Rational subsets of wreath products

Markus Lohrey (Univ. Leipzig),

joint work with Benjamin Steinberg (City College, New York) and Georg Zetzsche (Univ. Kaiserslautern)

February 28, 2013

Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For $L \subseteq M$ let L^* denote the submonoid of M generated by L.

Let M be a monoid.

For $L \subseteq M$ let L^* denote the submonoid of M generated by L.

The set $Rat(M) \subseteq 2^M$ of all rational subsets of M is the smallest set such that:

- Every finite subset of M belongs to Rat(M).
- If $L_1, L_2 \in \operatorname{Rat}(M)$, then also $L_1 \cup L_2, L_1L_2 \in \operatorname{Rat}(M)$.
- If $L \in \operatorname{Rat}(M)$, then also $L^* \in \operatorname{Rat}(M)$.

A finite automaton over *M* is a tuple $A = (Q, \Delta, q_0, F)$ where

- Q is a finite set of states,
- $q_0 \in Q$, $F \subseteq Q$, and
- $\Delta \subseteq Q \times M \times Q$ is finite.

The subset $L(A) \subseteq M$ is the set of all products $m_1 m_2 \cdots m_k$ such that there exist $q_1, \ldots, q_k \in Q$ with

$$(q_{i-1}, m_i, q_i) \in \Delta$$
 for $1 \leq i \leq k$ and $q_k \in F$.

Then:

$$L \in \operatorname{Rat}(M) \iff \exists$$
 finite automaton A over $M : L(A) = L$

Let Σ be a finite (group) generating set for G.

Let Σ be a finite (group) generating set for G.

Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

Let Σ be a finite (group) generating set for G.

Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

The rational subset membership problem for G (RatMP(G)) is the following computational problem:

INPUT: A finite automaton A over G and $g \in G$ QUESTION: $g \in L(A)$? The submonoid membership problem for G is the following computational problem:

```
INPUT: A finite subset A \subseteq G and g \in G
QUESTION: g \in A^*?
```

The subgroup membership problem for G (or generalized word problem for G) is the following computational problem: INPUT: A finite subset $A \subseteq G$ and $g \in G$ QUESTION: $g \in \langle A \rangle$ (= $(A \cup A^{-1})^*$)?

The generalized word problem is a widely studied problem in combinatorial group theory.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Mikhailova 1966

Let F_2 be the free group of rank 2. The subgroup membership problem for $F_2 \times F_2$ is undecidable.

Benois 1969

Let F be a finitely generated free group. Then RatMP(F) is decidable.

Mikhailova 1966

Let F_2 be the free group of rank 2. The subgroup membership problem for $F_2 \times F_2$ is undecidable.

Rips 1982

There are hyperbolic groups with an undecidable subgroup membership problem.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba$ for all $(a, b) \in E \rangle$.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba$ for all $(a, b) \in E \rangle$.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G(A, E) is decidable if (A, E) is a chordal graph (no induced cycle of length ≥ 4).

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E) = \langle A \mid ab = ba$ for all $(a, b) \in E \rangle$.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G(A, E) is decidable if (A, E) is a chordal graph (no induced cycle of length \geq 4).

L, Steinberg 2006

The following are equivalent:

- RatMP(G(A, E)) is decidable
- The submonoid membership problem for G(A, E) is decidable.
- The graph (A, E) does not contain an induced subgraph of one of the following two forms (C4 and P4):

· · · · · ·

Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \ge 2$ there is $r \in \mathbb{N}$ with $RatMP(N_{r,c})$ is undecidable.

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \ge 2$ there is $r \in \mathbb{N}$ with $RatMP(N_{r,c})$ is undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r,c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \ge 2$ there is $r \in \mathbb{N}$ with $RatMP(N_{r,c})$ is undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

Open problem

When is the submonoid membership problem for $N_{r,c}$ decidable?

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2 .

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_2) is undecidable.

Romanovskii 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_2) is undecidable.

For the proof, one encodes a tiling problem of the Euclidean plane into the submonoid membership problem for M_2 .

Wreath products

Let A and B be groups and let

$$K = \bigoplus_{b \in B} A$$

be the direct sum of copies of A.

