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Preliminaries

Groups: finitely generated g = g−1 in all groups.

Word problem: WP(G)

Input: Word w written in generators.

Question: Do we have w = 1 in G ?

“Natural groups” seem to have an “easy” word problem.

TC0 ⊆ NC1 ⊆ LOG ⊆ NLOG ⊆ LOGCFL ⊆ NC2 ⊆ NC ⊆ P

WP(BS(1, 2)) ∈ TC0, actually TC0 complete.
WP(finite nonsolvable) is NC1 complete (Barrington 1989)
WP(F2) is NC1 hard, and WP(F2) ∈ LOG
Linear groups have a WP in LOG.
Hyperbolic groups have a WP in NC2 (Cai 1992) (and in
LOGCFL by Lohrey 2004)

In this talk “easy” means “LOG= Dlogspace”



Graph groups, RAAGs (Right angled Artin groups)

A RAAG is given by a finite undirected graph (V, I) with
generating set V and defining relations αβ = βα for all (α, β) ∈ I.

G(V, I) = F (V )/ {αβ = βα | (α, β) ∈ I }

RAAGs are subgroups of right angled Coxeter groups
(RACGs) and Coxeter groups are linear: Hence WP is in
logspace (classical).

Shortlex normal forms are LOG computable in RAAGs and
RACGs.
(D., Lohrey, Kausch: AMS Meeting Las Vegas 2011.
& Contemporary Mathematics, 582 77-94, 2012.)
Hence: Conjugacy in RAAGs and RACGs is in LOG).

Geodesic lengths are LOG computable in Coxeter groups, but
open whether we can compute geodesics in LOG.



Related algorithmic problems

G a fixed group

Word problem.

Compute geodesic lengths.

Compute Parikh-image of geodesic.

Compute geodesics.

Conjugacy problem.



Generalize from RAAGs and RACGs to graph products

Setting: Given a finite undirected graph (V, I) and for each node
α ∈ V a finitely generated node-group Gα.

The graph product G = G(V, I; (Gα)α∈V )) is defined as the
quotient group of the free product ?α∈VGα with defining relations

gαhβ = hβgα for all gα ∈ Gα, hβ ∈ Gβ, (α, β) ∈ I.

Baby cases: Direct products or G = Z/2Z ? Z/2Z = Z o Z/2Z

Proofs for RAAGs and RACGs used WP ∈ LOG via linear
representations.

Here: “Explicit” Bass-Serre Theory.
= First part of my talk.



A picture of a graph product
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graph product ofG =

Let A = Gα ? Gγ . Then

G = (Gβ ×A) ?A ((Gα ×Gδ) ?Gδ (Gγ ×Gδ ×Gη))



Word problem, shortest normal forms for graph products

Let C be some “usual” complexity class which is closed under
complementation and with WP(F2) ∈ C
For example C = LOG,NLOG,NC,P,PSPACE, . . .

Theorem 1.

Let WP of all Gα be in C. Then:

The WP of the graph product is in C.

Geodesics can be computed in C.
(Here |g| = 1 for all 1 6= g ∈ Gα.)

Corollary

If shortlex-nfs of all Gα are computable in C, then the same is true
for the graph product.



Conjugacy for graph products

Theorem 2

If the Conjugacy Problem of all Gα is in C, then the Conjugacy
Problem of the graph product is in C.

Special Case

The Conjugacy Problem of RAAGs and RACGs is in LOG.



Ingredients for proofs

Complexity: logspace transducers (with oracles).

Rewriting: dependence graphs.

Combinatorial group theory.



Proof for Theorem 1: Outline for C = LOG

1.) Induction on |V |.
2.) Solve WP for semi-direct extensions, e.g., using Bass-Serre.

3.) Back to graph products: “semi-direct” products are direct
products.

4.) Compute geodesics. (This is the core of the result.)

1.) Start induction: Choose node β and group B = Gβ as “base
group”, A = G(link(β)) and C = B ×A.

