Some results about growth and cogrowth for finitely generated groups

Murray Elder, Newcastle (Australia)

International Group Theory Webinar, March 142013

Part 1 joint work with

Andrew Rechnitzer (UBC)

Buks van Rensburg (York)

Tom Wong (UBC)

Part 2 joint work with

José Burillo (UPC Barcelona)

Part 1: cogrowth

G a group, $\mathrm{X}=\mathrm{X}^{-1}$ finite generating set
$c(n)=\#$ words over X^{*} of length n equal to e
is the cogrowth function for (G, X)

Part 1: cogrowth

G a group, $\mathrm{X}=\mathrm{X}^{-1}$ finite generating set
$c(n)=\#$ words over X^{*} of length n equal to e
is the cogrowth function for (G, X)
$\rho=\limsup _{n \rightarrow \infty} c(n)^{1 / n}$ is the cogrowth rate for (G, X)

Part 1: cogrowth

G a group, $X=X^{-1}$ finite generating set
$c(n)=\#$ words over X^{*} of length n equal to e
is the cogrowth function for (G, X)
$\rho=\limsup _{n \rightarrow \infty} c(n)^{1 / n}$ is the cogrowth rate for (G, X)
and $\sum_{n=0}^{\infty} c(n) z^{n}$ is the cogrowth series for (G, X)
$\mathbf{E g}: \mathbb{Z}=\langle a \mid-\rangle$

$\mathbf{E g}: \mathbb{Z}=\langle a \mid-\rangle$

so $c(2 n+1)=0$ and $c(2 n)=\binom{2 n}{n}$ which is approx $4^{n}=2^{2 n}$
$\mathbf{E g}: \mathbb{Z}=\langle a \mid-\rangle$

so $c(2 n+1)=0$ and $c(2 n)=\binom{2 n}{n}$ which is approx $4^{n}=2^{2 n}$
so $\rho=2$
(Note: the number of words on X is $|\mathrm{X}|^{n}$ so $\rho \leq|\mathrm{X}|$)
$\mathbf{E g}: \mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

How many return paths of length n (even) are there in the grid?

34
$\mathbf{E g}: \mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$

Choose $n / 2$ boxes to be \uparrow vertical, and (independently) $n / 2$ boxes to be \uparrow horizontal.

So $c(n)=\binom{n}{n / 2}\binom{n}{n / 2}$.
$\mathbf{E g}: \mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$
$\binom{n}{n / 2}\binom{n}{n / 2}$ grows like $\frac{4^{n+1 / 2}}{\pi n}$ so $\rho=4$.
$\mathbf{E g}: \mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle$
$\binom{n}{n / 2}\binom{n}{n / 2}$ grows like $\frac{4^{n+1 / 2}}{\pi n}$ so $\rho=4$.

Note: the number of words on X is $|\mathrm{X}|^{n}$ so $\rho \leq|\mathrm{X}|$.

Note also: the n in the denominator means that the cogrowth series for \mathbb{Z}^{2} is not algebraic.
$\mathbf{E g}: \mathrm{F}_{2}=\langle a, b \mid\rangle$

Recall (Muller-Schupp) that the word problem for F_{2} is contextfree
$\mathrm{S} \rightarrow a \mathrm{~A} a^{-1} \mathrm{~S}\left|b \mathrm{~B} b^{-1} \mathrm{~S}\right| a^{-1} \mathrm{C} a \mathrm{~S}\left|b^{-1} \mathrm{D} b \mathrm{~S}\right| \epsilon$
$\mathrm{A} \rightarrow a \mathrm{~A} a^{-1} \mathrm{~A}\left|b \mathrm{~B} b^{-1} \mathrm{~A}\right| b^{-1} \mathrm{D} b \mathrm{~A} \mid \epsilon$
$\mathrm{B} \rightarrow a \mathrm{~A} a^{-1} \mathrm{~B}\left|b \mathrm{~B} b^{-1} \mathrm{~B}\right| a^{-1} \mathrm{C} a \mathrm{~B} \mid \epsilon$
$\mathrm{C} \rightarrow b \mathrm{Bb}^{-1} \mathrm{C}\left|a^{-1} \mathrm{C} a \mathrm{C}\right| b^{-1} \mathrm{D} b \mathrm{C} \mid \epsilon$
$\mathrm{D} \rightarrow a \mathrm{~A} a^{-1} \mathrm{D}\left|a^{-1} \mathrm{C} a \mathrm{D}\right| b^{-1} \mathrm{D} b \mathrm{D} \mid \epsilon$

