1)

(0, ⋄)

(0, ⋄)

(0, ⋄)

(⋄, 0)

(⋄, 0)
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