G = P ?A C.

Projection C = A×B → A and inclusion A ⊆ P induce

1→ H → P ?A C
π→ P → 1.



Word problem in semi-direct extensions

2.) We are in a special situation of a semi-direct extension.

There is P . Here P is a “smaller” graph product.

A ≤ P subgroup of P . Here A is the link of some node α.

B “base” group. Here Gα.

C = B oA a semi-direct product. Here C = B ×A.

G is the semi-direct extension of P by B oA:

G = P ?A (B oA).

We have 1→ H → G
π→ P → 1 and G = H o P .

Kernel H acts on the Bass-Serre tree BST(P
A

—– C).



Action of H on the Bass-Serre tree of P
A

—— C

Vertex set: { gP | g ∈ G } q { gC | g ∈ G } . Let h ∈ H.

Action: hgP = gP ⇐⇒ g−1hg ∈ H ∩ P = {1} ⇐⇒ h = 1.

H \ { gP | g ∈ G = H · P } = {∗} & Stab(gP ) = {1}

hgC = gC ⇐⇒ g−1hg ∈ H ∩ C = B ⇐⇒ h ∈ Bg.

H \ { gC | g ∈ G } = H \G/C & Stab(gC) ∼= B

Bass-Serre: H is a free product of groups Bg = gBg−1.

Number of free factors is |H \G/C| = |P/A| .



Kernel H as a free product

H is the fundamental group of a “star” with trivial center and
[P : A] rays, because P ⊆ G induces bijection P/A = H \G/C.

{1}{1}B(0)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

· · ·



Solving the Word Problem. Input: Word w

Compute π(w) ∈ P . For example, if w = g0b1g1b2g2, then
π(w) = g0g1g2.

If π(w) 6= 1 we are done.

Hence π(w) = 1 and w ∈ H, and in the example g0g1g2 = 1.

w = g0b1g1b2g2 = g0b1g0g0g1b2g0g1g0g1g2 = (g0b1g0)(g0g1b2g0g1).

More general, let w = g0b1g1 · · · bmgm ∈ H = ?νB
(ν).

Claim: Under some “natural assumption” there are “easy to
compute” ai ∈ A and indices ν(i) such that we obtain a
factorization in free factors:

w = ba11 · · · b
am
m with baii ∈ B

(ν(i)).



Computation of ai and indices ν(i)

For w = g0b1g1 · · · bmgm ∈ H let pi = g0 · · · gi for 0 ≤ i < m.

For each i let ν(i) ∈ {0, . . . ,m− 1} be minimal such that there is
ai+1 ∈ A with

pν(i) pi = ai+1.

Define a new index set N = { ν(i) | 0 ≤ i < m }.
We obtain

w = ba11 · · · b
am
m ∈ ?ν∈NB(ν) with baii ∈ B

(ν(i))

Assumption

“Extended” membership problem for A can be solved in LOG:

Input: p, p′ ∈ P, b ∈ B.

Output: If pp′ = a ∈ A then ba ∈ B else pp′ /∈ A.



Reduction to the Word Problem in free groups.

Notation: We write b(ν) for elements in B(ν). Hence,
w = b

(ν1)
1 · · · b(νm)

m where for simplicity of notation bi = baii .

Consider ψ : ?ν∈NB
(ν) → B where ψ(b(ν)) = b.

Compute ψ(w) = b1 · · · bm ∈ B. If ψ(w) 6= 1 we are done. Hence
ψ(w) = 1 and b1 · · · bm ∈ K = ker(ψ).

Its kernel K acts freely on the Bass-Serre tree; and hence〈
b
(ν1)
1 , . . . , b

(νm)
m

〉
is a f.g. free subgroup, but we need to find and

rewrite w in some basis X such that

F (X) =
〈
b
(ν1)
1 , . . . , b(νm)

m

〉
.

How to find X: ”omitted in the talk”.