Let A and B be groups and let

$$K = \bigoplus_{b \in B} A$$

be the direct sum of copies of A.

Elements of K can be thought as mappings $k : B \to A$ with finite support (i.e., $k^{-1}(A \setminus 1)$ is finite).

Let A and B be groups and let

$$K = \bigoplus_{b \in B} A$$

be the direct sum of copies of A.

Elements of K can be thought as mappings $k : B \to A$ with finite support (i.e., $k^{-1}(A \setminus 1)$ is finite).

The wreath product $A \wr B$ is the set of all pairs $K \times B$ with the following multiplication, where $(k_1, b_1), (k_2, b_2) \in K \times B$:

$$(k_1, b_1)(k_2, b_2) = (k, b_1b_2)$$
 with $\forall b \in B : k(b) = k_1(b)k_2(b_1^{-1}b)$.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

For every nontrivial group H, RatMP($H \wr (\mathbb{Z} \times \mathbb{Z})$) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ (again a metabelian group) is undecidable.

 $RatMP(H \wr V)$ is decidable for every finite group H and virtually free group V.

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}$.

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}$.

Fix an automaton $A = (Q, \Delta, q_0, F)$ over the finite alphabet $H \cup \{a, b, a^{-1}, b^{-1}\}$.

RatMP($H \wr V$) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$G = H \wr F(a, b)$$

with H finite and F(a, b) the free group generated by a and b.

G is generated as a monoid by $H \cup \{a, b, a^{-1}, b^{-1}\}$.

Fix an automaton $A = (Q, \Delta, q_0, F)$ over the finite alphabet $H \cup \{a, b, a^{-1}, b^{-1}\}$.

We want to check, whether there exists $w \in L(A)$ with w = 1 in G.

Let
$$p, q \in Q$$
, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q) -loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

Let $p, q \in Q$, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q)-loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

 For all 1 ≤ i ≤ n − 1, the unique reduced word for u_i does not start with d⁻¹.

Let
$$p, q \in Q$$
, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q) -loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

 For all 1 ≤ i ≤ n − 1, the unique reduced word for u_i does not start with d⁻¹.

•
$$u_{n-1} = 1$$
 in F_2 .

Let
$$p, q \in Q$$
, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q) -loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

 For all 1 ≤ i ≤ n − 1, the unique reduced word for u_i does not start with d⁻¹.

•
$$u_{n-1} = 1$$
 in F_2 .

We define

•
$$depth(\pi) = max\{|u_i| + 1 \mid 1 \le i \le n - 1\}$$

Let
$$p, q \in Q$$
, $d \in \{a, b, a^{-1}, b^{-1}\}$. A (p, d, q) -loop is an A-path

$$\pi = (p = p_0 \xrightarrow{d} p_1 \xrightarrow{\alpha_1} p_2 \xrightarrow{\alpha_2} p_3 \cdots \xrightarrow{\alpha_{n-1}} p_n \xrightarrow{d^{-1}} p_{n+1} = q)$$

with the following properties, where $\alpha_1 \cdots \alpha_i = (k_i, u_i) \in H \wr F_2$ for $1 \le i \le n-1$:

 For all 1 ≤ i ≤ n − 1, the unique reduced word for u_i does not start with d⁻¹.

•
$$u_{n-1} = 1$$
 in F_2

We define

•
$$depth(\pi) = max\{|u_i| + 1 \mid 1 \le i \le n - 1\}$$

• effect
$$(\pi) = d\alpha_1 \cdots \alpha_{n-1} d^{-1} \in K$$
.

For all types
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 define $C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}$

For all types
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 define
 $C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}$
 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q) \text{-loop}\}$

For all types
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 define
 $C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}$
 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q)\text{-loop}\}$

The alphabet X_t can be computed.

For all types
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 define
 $C_t = \{a, a^{-1}, b, b^{-1}\} \setminus \{t^{-1}\}$
 $X_t = \{(p, d, q) \mid d \in C_t, \exists (p, d, q)\text{-loop}\}$

The alphabet X_t can be computed.

Loop patterns

Let $t \in \{1, a, a^{-1}, b, b^{-1}\}$ be a type.

Let
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 be a type.