Eg: $\mathbf{F}_{2}=\langle a, b \mid\rangle$
$g(z)=4 z^{2} f(z) g(z)+1$ and $f(z)=3 z^{2} f(z) f(z)+1$
(since we are just counting, $f(z)$ is the same for each of the last four productions)

Eg: $\mathbf{F}_{2}=\langle a, b \mid\rangle$
$g(z)=4 z^{2} f(z) g(z)+1$ and $f(z)=3 z^{2} f(z) f(z)+1$
(since we are just counting, $f(z)$ is the same for each of the last four productions)
so $3 z^{2} f(z)^{2}-f+1=0$ so $f(z)=\frac{1-\sqrt{1-12 z^{2}}}{6 z^{2}}$
$\mathbf{E g}: \mathbf{F}_{2}=\langle a, b \mid\rangle$
$g(z)=4 z^{2} f(z) g(z)+1$ and $f(z)=3 z^{2} f(z) f(z)+1$
(since we are just counting, $f(z)$ is the same for each of the last four productions)
so $3 z^{2} f(z)^{2}-f+1=0$ so $f(z)=\frac{1-\sqrt{1-12 z^{2}}}{6 z^{2}}$
and $g(z)=\frac{1}{1-4 z^{2} f(z)}$ so $g(z)=\frac{3}{1+2 \sqrt{1-12 z^{2}}}$
which has radius of convergence $\frac{1}{\sqrt{12}}$ so $\rho=\sqrt{12} \approx 3.4$

Thm

(Grigorchuk/Cohen)

G is amenable iff $\rho=|\mathrm{X}|$.

So ...

counting return paths in different graphs gives information about (the sometimes very difficult problem of) amenability.

Statistical physicists have studied similar problems: self-avoiding polymers, walks, etc;
and good techniques have been developed.

So ...

counting return paths in different graphs gives information about (the sometimes very difficult problem of) amenability.

Statistical physicists have studied similar problems: self-avoiding polymers, walks, etc;
and good techniques have been developed.

The idea of this work is to apply such techniques to sample trivial words from a group and use statistical information from such experiments to find bounds and estimates for cogrowth
with one particular group in mind: R. Thomspon's group F.

Previous work

Belk 2005: upper bound of $\frac{1}{2}$ for isoperimetric constant $\inf _{n \rightarrow \infty} \frac{\left|\partial F_{n}\right|}{\left|F_{n}\right|}$

Previous work

Belk 2005: upper bound of $\frac{1}{2}$ for isoperimetric constant $\inf _{n \rightarrow \infty} \frac{\left|\partial F_{n}\right|}{\left|F_{n}\right|}$
Burillo-Cleary-Weist 2007: computational explorations, rate of escape of random walks in F

Previous work

Belk 2005: upper bound of $\frac{1}{2}$ for isoperimetric constant $\inf _{n \rightarrow \infty} \frac{\left|\partial F_{n}\right|}{\left|F_{n}\right|}$
Burillo-Cleary-Weist 2007: computational explorations, rate of escape of random walks in F

Arzhantseva-Guba-Lustig-Préaux 2008: testing Cayley graph densities

Previous work

Belk 2005: upper bound of $\frac{1}{2}$ for isoperimetric constant $\inf _{n \rightarrow \infty} \frac{\left|\partial F_{n}\right|}{\left|F_{n}\right|}$
Burillo-Cleary-Weist 2007: computational explorations, rate of escape of random walks in F

