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G a group, X=X−1 finite generating set

c(n) = # words over X∗ of length n equal to e

is the cogrowth function for (G,X)

ρ = lim sup
n→∞

c(n)1/n is the cogrowth rate for (G,X)

and
∞∑
n=0

c(n)zn is the cogrowth series for (G,X)
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Eg: Z = 〈a | −〉

so c(2n+ 1) = 0 and c(2n) =
(

2n
n

)
which is approx 4n = 22n

so ρ = 2

(Note: the number of words on X is |X|n so ρ ≤ |X|)



Eg: Z2 = 〈a, b | ab = ba〉

How many return paths of length n (even) are there in the grid?

rotate π/4, four types of edges: 1 2 3 4



Eg: Z2 = 〈a, b | ab = ba〉

Choose n/2 boxes to be ↑ vertical, and (independently)
n/2 boxes to be ↑ horizontal.

So c(n) =
(
n
n/2

)(
n
n/2

)
.
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Eg: Z2 = 〈a, b | ab = ba〉

(
n
n/2

)(
n
n/2

)
grows like

4n+1/2

πn
so ρ = 4.

Note: the number of words on X is |X|n so ρ ≤ |X|.

Note also: the n in the denominator means that the cogrowth

series for Z2 is not algebraic.



Eg: F2 = 〈a, b | 〉

Recall (Muller-Schupp) that the word problem for F2 is context-

free

S→ aAa−1S | bBb−1S | a−1CaS | b−1DbS | ε

A→ aAa−1A | bBb−1A | b−1DbA | ε

B→ aAa−1B | bBb−1B | a−1CaB | ε

C→ bBb−1C | a−1CaC | b−1DbC | ε

D→ aAa−1D | a−1CaD | b−1DbD | ε



Eg: F2 = 〈a, b | 〉

g(z) = 4z2f(z)g(z) + 1 and f(z) = 3z2f(z)f(z) + 1

(since we are just counting, f(z) is the same for each of the last

four productions)
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Eg: F2 = 〈a, b | 〉

g(z) = 4z2f(z)g(z) + 1 and f(z) = 3z2f(z)f(z) + 1

(since we are just counting, f(z) is the same for each of the last

four productions)

so 3z2f(z)2 − f + 1 = 0 so f(z) =
1−

√
1− 12z2

6z2

and g(z) =
1

1− 4z2f(z)
so g(z) =

3

1 + 2
√

1− 12z2

which has radius of convergence 1√
12

so ρ =
√

12 ≈ 3.4



Thm

(Grigorchuk/Cohen)

G is amenable iff ρ = |X|.
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(the sometimes very difficult problem of) amenability.
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polymers, walks, etc;
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So ...

counting return paths in different graphs gives information about

(the sometimes very difficult problem of) amenability.

Statistical physicists have studied similar problems: self-avoiding

polymers, walks, etc;

and good techniques have been developed.

The idea of this work is to apply such techniques to sample

trivial words from a group and use statistical information from

such experiments to find bounds and estimates for cogrowth

with one particular group in mind: R. Thomspon’s group F.
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Previous work

Belk 2005: upper bound of 1
2 for isoperimetric constant inf

n→∞
|∂Fn|
|Fn|

Burillo-Cleary-Weist 2007: computational explorations, rate of

escape of random walks in F

Arzhantseva-Guba-Lustig-Préaux 2008: testing Cayley graph den-

sities

Moore 2009: fast growth in the Følner function for F

Elder-Rechnitzer-Wong 2011: lower bounds for cogrowth by

looking at number of loops in finite subgraphs of Cayley graphs



Previous work

F (black) vs. F (black) vs.
amenable groups non-amenable groups

(Z× Z is pink) (F2 is red)



Alternative defn of cogrowth

One can also count the number of freely reduced words equal

to e, say r(n)

and put

ρ = lim sup
n→∞

r(n)1/n the (reduced) cogrowth rate for (G,X)

and
∞∑
n=0

r(n)zn the (reduced) cogrowth series for (G,X)



Alternative defn of cogrowth

Thm (Grigorchuk/Cohen)

G is amenable iff ρ = |X| − 1.

(Note the total number of reduced words on X=X−1 is |X| − 1).
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Let Rc be the set of all cyclic permutations of relators in R, and

their inverses.

trivial word = freely reduced word equal to the identity
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Sampling trivial words

Let G be a group with finite presentation 〈 X = X−1 | R 〉

Let Rc be the set of all cyclic permutations of relators in R, and

their inverses.

trivial word = freely reduced word equal to the identity

Consider the following two moves on trivial words:

• conjugate by a generator then freely reduce

• insert at some position a word from Rc then freely reduce
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but insertion is not:

• w = anr−1a−n, inserting r gives e

but neither conj or insertion will recover w in one move



Sampling trivial words

conjugation is a uniquely reversible operation

but insertion is not:

• w = anr−1a−n, inserting r gives e

but neither conj or insertion will recover w in one move

solution: reject a move if it results in cancelation more than the

length of r.
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Sampling trivial words

• in Z2, w = uba−1b−1 aba−1v, inserting bab−1a−1 gives uba−1v

• in Z2, w = uba−1b−1a ↑

this can be reversed in two ways: insert ba−1b−1a after u

or: insert b−1aba−1 before v

solution: reject if inserting r leads to cancelations on the right

of r



Left-insertions

Define a left-insertion on a trivial word w as follows:

for r ∈ Rc and m ∈ {0,1, . . . , |w|}

write w = uv with |u| = m

set w′ = urv



Left-insertions

Define a left-insertion on a trivial word w as follows:

for r ∈ Rc and m ∈ {0,1, . . . , |w|}

write w = uv with |u| = m

set w′ = urv

if rv freely cancels, reject

else freely reduce w′, and reject if the result has length < |w|− |r|



Left-insertions

Lem

Left-insertions are uniquely reversible

Lem

Every trivial word can be obtained starting from w0 = some

relator from Rc and applying some sequence of conjugations and

left-insertions.