Final steps for semi-direct extensions

For LOG:

Rewrite w ∈ K in the basis X.

By a logspace reduction embed F (X) into F (a, b).

Embed F (a, b) into SL(2,Z).

Solve the WP of SL(2,Z) in LOG by ”Chinese remaindering”.



Back to graph products

C = B ×A is a direct product.

Recall, (V, I) is a finite undirected graph and for each node α ∈ V
a finitely generated node-group Gα.

The graph product G = G(V, I; (Gα)α∈V )) is defined as the
quotient group of the free product ?α∈VGα with defining relations

gαhβ = hβgα for all gα ∈ Gα, hβ ∈ Gβ, (α, β) ∈ I.

Simplifications:

ba = b for all a ∈ A and b ∈ B.

A ≤ P is a retract, i.e., w ∈ A ⇐⇒ w = πA(w).
Hence, membership in A reduces to WP in P .

Consequence: WP(G) ∈ C.



G, P , A, and B in the example again
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δ
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G = γ

δ
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η

P =

A = Gα ? Gγ B = Gβ C = B ×A.



Dependence graph representation of group elements

Let Γ be the disjoint union over all Γα = Gα \ {1}, where α ∈ V .

For a word w = a1 · · · an ∈ Γ∗ define a node-labeled acyclic graph
D(w) as follows:

The vertex set is {1, . . . , n}.
Label of vertex i is the letter ai ∈ Gαi .
Arcs are from i to j if both, i < j and (αi, αj) /∈ I.



Graphical representation of group elements

Let G(V, I) with V = {a, b, c} and I = {(a, b), (b, a)}.

Dependence graph (Hasse diagram): abacab =

c

a

b

a a

b

= c

b

a

b



Confluent trace rewriting

Rewriting: Whenever there is an arc in the Hasse-diagram from i
to j with labels f and g with f, g ∈ Γα multiply fg = h in Gα.

If h = 1, remove nodes i and j.

If h 6= 1, remove node j and relabel node i by h.

Lemma (D., Lohrey)

This procedure is confluent and yields normal forms for group
elements in the graph product.

If the procedure terminates in a graph with m vertices, we call the
graph normal form of w, and m the geodesic length of w. A word
w is called geodesic, if its length is the geodesic length.

The normal form of 1 is the empty graph with m = 0.



Computing geodesics

For the proof of Theorem 1 we have to compute geodesics in
logspace.

To show this for the graph product G, but we may use already that
we can solve its WP in LOG (resp. C).

The input is a word w = g1 · · · gn where gi are generators of some
group Gα. We want to rewrite w as a geodesic, i.e., w = a1 · · · an′
with ai ∈

⋃
α∈V Gα \ {1} such that n′ is minimal.

We do this in |V | rounds of logspace reductions. In round α we
minimize the number of ai ∈ Γα.



Algorithm for round α

Start round α with w = u0a1u1 · · · anun where the ai correspond
to “letters” in Γα.

From left-to-right: Stop at ai. Compute the maximal m ≥ i
such that

aiui · · · amum = ai · · · amui · · ·um ∈ G

Replace aiui · · · amum by a′ui · · ·um with
a′ = ai · · · am ∈ Gα.

If m = n then the round is finished, otherwise move to am+1.

The proof that each round terminates in a word with a minimal
number of letters from Γα is on “confluent trace rewriting” on
dependence graphs.



Conjugacy

Input: u, v ∈ Γ∗. Question u ∼ v in G?

Solution:

1.) Wlog. u, v are geodesics.

2.) Wlog. u, v have connected dependence graphs with more than
one vertex.

3.) Compute cyclically reduced dependence graphs.

4.) Check that |u|α = |v|α for all α ∈ V .

5.) Check that u appears as a factor in v|V |.



Concluding remarks

Theorem 2 relies on Theorem 1 (Computation of geodesics).

The proofs use rather different technical concepts.

