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Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For L ⊆ M let L∗ denote the submonoid of M generated by L.
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Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For L ⊆ M let L∗ denote the submonoid of M generated by L.

The set Rat(M) ⊆ 2M of all rational subsets of M is the smallest
set such that:

Every finite subset of M belongs to Rat(M).

If L1,L2 ∈ Rat(M), then also L1 ∪ L2, L1L2 ∈ Rat(M).

If L ∈ Rat(M), then also L∗ ∈ Rat(M).
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Rational sets in arbitrary monoids: Definition 2

A finite automaton over M is a tuple A = (Q,∆, q0,F ) where

Q is a finite set of states,

q0 ∈ Q, F ⊆ Q, and

∆ ⊆ Q × M × Q is finite.

The subset L(A) ⊆ M is the set of all products m1m2 · · ·mk such
that there exist q1, . . . , qk ∈ Q with

(qi−1,mi , qi ) ∈ ∆ for 1 ≤ i ≤ k and qk ∈ F .

Then:

L ∈ Rat(M) ⇐⇒ ∃ finite automaton A over M : L(A) = L
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Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G .
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Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G .

Let Σ be a finite (group) generating set for G .

Elements of G can be represented by finite words over Σ ∪ Σ−1.

The rational subset membership problem for G (RatMP(G )) is the
following computational problem:

INPUT: A finite automaton A over G and g ∈ G

QUESTION: g ∈ L(A)?
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Membership in submonoids/subgroups

The submonoid membership problem for G is the following
computational problem:

INPUT: A finite subset A ⊆ G and g ∈ G

QUESTION: g ∈ A∗?

The subgroup membership problem for G (or generalized word
problem for G ) is the following computational problem:

INPUT: A finite subset A ⊆ G and g ∈ G

QUESTION: g ∈ 〈A〉 (= (A ∪ A−1)∗)?

The generalized word problem is a widely studied problem in
combinatorial group theory.
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Some results

Benois 1969

Let F be a finitely generated free group. Then RatMP(F ) is
decidable.
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Some results

Benois 1969

Let F be a finitely generated free group. Then RatMP(F ) is
decidable.

Mikhailova 1966

Let F2 be the free group of rank 2. The subgroup membership
problem for F2 × F2 is undecidable.
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Some results

Benois 1969

Let F be a finitely generated free group. Then RatMP(F ) is
decidable.

Mikhailova 1966

Let F2 be the free group of rank 2. The subgroup membership
problem for F2 × F2 is undecidable.

Rips 1982

There are hyperbolic groups with an undecidable subgroup
membership problem.
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Graph groups

Let (A,E ) be a finite undirected graph. The corresponding graph
group is G (A,E ) = 〈A | ab = ba for all (a, b) ∈ E 〉.
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Graph groups

Let (A,E ) be a finite undirected graph. The corresponding graph
group is G (A,E ) = 〈A | ab = ba for all (a, b) ∈ E 〉.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G (A,E ) is decidable if
(A,E ) is a chordal graph (no induced cycle of length ≥ 4).
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Graph groups

Let (A,E ) be a finite undirected graph. The corresponding graph
group is G (A,E ) = 〈A | ab = ba for all (a, b) ∈ E 〉.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for G (A,E ) is decidable if
(A,E ) is a chordal graph (no induced cycle of length ≥ 4).

L, Steinberg 2006

The following are equivalent:

RatMP(G (A,E )) is decidable

The submonoid membership problem for G (A,E ) is decidable.

The graph (A,E ) does not contain an induced subgraph of
one of the following two forms (C4 and P4):
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Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup
separable; hence the subgroup membership problem is decidable.
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Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup
separable; hence the subgroup membership problem is decidable.

Let Nr ,c be the free nilpotent group of class c , generated by r
elements.

Roman’kov 1999

For every c ≥ 2 there is r ∈ N with RatMP(Nr ,c ) is undecidable.

Roman’kov uses the undecidability of Hilbert’s 10th problem
(solvability of polynomial equations over Z).
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Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup
separable; hence the subgroup membership problem is decidable.

Let Nr ,c be the free nilpotent group of class c , generated by r
elements.

Roman’kov 1999

For every c ≥ 2 there is r ∈ N with RatMP(Nr ,c ) is undecidable.

Roman’kov uses the undecidability of Hilbert’s 10th problem
(solvability of polynomial equations over Z).

Open problem

When is the submonoid membership problem for Nr ,c decidable?
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Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.
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Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.

Equivalent: G metabelian ⇐⇒ [G ,G ] Abelian.