Arzhantseva-Guba-Lustig-Préaux 2008: testing Cayley graph densities

Moore 2009: fast growth in the Følner function for F

Previous work

Belk 2005: upper bound of $\frac{1}{2}$ for isoperimetric constant $\inf _{n \rightarrow \infty} \frac{\left|\partial F_{n}\right|}{\left|F_{n}\right|}$
Burillo-Cleary-Weist 2007: computational explorations, rate of escape of random walks in F

Arzhantseva-Guba-Lustig-Préaux 2008: testing Cayley graph densities

Moore 2009: fast growth in the Følner function for F

Elder-Rechnitzer-Wong 2011: lower bounds for cogrowth by looking at number of loops in finite subgraphs of Cayley graphs

Previous work

F (black) vs.
amenable groups
$(\mathbb{Z} \times \mathbb{Z}$ is pink)

F (black) vs.
non-amenable groups
(F_{2} is red)

Alternative defn of cogrowth

One can also count the number of freely reduced words equal to e, say $r(n)$
and put
$\bar{\rho}=\limsup _{n \rightarrow \infty} r(n)^{1 / n}$ the (reduced) cogrowth rate for (G,X)
and $\sum_{n=0}^{\infty} r(n) z^{n}$ the (reduced) cogrowth series for (G, X)

Alternative defn of cogrowth

Thm (Grigorchuk/Cohen)

G is amenable iff $\bar{\rho}=|\mathrm{X}|-1$.
(Note the total number of reduced words on $X=X^{-1}$ is $|X|-1$).

Sampling trivial words

Let G be a group with finite presentation $\left\langle X=X^{-1} \mid R\right\rangle$

Let R_{c} be the set of all cyclic permutations of relators in R, and their inverses.
trivial word $=$ freely reduced word equal to the identity

Sampling trivial words

Let G be a group with finite presentation $\left\langle X=X^{-1} \mid R\right\rangle$

Let R_{c} be the set of all cyclic permutations of relators in R, and their inverses.
trivial word $=$ freely reduced word equal to the identity

Consider the following two moves on trivial words:

- conjugate by a generator then freely reduce

Sampling trivial words

Let G be a group with finite presentation $\left\langle X=X^{-1} \mid R\right\rangle$

Let R_{c} be the set of all cyclic permutations of relators in R, and their inverses.
trivial word $=$ freely reduced word equal to the identity

Consider the following two moves on trivial words:

- conjugate by a generator then freely reduce
- insert at some position a word from R_{c} then freely reduce

Sampling trivial words

conjugation is a uniquely reversible operation
but insertion is not:

- $w=a^{n} r^{-1} a^{-n}$, inserting r gives e
but neither conj or insertion will recover w in one move

Sampling trivial words

conjugation is a uniquely reversible operation
but insertion is not:

- $w=a^{n} r^{-1} a^{-n}$, inserting r gives e
but neither conj or insertion will recover w in one move
solution: reject a move if it results in cancelation more than the length of r.

Sampling trivial words

- in $\mathbb{Z}^{2}, w=u b a^{-1} b^{-1} a b a^{-1} v$, inserting $b a b^{-1} a^{-1}$ gives $u b a^{-1} v$ \uparrow

Sampling trivial words

- in $\mathbb{Z}^{2}, w=u b a^{-1} b^{-1} a b a^{-1} v$, inserting $b a b^{-1} a^{-1}$ gives $u b a^{-1} v$ \uparrow
this can be reversed in two ways: insert $b a^{-1} b^{-1} a$ after u or: insert $b^{-1} a b a^{-1}$ before v

Sampling trivial words

- in $\mathbb{Z}^{2}, w=u b a^{-1} b^{-1} a b a^{-1} v$, inserting $b a b^{-1} a^{-1}$ gives $u b a^{-1} v$ \uparrow
this can be reversed in two ways: insert $b a^{-1} b^{-1} a$ after u
or: insert $b^{-1} a b a^{-1}$ before v
solution: reject if inserting r leads to cancelations on the right of r