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \le i \le n$ there exists a (p_i, d_i, q_i) -loop π_i with

 $\operatorname{effect}(\pi_1)\operatorname{effect}(\pi_2)\cdots\operatorname{effect}(\pi_n)=1$ in K.

Let
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 be a type.

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \le i \le n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$effect(\pi_1)effect(\pi_2)\cdots effect(\pi_n) = 1$$
 in K.

The depth of this loop pattern is min $(\max_{1 \le i \le n} \text{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 be a type.

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \le i \le n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$effect(\pi_1)effect(\pi_2)\cdots effect(\pi_n) = 1$$
 in K.

The depth of this loop pattern is min $(\max_{1 \le i \le n} \text{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

Let
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 be a type.

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \le i \le n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$effect(\pi_1)effect(\pi_2)\cdots effect(\pi_n) = 1$$
 in K.

The depth of this loop pattern is min $(\max_{1 \le i \le n} \text{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

We will show:

• P_t is regular and

Let
$$t \in \{1, a, a^{-1}, b, b^{-1}\}$$
 be a type.

$$w = (p_1, d_1, q_1)(p_2, d_2, q_2) \cdots (p_n, d_n, q_n) \in X_t^*.$$

such that for every $1 \le i \le n$ there exists a (p_i, d_i, q_i) -loop π_i with

$$effect(\pi_1)effect(\pi_2)\cdots effect(\pi_n) = 1$$
 in K.

The depth of this loop pattern is $\min(\max_{1 \le i \le n} \operatorname{depth}(\pi_i))$, where the min is taken over all π_1, \ldots, π_n as above.

Let P_t be the set of all loop patterns at t.

We will show:

- P_t is regular and
- an automaton for P_t can be computed.

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_j$.

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_j$.

For a group H, we define a partial order \leq_H on X^* (X any finite alphabet) as follows: $u \leq_H v$ iff there exist factorizations

$$u = x_1 x_2 \cdots x_n \quad (x_i \in X)$$

$$v = v_0 x_1 v_1 x_2 \cdots v_{n-1} x_n v_n$$

such that for every homomorphism $\varphi: X^* \to H$ we have $\varphi(v_0) = \varphi(v_1) = \cdots \varphi(v_n) = 1.$

A WQO (well quasi order) is a reflexive and transitive relation \leq (on a set A) such that for every infinite sequence a_1, a_2, a_3, \ldots there exist i < j with $a_i \leq a_j$.

For a group H, we define a partial order \leq_H on X^* (X any finite alphabet) as follows: $u \leq_H v$ iff there exist factorizations

$$u = x_1 x_2 \cdots x_n \quad (x_i \in X)$$

$$v = v_0 x_1 v_1 x_2 \cdots v_{n-1} x_n v_n$$

such that for every homomorphism $\varphi : X^* \to H$ we have $\varphi(v_0) = \varphi(v_1) = \cdots \varphi(v_n) = 1.$

Lemma

For every finite group H, \leq_H is a WQO.

Lemma

For every $t \in \{1, a, a^{-1}, b, b^{-1}\}$, the set of loop patterns P_t is upward closed w.r.t. \leq_H .
For every $t \in \{1, a, a^{-1}, b, b^{-1}\}$, the set of loop patterns P_t is upward closed w.r.t. \leq_H .

This implies that P_t is regular, but can we compute an NFA for P_t ?

$$Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$$

 $Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $Y_t = X_t \cup ((Q \times H \times Q) \cap \Delta),$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $\nu_t: Y_t^* \to H$ is the homomorphism with

$$egin{array}{rcl}
u_t(p,d,q) &= 1 & ext{for} \ (p,d,q) \in X_t \
u_t(p,h,q) &= h & ext{for} \ (p,h,q) \in Y_t \setminus X_t. \end{array}$$

 $Y_t = X_t \cup ((Q imes H imes Q) \cap \Delta),$

 $\pi_t:\,Y_t^*\to X_t^*$ is the projection homomorphism onto X_t^* :

 $\nu_t: Y_t^* \to H$ is the homomorphism with

$$egin{array}{rcl}
u_t(p,d,q) &=& 1 \ \ ext{for} \ (p,d,q) \in X_t \
u_t(p,h,q) &=& h \ \ ext{for} \ (p,h,q) \in Y_t \setminus X_t. \end{array}$$