Romanovskĭi 1974

Every finitely generated metabelian group has a decidable
subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group
generated by 2 elements (M2) is undecidable.
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Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.

Equivalent: G metabelian ⇐⇒ [G ,G ] Abelian.

Romanovskĭi 1974

Every finitely generated metabelian group has a decidable
subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group
generated by 2 elements (M2) is undecidable.

For the proof, one encodes a tiling problem of the Euclidean plane
into the submonoid membership problem for M2.
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.
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Wreath products
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b∈B

A

be the direct sum of copies of A.

Elements of K can be thought as mappings k : B → A with finite
support (i.e., k−1(A \ 1) is finite).
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.

Elements of K can be thought as mappings k : B → A with finite
support (i.e., k−1(A \ 1) is finite).

The wreath product A ≀ B is the set of all pairs K × B with the
following multiplication, where (k1, b1), (k2, b2) ∈ K × B :

(k1, b1)(k2, b2) = (k, b1b2) with ∀b ∈ B : k(b) = k1(b)k2(b
−1
1 b).
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Wreath product Z2 ≀ F (a, b) with Z2 = 〈c | c
2 = 1〉
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z × Z

allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product Z ≀ Z
(again a metabelian group) is undecidable.
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z × Z

allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product Z ≀ Z
(again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .

0−1−2−3 1 2 3
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z × Z

allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product Z ≀ Z
(again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
0n0m00 0 0 0

︸ ︷︷ ︸

counters at t = 0
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z × Z

allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product Z ≀ Z
(again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
m1000 n1 0 0
︸ ︷︷ ︸

counters at t = 1
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Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, RatMP(H ≀ (Z × Z)) is undecidable.

Proof idea: The grid-like structure of the Cayley graph of Z × Z

allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product Z ≀ Z
(again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

. . . . . .
0000 0 m2 n2

︸ ︷︷ ︸

counters at t = 2
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Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H ≀ V ) is decidable for every finite group H and virtually
free group V .
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RatMP(H ≀ V ) is decidable for every finite group H and virtually
free group V .

We only consider a wreath product

G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.

M. Lohrey Rational subsets of wreath products



Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H ≀ V ) is decidable for every finite group H and virtually
free group V .

We only consider a wreath product

G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.

G is generated as a monoid by H ∪ {a, b, a−1, b−1}.

M. Lohrey Rational subsets of wreath products



Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H ≀ V ) is decidable for every finite group H and virtually
free group V .

We only consider a wreath product

G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.

G is generated as a monoid by H ∪ {a, b, a−1, b−1}.

Fix an automaton A = (Q,∆, q0,F ) over the finite alphabet
H ∪ {a, b, a−1, b−1}.
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Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H ≀ V ) is decidable for every finite group H and virtually
free group V .

We only consider a wreath product

G = H ≀ F (a, b)

with H finite and F (a, b) the free group generated by a and b.

G is generated as a monoid by H ∪ {a, b, a−1, b−1}.

Fix an automaton A = (Q,∆, q0,F ) over the finite alphabet
H ∪ {a, b, a−1, b−1}.

We want to check, whether there exists w ∈ L(A) with w = 1 in G .
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n − 1, the unique reduced word for ui does not
start with d−1.
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1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n − 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.
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Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n − 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.

We define

depth(π) = max{|ui | + 1 | 1 ≤ i ≤ n − 1}
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Loops

Let p, q ∈ Q, d ∈ {a, b, a−1, b−1}. A (p, d , q)-loop is an A-path

π = (p = p0
d
−→ p1

α1−→ p2
α2−→ p3 · · ·

αn−1
−−−→ pn

d−1

−−→ pn+1 = q)

with the following properties, where α1 · · ·αi = (ki , ui) ∈ H ≀ F2 for
1 ≤ i ≤ n − 1:

For all 1 ≤ i ≤ n − 1, the unique reduced word for ui does not
start with d−1.

un−1 = 1 in F2.

We define

depth(π) = max{|ui | + 1 | 1 ≤ i ≤ n − 1}

effect(π) = dα1 · · ·αn−1d
−1 ∈ K .
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Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1
, b, b−1} \ {t−1}
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Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1
, b, b−1} \ {t−1}

Xt = {(p, d , q) | d ∈ Ct ,∃(p, d , q)-loop}
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For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1
, b, b−1} \ {t−1}

Xt = {(p, d , q) | d ∈ Ct ,∃(p, d , q)-loop}

The alphabet Xt can be computed.
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Loops

For all types t ∈ {1, a, a−1, b, b−1} define

Ct = {a, a−1
, b, b−1} \ {t−1}

Xt = {(p, d , q) | d ∈ Ct ,∃(p, d , q)-loop}

The alphabet Xt can be computed.

a

a
−1

b
−1

b

a−1 b−1

b
a b−1

b a
a−1

b
b−1a−1

a

Cb = {a−1, b, a}
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .
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Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .

The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
the min is taken over all π1, . . . , πn as above.
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Let Pt be the set of all loop patterns at t.
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Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
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such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with
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The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
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Let Pt be the set of all loop patterns at t.

We will show:

Pt is regular and

M. Lohrey Rational subsets of wreath products



Loop patterns

Let t ∈ {1, a, a−1, b, b−1} be a type.

A loop pattern at t is a word

w = (p1, d1, q1)(p2, d2, q2) · · · (pn, dn, qn) ∈ X ∗
t .

such that for every 1 ≤ i ≤ n there exists a (pi , di , qi )-loop πi with

effect(π1)effect(π2) · · · effect(πn) = 1 in K .

The depth of this loop pattern is min(max1≤i≤n depth(πi )), where
the min is taken over all π1, . . . , πn as above.

Let Pt be the set of all loop patterns at t.

We will show:

Pt is regular and

an automaton for Pt can be computed.
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .

For a group H, we define a partial order �H on X ∗ (X any finite
alphabet) as follows: u �H v iff there exist factorizations

u = x1x2 · · · xn (xi ∈ X )

v = v0x1v1x2 · · · vn−1xnvn

such that for every homomorphism ϕ : X ∗ → H we have
ϕ(v0) = ϕ(v1) = · · ·ϕ(vn) = 1.
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A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation �
(on a set A) such that for every infinite sequence a1, a2, a3, . . .

there exist i < j with ai � aj .

For a group H, we define a partial order �H on X ∗ (X any finite
alphabet) as follows: u �H v iff there exist factorizations

u = x1x2 · · · xn (xi ∈ X )

v = v0x1v1x2 · · · vn−1xnvn

such that for every homomorphism ϕ : X ∗ → H we have
ϕ(v0) = ϕ(v1) = · · ·ϕ(vn) = 1.

Lemma

For every finite group H, �H is a WQO.
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The set of loop patterns is regular

Lemma

For every t ∈ {1, a, a−1, b, b−1}, the set of loop patterns Pt is
upward closed w.r.t. �H .
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The set of loop patterns is regular

Lemma

For every t ∈ {1, a, a−1, b, b−1}, the set of loop patterns Pt is
upward closed w.r.t. �H .

This implies that Pt is regular, but can we compute an NFA for Pt?
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Some definitions

Yt = Xt ∪ ((Q × H × Q) ∩ ∆),
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πt : Y ∗
t → X ∗

t is the projection homomorphism onto X ∗
t :
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Some definitions

Yt = Xt ∪ ((Q × H × Q) ∩ ∆),

πt : Y ∗
t → X ∗

t is the projection homomorphism onto X ∗
t :

νt : Y ∗
t → H is the homomorphism with

νt(p, d , q) = 1 for (p, d , q) ∈ Xt

νt(p, h, q) = h for (p, h, q) ∈ Yt \ Xt .
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Some definitions

Yt = Xt ∪ ((Q × H × Q) ∩ ∆),

πt : Y ∗
t → X ∗

t is the projection homomorphism onto X ∗
t :

νt : Y ∗
t → H is the homomorphism with

νt(p, d , q) = 1 for (p, d , q) ∈ Xt

νt(p, h, q) = h for (p, h, q) ∈ Yt \ Xt .

For p, q ∈ Q and t ∈ T define the regular set

R t
p,q = {(p0, g1, p1)(p1, g2, p2) · · · (pn−1, gn, pn) ∈ Y ∗

t | p0 = p, pn = q}.
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Some definitions

Yt = Xt ∪ ((Q × H × Q) ∩ ∆),

πt : Y ∗
t → X ∗

t is the projection homomorphism onto X ∗
t :

νt : Y ∗
t → H is the homomorphism with

νt(p, d , q) = 1 for (p, d , q) ∈ Xt

νt(p, h, q) = h for (p, h, q) ∈ Yt \ Xt .

For p, q ∈ Q and t ∈ T define the regular set

R t
p,q = {(p0, g1, p1)(p1, g2, p2) · · · (pn−1, gn, pn) ∈ Y ∗

t | p0 = p, pn = q}.