Markov Chain Monte Carlo sampling

Now the theory of MCMC applies:

1. define a probability distribution P over Rc (uniform if R is

finite)

2. fix pc ∈ [0,1] and p = p(u, v, α, β) ∈ [0,1] where p depends on

the trivial words u, v and constants α ∈ R, β ∈ R+

3. start with a state (trivial word) w0 from Rc chosen with

probability P(w0)



Markov Chain Monte Carlo sampling

4. if wn is the current state, with probability pc choose a conju-

gation move, else choose a left-insertion

• if conjugation, choose one of the |X| possible conjugations

uniformly at random, put u = cwnc−1 and freely reduce to obtain

w′

put wn+1 =

{
w′ with probability p(w,w′, α, β)
wn otherwise



Markov Chain Monte Carlo sampling

• if left-insersion, choose r ∈ Rc with probability P(r), a location

m ∈ [0, . . . , |wn|] uniformly, and let w′ be the outcome of the

insertion

put wn+1 =


wn if insertion invalid
w′ with probability p(w,w′, α, β)
wn otherwise



Markov Chain Monte Carlo sampling

• if left-insersion, choose r ∈ Rc with probability P(r), a location

m ∈ [0, . . . , |wn|] uniformly, and let w′ be the outcome of the

insertion

put wn+1 =


wn if insertion invalid
w′ with probability p(w,w′, α, β)
wn otherwise

Note that we only allow valid moves with a certain probability,

which depends on a constant β.

(This option to reject a move with some probability is called the

Metropolis MCMC method.)



Markov Chain Monte Carlo sampling

Varying the value of β changes the expected value of the mean

length of words sampled.

Analysis of the probabilities shows there is a critical value, βc,

for β below which the expected mean length is finite and above

it is infinite.



Markov Chain Monte Carlo sampling

Varying the value of β changes the expected value of the mean

length of words sampled.

Analysis of the probabilities shows there is a critical value, βc,

for β below which the expected mean length is finite and above

it is infinite.

The cogrowth rate corresponds to the reciprocal of this value.

Details (and results) in our paper.



Results
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Mean length of freely reduced trivial words at different values of β. The solid blue lines
indicate the reciprocal of the cogrowth of amenable groups with |X| = 4, βc = 1

3
. The dashed

blue lines indicate the approximate location of the vertical asymptote.



Part 2: lower bounds for growth and metric estimates

E : G→ R is a metric estimate for a group G if there are constants

C1, C2 so that

C1E(x) ≤ |x| ≤ C2E(x)

In addition, a good metric estimate is one that is easy to

compute.

Estimates have been used to study subgroup distortion, etc.
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each element can be written in the form PaN where

P ∈ {t, at, . . . , an−1t, t−1, at−1, . . . , am−1t−1}∗

by applying the moves amt−1 → t−1an and ant→ tam
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metric estimate for BS(m,n) = 〈a, t | tamt−1 = an〉

each element can be written in the form PaN where

P ∈ {t, at, . . . , an−1t, t−1, at−1, . . . , am−1t−1}∗

by applying the moves amt−1 → t−1an and ant→ tam

Eg: BS(2,2)

a−1ta−1ta−1ta−1ta−1t = aa−2ta−1ta−1ta−1ta−1t

= ata−1ta−1ta−1ta−1ta−2

. . . = atatatatata−10



metric estimate for BS(m,n) = 〈a, t | tamt−1 = an〉

Assume m ≤ n.

We can write aN = ar0tar1t . . . arstaκt−s

where 0 < κ < n,0 ≤ ri < n (or −n < κ < 0,−n < ri ≤ 0 if N< 0)

and s is at most logn/m |N|



check

a100 in BS(2,3):

aa99 = ata66t−1 = atta44t−2 = atta2ta28t−3 = atta2tata18t−4 =

atta2tatta12t−5 = atta2tattta8t−6 = atta2tattta2ta4t−7

log3/2 100 =
loge 100

loge 3/2
= 11.3577...



metric estimate for BS(m,n) = 〈a, t | tamt−1 = an〉

So x =PQ where P is as before and Q is of the form

ar0tar1t . . . arstaκt−s

which has length some constant multiple of logn/m |N|



metric estimate for BS(m,n) = 〈a, t | tamt−1 = an〉

So x =PQ where P is as before and Q is of the form

ar0tar1t . . . arstaκt−s

which has length some constant multiple of logn/m |N|

Propn (Elder, Burillo)

E(x) = |P|+ log |N|

is a metric estimate for BS(m,n).
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and multiplying on the right by t±1 increases |P| by at most
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metric estimate for BS(m,n) = 〈a, t | tamt−1 = an〉

Proof: The upper bound is clear – we can write x =PQ and PQ

has this length (up to a constant)

For the lower bound, if w = PaN then multiplying on the right

by a±1 increases log N by at most 1,

and multiplying on the right by t±1 increases |P| by at most

max{|m|, |n|} = c and log N by at most 1.

So if x has geodesic length |x|, each time we multiply by a letter

(starting at e), |P| increases by at most c and log N by at most

1, so after |x| letters we have |P|+ | log N| ≤ c|x|+ |x|



lower bounds for growth

We are currently using these estimates to find good lower bounds

for the growth function

i.e. if C2E(x) ≤ r then x ∈ B(r)
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