Left-insertions

Define a left-insertion on a trivial word w as follows:
for $r \in \mathrm{R}_{c}$ and $m \in\{0,1, \ldots,|w|\}$
write $w=u v$ with $|u|=m$
set $w^{\prime}=u r v$

Left-insertions

Define a left-insertion on a trivial word w as follows:
for $r \in \mathrm{R}_{c}$ and $m \in\{0,1, \ldots,|w|\}$
write $w=u v$ with $|u|=m$
set $w^{\prime}=u r v$
if $r v$ freely cancels, reject
else freely reduce w^{\prime}, and reject if the result has length $<|w|-|r|$

Left-insertions

Lem

Left-insertions are uniquely reversible

Lem

Every trivial word can be obtained starting from $w_{0}=$ some relator from R_{c} and applying some sequence of conjugations and left-insertions.

Markov Chain Monte Carlo sampling

Now the theory of MCMC applies:

1. define a probability distribution P over R_{c} (uniform if R is finite)
2. fix $p_{c} \in[0,1]$ and $p=p(u, v, \alpha, \beta) \in[0,1]$ where p depends on the trivial words u, v and constants $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^{+}$
3. start with a state (trivial word) w_{0} from R_{c} chosen with probability $\mathrm{P}\left(w_{0}\right)$

Markov Chain Monte Carlo sampling

4. if w_{n} is the current state, with probability p_{c} choose a conjugation move, else choose a left-insertion

- if conjugation, choose one of the $|X|$ possible conjugations uniformly at random, put $u=c w_{n} c^{-1}$ and freely reduce to obtain w^{\prime}
put $w_{n+1}= \begin{cases}w^{\prime} & \text { with probability } p\left(w, w^{\prime}, \alpha, \beta\right) \\ w_{n} & \text { otherwise }\end{cases}$

Markov Chain Monte Carlo sampling

- if left-insersion, choose $r \in \mathrm{R}_{c}$ with probability $\mathrm{P}(r)$, a location $m \in\left[0, \ldots,\left|w_{n}\right|\right]$ uniformly, and let w^{\prime} be the outcome of the insertion
put $w_{n+1}= \begin{cases}w_{n} & \text { if insertion invalid } \\ w^{\prime} & \text { with probability } p\left(w, w^{\prime}, \alpha, \beta\right) \\ w_{n} & \text { otherwise }\end{cases}$

Markov Chain Monte Carlo sampling

- if left-insersion, choose $r \in \mathrm{R}_{c}$ with probability $\mathrm{P}(r)$, a location $m \in\left[0, \ldots,\left|w_{n}\right|\right]$ uniformly, and let w^{\prime} be the outcome of the insertion
put $w_{n+1}= \begin{cases}w_{n} & \text { if insertion invalid } \\ w^{\prime} & \text { with probability } p\left(w, w^{\prime}, \alpha, \beta\right) \\ w_{n} & \text { otherwise }\end{cases}$
Note that we only allow valid moves with a certain probability, which depends on a constant β.
(This option to reject a move with some probability is called the Metropolis MCMC method.)

Markov Chain Monte Carlo sampling

Varying the value of β changes the expected value of the mean length of words sampled.

Analysis of the probabilities shows there is a critical value, β_{c}, for β below which the expected mean length is finite and above it is infinite.

Markov Chain Monte Carlo sampling

Varying the value of β changes the expected value of the mean length of words sampled.

Analysis of the probabilities shows there is a critical value, β_{c}, for β below which the expected mean length is finite and above it is infinite.

The cogrowth rate corresponds to the reciprocal of this value.
Details (and results) in our paper.

Results

\mathbb{Z}^{2}
$\mathbb{Z}_{2} * \mathbb{Z}_{3}$
β
 β

F
Mean length of freely reduced trivial words at different values of β. The solid blue lines indicate the reciprocal of the cogrowth of amenable groups with $|X|=4, \beta_{c}=\frac{1}{3}$. The dashed blue lines indicate the approximate location of the vertical asymptote.