For t ∈ T , d ∈ Ct , define a regular substitution
σt,d : Xt → Reg(Yd) by

σt,d(p, d , q) =
⋃

{Rd
p′,q′ | (p, d , p′), (q′

, d−1
, q) ∈ ∆}

σt,d(p, u, q) = {ε} for u ∈ Ct \ {d}.
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A fixpoint characterization of Pt

Lemma

(Pt)t∈{1,a,a−1,b,b−1} is the smallest tuple (w.r.t. to componentwise

inclusion) such that for every t ∈ {1, a, a−1, b, b−1} we have
ε ∈ Pt and ⋂

d∈Ct

σ
−1
t,d

(
π
−1
d (Pd) ∩ ν

−1
d (1)

)
⊆ Pt .
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A fixpoint characterization of Pt

Lemma

(Pt)t∈{1,a,a−1,b,b−1} is the smallest tuple (w.r.t. to componentwise

inclusion) such that for every t ∈ {1, a, a−1, b, b−1} we have
ε ∈ Pt and ⋂

d∈Ct

σ
−1
t,d

(
π
−1
d (Pd) ∩ ν

−1
d (1)

)
⊆ Pt .

Proof: For each i ∈ N, let P
(i)
t ⊆ X ∗

t be the set of loop patterns
whose depth is at most i .

M. Lohrey Rational subsets of wreath products



A fixpoint characterization of Pt

Lemma

(Pt)t∈{1,a,a−1,b,b−1} is the smallest tuple (w.r.t. to componentwise

inclusion) such that for every t ∈ {1, a, a−1, b, b−1} we have
ε ∈ Pt and ⋂

d∈Ct

σ
−1
t,d

(
π
−1
d (Pd) ∩ ν

−1
d (1)

)
⊆ Pt .

Proof: For each i ∈ N, let P
(i)
t ⊆ X ∗

t be the set of loop patterns
whose depth is at most i . Then:

P
(0)
t = {ε}

P
(i+1)
t = P

(i)
t ∪

⋂

d∈Ct

σ
−1
t,d

(

π
−1
d (P

(i)
d ) ∩ ν

−1
d (1)

)

.
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A fixpoint characterization of Pt

Lemma

(Pt)t∈{1,a,a−1,b,b−1} is the smallest tuple (w.r.t. to componentwise

inclusion) such that for every t ∈ {1, a, a−1, b, b−1} we have
ε ∈ Pt and ⋂

d∈Ct

σ
−1
t,d

(
π
−1
d (Pd) ∩ ν

−1
d (1)

)
⊆ Pt .

Proof: For each i ∈ N, let P
(i)
t ⊆ X ∗

t be the set of loop patterns
whose depth is at most i . Then:

P
(0)
t = {ε}

P
(i+1)
t = P

(i)
t ∪

⋂

d∈Ct

σ
−1
t,d

(

π
−1
d (P

(i)
d ) ∩ ν

−1
d (1)

)

.

The lemma follows since Pt =
⋃

i≥0 P
(i)
t .
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Open problems

What is the complexity of RatMP(H ≀ V ) for H finite and V
virtually-free? In particular: Is RatMP(Z2 ≀ Z) primitive
recursive?
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recursive?

Is there a (necessarily one-ended) group G , for which the
submonoid membership problem is decidable but RatMP(G )
is undecidable?
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H ≀ V with V virtually free and H a f.g. infinite torsion group.
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recursive?

Is there a (necessarily one-ended) group G , for which the
submonoid membership problem is decidable but RatMP(G )
is undecidable?

Rational subset membership problem for the Grigorchuk group

Rational subset membership problem for wreath products
H ≀ V with V virtually free and H a f.g. infinite torsion group.

Rational subset membership problem for wreath products
H ≀ G with H 6= 1 and G not virtually-free.
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Open problems

What is the complexity of RatMP(H ≀ V ) for H finite and V
virtually-free? In particular: Is RatMP(Z2 ≀ Z) primitive
recursive?

Is there a (necessarily one-ended) group G , for which the
submonoid membership problem is decidable but RatMP(G )
is undecidable?

Rational subset membership problem for the Grigorchuk group

Rational subset membership problem for wreath products
H ≀ V with V virtually free and H a f.g. infinite torsion group.

Rational subset membership problem for wreath products
H ≀ G with H 6= 1 and G not virtually-free.

Conjecture: Whenevery H is non-trivial and G is not
virtually-free, then RatMP(H ≀ G ) is undecidable.
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