1.) Graph products as semi-direct extensions.
2.) Bass-Serre-theory.
3.) Dependence graph representation and confluent trace

rewriting.

Thank you



Technical Annex

Some missing details on proofs.



Number of free factors (talk: skip slide)

Compute the vertex set H \ { gC | g ∈ G } = H \G/C.
Claim: The inclusion P ⊆ G induces a bijection:

P/A→ H \G/C, fA 7→ HfC

Proof of Claim: Since G = H · P , it is surjective.

For g ∈ G let fg ∈ Hg ∩ P . Note that fg is unique.

Define HgC 7→ fgA. It is enough to show that fgA is well-defined.

Let h ∈ H, a ∈ A, and b ∈ B and g′ = hgab ∈ HgC. We have to
show that fg′ ∈ fgA.

Since H is normal and B ⊆ H, we have
g′ ∈ gabH ⊆ gaH = Hga = Hfga. Hence fg′ = fga ∈ fgA.



Computing a basis

Let w = b
(ν1)
1 · · · b(νm)

m ∈ K with m ≥ 1 and 1 6= bi ∈ B(ν(i)). Since
w ∈ K, we have m ≥ 2.

Let g
(`)
i = (b1 · · · bi)(`). In particular, b

(`)
1 = g

(`)
1 and g

(`)
m = 1.

For each 1 ≤ i < m, consider the factor b
(k)
i b

(`)
i+1. Replace b

(k)
i b

(`)
i+1

by

b
(k)
i (bi

(`) · · · b1
(`)

)(b1
(`) · · · bi(`)) b(`)i+1 = b

(k)
i gi

(`)g
(`)
i+1.

The input word becomes (after this logspace-procedure) a word

w = g
(ν1)
1 g1

(ν2) g
(ν2)
2 g2

(ν3) · · · g(νn−1)
n−1 gn−1

(νn) ∈ K

Notation: (i, g, j) = g(i)g(j) ∈ K. We have (i, g, j)−1 = (j, g, i).
But the set of (i, g, j) is not a basis since e.g.,

(i, g, k)(k, g, j) = (i, g, j).



Computing a basis

Since w ∈ K, rewrite w as a product in (i, g, j) = g(i)g(j).

1 6= g ∈ B and i 6= j

g(i) ∈ B(i) and g(j) ∈ B(j)

ψ(g(i)) = g and ψ(g(j)) = g−1

Rewrite (i, g, j) = (i, g, 0)(0, g, j) whenever i 6= 0 6= j.

Thus, we can rewrite w as a product in (i, g, 0)±1 with 1 6= g ∈ B.
More precisely, let X = { (i, g, 0) | i 6= 0, g 6= 1 }, then

w ∈ (X ∪X)∗.



Computing a basis

Lemma

X = { (i, g, 0) | i 6= 0, g 6= 1 } ⊆ K forms a basis of a free
subgroup.

Proof. Consider a non-empty freely reduced word u in (X ∪X)∗

and let π(u) its image in K ⊆ ?ν∈NB(ν).

Let u = v (i, g, j), where v ∈ (X ∪X)∗ and (i, g, j) ∈ (X ∪X).
We show:

π(u) 6= 1 ∈ K.
The last factor of π(u) in the free product ?ν∈N B(ν) is g(j).
If j = 0, then the last two factors of π(u) are h(i)g(0) for
some h.

For |u| = 1 we have π(u) = g(i)g(j) as desired. Hence let

u = v′(k, f, `)(i, g, j). By induction the last factor of π(v) is f
(`)

.

For ` 6= i we conclude that the last three factors of π(u) are

f
(`)
g(i)g(j). Hence, we may assume that ` = i.



Proof of lemma

We have u = v′(k, f, i)(i, g, j). For i 6= 0 we must have k = 0.
Hence f 6= g since u is freely reduced.

For f 6= g the last two factors of π(u) are (fg)(i)g(j).

Now, assume f = g, then we must have k 6= j.