Part 2: lower bounds for growth and metric estimates
$E: G \rightarrow \mathbb{R}$ is a metric estimate for a group G if there are constants
C_{1}, C_{2} so that

$$
\mathrm{C}_{1} \mathrm{E}(x) \leq|x| \leq \mathrm{C}_{2} \mathrm{E}(x)
$$

In addition, a good metric estimate is one that is easy to compute.

Estimates have been used to study subgroup distortion, etc.
metric estimate for $\operatorname{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
each element can be written in the form $\mathrm{P} a^{\mathrm{N}}$ where $\mathrm{P} \in\left\{t, a t, \ldots, a^{n-1} t, t^{-1}, a t^{-1}, \ldots, a^{m-1} t^{-1}\right\}^{*}$
by applying the moves $a^{m} t^{-1} \rightarrow t^{-1} a^{n}$ and $a^{n} t \rightarrow t a^{m}$
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
each element can be written in the form Pa^{N} where $\mathrm{P} \in\left\{t, a t, \ldots, a^{n-1} t, t^{-1}, a t^{-1}, \ldots, a^{m-1} t^{-1}\right\}^{*}$
by applying the moves $a^{m} t^{-1} \rightarrow t^{-1} a^{n}$ and $a^{n} t \rightarrow t a^{m}$
Eg: $\operatorname{BS}(2,2)$
$a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t$
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
each element can be written in the form Pa^{N} where $\mathrm{P} \in\left\{t, a t, \ldots, a^{n-1} t, t^{-1}, a t^{-1}, \ldots, a^{m-1} t^{-1}\right\}^{*}$
by applying the moves $a^{m} t^{-1} \rightarrow t^{-1} a^{n}$ and $a^{n} t \rightarrow t a^{m}$
Eg: $\operatorname{BS}(2,2)$
$a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t=a a^{-2} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t$
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
each element can be written in the form Pa^{N} where $\mathrm{P} \in\left\{t, a t, \ldots, a^{n-1} t, t^{-1}, a t^{-1}, \ldots, a^{m-1} t^{-1}\right\}^{*}$
by applying the moves $a^{m} t^{-1} \rightarrow t^{-1} a^{n}$ and $a^{n} t \rightarrow t a^{m}$
Eg: $\operatorname{BS}(2,2)$
$a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t=a a^{-2} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t$
$=a t a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-2}$
metric estimate for $\operatorname{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
each element can be written in the form $\mathrm{P} a^{\mathrm{N}}$ where $\mathrm{P} \in\left\{t, a t, \ldots, a^{n-1} t, t^{-1}, a t^{-1}, \ldots, a^{m-1} t^{-1}\right\}^{*}$
by applying the moves $a^{m} t^{-1} \rightarrow t^{-1} a^{n}$ and $a^{n} t \rightarrow t a^{m}$

Eg: $B S(2,2)$
$a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t=a a^{-2} t a^{-1} t a^{-1} t a^{-1} t a^{-1} t$
$=a t a^{-1} t a^{-1} t a^{-1} t a^{-1} t a^{-2}$
$\ldots=$ atatatatata $^{-10}$
metric estimate for $\operatorname{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$

Assume $m \leq n$.

We can write $a^{\mathrm{N}}=a^{r_{0}} t^{r_{1}} t \ldots a^{r_{s}} t a^{\kappa} t^{-s}$
where $0<\kappa<n, 0 \leq r_{i}<n$ (or $-n<\kappa<0,-n<r_{i} \leq 0$ if $\mathrm{N}<0$)
and s is at most $\log _{n / m}|\mathrm{~N}|$

check

a^{100} in $\operatorname{BS}(2,3)$:
$a a^{99}=a t a^{66} t^{-1}=a t t a^{44} t^{-2}=a t t a^{2} t a^{28} t^{-3}=a t t a^{2} t a t a^{18} t^{-4}=$ $a t t a^{2} t a t t a^{12} t^{-5}=a t t a^{2} t a t t t a^{8} t^{-6}=a t t a^{2} t a t t t a^{2} t a^{4} t^{-7}$
$\log _{3 / 2} 100=\frac{\log _{e} 100}{\log _{e} 3 / 2}=11.3577 \ldots$
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$