For $p, q \in Q$ and $t \in T$ define the regular set

$$R_{p,q}^t = \{(p_0,g_1,p_1)(p_1,g_2,p_2)\cdots(p_{n-1},g_n,p_n)\in Y_t^*\mid p_0=p,p_n=q\}.$$

 $Y_t = X_t \cup ((Q imes H imes Q) \cap \Delta),$

 $\pi_t: Y_t^* \to X_t^*$ is the projection homomorphism onto X_t^* :

 $\nu_t: Y_t^* \to H$ is the homomorphism with

$$egin{array}{rcl}
u_t(p,d,q) &=& 1 \ \ ext{for} \ (p,d,q) \in X_t \
u_t(p,h,q) &=& h \ \ ext{for} \ (p,h,q) \in Y_t \setminus X_t. \end{array}$$

For $p, q \in Q$ and $t \in T$ define the regular set

$$R_{p,q}^t = \{(p_0,g_1,p_1)(p_1,g_2,p_2)\cdots(p_{n-1},g_n,p_n)\in Y_t^*\mid p_0=p,p_n=q\}.$$

For $t \in T$, $d \in C_t$, define a regular substitution $\sigma_{t,d} : X_t \to \operatorname{Reg}(Y_d)$ by

$$\begin{split} \sigma_{t,d}(p,d,q) &= \bigcup \{ R^d_{p',q'} \mid (p,d,p'), (q',d^{-1},q) \in \Delta \} \\ \sigma_{t,d}(p,u,q) &= \{ \varepsilon \} \text{ for } u \in C_t \setminus \{d\}. \end{split}$$

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1, a, a^{-1}, b, b^{-1}\}$ we have $\varepsilon \in P_t$ and $\bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d) \cap \nu_d^{-1}(1) \right) \subseteq P_t.$

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1, a, a^{-1}, b, b^{-1}\}$ we have $\varepsilon \in P_t$ and $\bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d) \cap \nu_d^{-1}(1) \right) \subseteq P_t.$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most *i*.

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1, a, a^{-1}, b, b^{-1}\}$ we have $\varepsilon \in P_t$ and $\bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d) \cap \nu_d^{-1}(1) \right) \subseteq P_t.$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most *i*. Then:

$$P_t^{(0)} = \{\varepsilon\}$$

$$P_t^{(i+1)} = P_t^{(i)} \cup \bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d^{(i)}) \cap \nu_d^{-1}(1) \right).$$

 $(P_t)_{t \in \{1,a,a^{-1},b,b^{-1}\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in \{1, a, a^{-1}, b, b^{-1}\}$ we have $\varepsilon \in P_t$ and $\bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d) \cap \nu_d^{-1}(1) \right) \subseteq P_t.$

Proof: For each $i \in \mathbb{N}$, let $P_t^{(i)} \subseteq X_t^*$ be the set of loop patterns whose depth is at most *i*. Then:

$$P_t^{(0)} = \{\varepsilon\}$$

$$P_t^{(i+1)} = P_t^{(i)} \cup \bigcap_{d \in C_t} \sigma_{t,d}^{-1} \left(\pi_d^{-1}(P_d^{(i)}) \cap \nu_d^{-1}(1) \right).$$

The lemma follows since $P_t = \bigcup_{i \ge 0} P_t^{(i)}$.

What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?

- What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?

- What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group

- What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products
 H ≥ *V* with *V* virtually free and *H* a f.g. infinite torsion group.

- What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products
 H ≥ *V* with *V* virtually free and *H* a f.g. infinite torsion group.
- Rational subset membership problem for wreath products $H \wr G$ with $H \neq 1$ and G not virtually-free.

- What is the complexity of RatMP(H ≥ V) for H finite and V virtually-free? In particular: Is RatMP(Z₂ ≥ Z) primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but RatMP(G) is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products
 H ≥ *V* with *V* virtually free and *H* a f.g. infinite torsion group.
- Rational subset membership problem for wreath products $H \wr G$ with $H \neq 1$ and G not virtually-free.
- Conjecture: Whenevery H is non-trivial and G is not virtually-free, then RatMP(H ≥ G) is undecidable.