Hence we may assume that we have u = v′(k, g, 0)(0, g, j) with
k 6= j.

By induction, the last two factors of π(v) are h(k)g(0). Hence, the
last two factors of π(u) are h(k)g(j).



Proof that the Algorithm is correct I (talk: skip slide)

We use the lemma on trace rewriting in order to conclude that w is
not geodesic if and only if there is a node β ∈ V and a factor bub′

with b, b′ ∈ Γβ such that u ∈ I(β). Here and in the following

I(β) =
(⋃
{Gα | (α, β) ∈ I }

)∗
.

Let α ∈ V be a node. We say that a word w ∈ Γ∗ is α-geodesic, if

the number of letters from Γα is minimal w.r.t. all words which
represent the same element in G.

Lemma

Let w = u0a1u1 · · · anun ∈ Γ∗ such that the ai correspond to the
letters from Γα. Then w is α-geodesic if and only if
aiuiai+1 6= aiai+1ui ∈ G for all 1 ≤ i < n.



Proof, 1. slide

If aiuiai+1 = aiai+1ui ∈ G for some 1 ≤ i < n, then w is not
α-geodesic. Hence, let aiuiai+1 6= aiai+1ui ∈ G for all 1 ≤ i < n.
We have to show that w is α-geodesic. This is true, if w is
geodesic. Hence we may assume that w is not geodesic. Then
there is a factor bub′ with b, b′ ∈ Gβ and u ∈ I(β). Since
aiuiai+1 6= aiai+1ui we must have α 6= β. If the factor bub′ is a
factor inside some ui, then we can rewrite it by bb′u and we obtain
a word w′ which satisfies the same property, but which Γ length is
shorter. Hence w′ is α-geodesic. This implies that w is α-geodesic,
too.



Proof, 2. slide

Thus we may assume that for some i < j we have ui = pibqi and
uj = pjb

′qj with qi, pj ∈ I(β). Moreover, (α, β) ∈ I. Now, inside
the group G we have:

aipibqiai+1 = aiai+1pibqi ⇐⇒ aipibqiai+1b
′ = aiai+1pibqib

′

⇐⇒ aipibb
′qiai+1 = aiai+1pibb

′qi,

ajpjb
′qjaj+1 = ajaj+1pjb

′qj ⇐⇒ b′ajpjqjaj+1 = b′ajaj+1pjqj

⇐⇒ ajpjqjaj+1 = ajaj+1pjqj .

Thus, u0a1u1 · · · anun is α-geodesic if and only if
u0a1u1 · · · aipibb′qiai+1 · · · ajpjqjaj+1 · · · anun is α-geodesic.
Again we may rewrite the factor bub′ by bb′u and we may conclude
as above that w is α-geodesic.



α-prefixes

Let w = u0a1u1 · · · anun ∈ Γ∗ such that the ak correspond to the
letters from Γα. We say that u0a1u1 · · · aiui is an α-prefix, if there
is no factor a`u` · · · amum = a` · · · amu` · · ·um ∈ G with ` ≤ i and
` < m. Note that u0 is an α-prefix.

Lemma

Let w = u0a1u1 · · · anun ∈ Γ∗ such that the ai correspond to the
letters from Γα. Let 0 ≤ i < n such that u0a1u1 · · · aiui is α-prefix
and let m be maximal such that
ai+1ui+1 · · · amum = ai+1 · · · amui+1 · · ·um ∈ G.
Then u0a1u1 · · · aiui[ai+1 · · · am]ui+1 · · ·um is an α-prefix of
u0a1u1 · · · aiui[ai+1 · · · am]ui+1 · · ·umam+1um+1 · · · anun.

Proof. This follows because m was chosen to be maximal.



Correctness of the algorithm to compute geodesics

The invariant of an α round is that from left to right α-prefixes are
computed. This follows from the last lemma. At the end of the
round the word w becomes an α-prefix. But then we can apply the
first lemma in order to see that w is α-geodesic. Hence the result.