So $x=\mathrm{PQ}$ where P is as before and Q is of the form
$a^{r_{0}} t a^{r_{1}} t \ldots a^{r_{s}} t a^{\kappa} t^{-s}$
which has length some constant multiple of $\log _{n / m}|N|$
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$
So $x=\mathrm{PQ}$ where P is as before and Q is of the form
$a^{r_{0}} t^{r_{1}} t \ldots a^{r_{s}} t a^{\kappa} t^{-s}$
which has length some constant multiple of $\log _{n / m}|\mathrm{~N}|$
Propn (Elder, Burillo)
$\mathrm{E}(x)=|\mathrm{P}|+\log |\mathrm{N}|$
is a metric estimate for $\operatorname{BS}(m, n)$.
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$

Proof: The upper bound is clear - we can write $x=\mathrm{PQ}$ and PQ has this length (up to a constant)
metric estimate for $\mathrm{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$

Proof: The upper bound is clear - we can write $x=\mathrm{PQ}$ and PQ has this length (up to a constant)

For the lower bound, if $w=\mathrm{P} a^{\mathrm{N}}$ then multiplying on the right by $a^{ \pm 1}$ increases $\log \mathrm{N}$ by at most 1 ,
and multiplying on the right by $t^{ \pm 1}$ increases $|\mathrm{P}|$ by at most $\max \{|m|,|n|\}=c$ and $\log \mathrm{N}$ by at most 1 .
metric estimate for $\operatorname{BS}(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$

Proof: The upper bound is clear - we can write $x=\mathrm{PQ}$ and PQ has this length (up to a constant)

For the lower bound, if $w=\mathrm{P} a^{\mathrm{N}}$ then multiplying on the right by $a^{ \pm 1}$ increases $\log \mathrm{N}$ by at most 1 ,
and multiplying on the right by $t^{ \pm 1}$ increases $|\mathrm{P}|$ by at most $\max \{|m|,|n|\}=c$ and $\log \mathrm{N}$ by at most 1 .

So if x has geodesic length $|x|$, each time we multiply by a letter (starting at e), $|\mathrm{P}|$ increases by at most c and $\log \mathrm{N}$ by at most 1 , so after $|x|$ letters we have $|\mathrm{P}|+|\log \mathrm{N}| \leq c|x|+|x|$

lower bounds for growth

We are currently using these estimates to find good lower bounds for the growth function
i.e. if $\mathrm{C}_{2} \mathrm{E}(x) \leq r$ then $x \in \mathrm{~B}(r)$

References

G. Arzhantseva, V. Guba, M. Lustig, J. Préaux, Testing Cayley graph densities. Ann. Math. Blaise Pascal, 15(2):233-286, 2008
J. Belk, K. Brown, Forest diagrams for elements of Thompsons group F. Internat. J. Algebra Comput. 15, 815-850, 2005
J. Burillo, S. Cleary, B. Wiest, Computational explorations in Thompson's group F. In Geometric group theory, Trends Math., pages 21-35, 2007
J. Cohen, Cogrowth and amenability of discrete groups. J. Funct. Anal., 48(3):301-309, 1982
M. Elder, A. Rechnitzer, T. Wong, On the cogrowth of Thompson's group F. Groups, Complexity, Cryptology 4 Issue 2 pages 301-320, 2012
M. Elder, A. Rechnitzer, E. J. Janse van Rensburg, T. Wong, On trivial words in finitely presented groups. http://arxiv.org/abs/1210.3425
R. Grigorchuk, Symmetrical random walks on discrete groups. Adv. Probab. Related Topics 6, pages 285-325. Dekker, New York, 1980
D. Kouksov, On rationality of the cogrowth series. Proc. Amer. Math. Soc., 126(10):28452847, 1998

Metropolis, Rosenbluth, Rosenbluth, Teller, Teller, et al., Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087, 1953
J. Moore, Fast growth in the Følner function for Thompson's group F. http://arxiv.org/abs/0905.1118

