Rational subsets of wreath products

Markus Lohrey (Univ. Leipzig),
joint work with Benjamin Steinberg (City College, New York) and Georg Zetzsche (Univ. Kaiserslautern)

February 28, 2013

Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.

For $L \subseteq M$ let L^{*} denote the submonoid of M generated by L.

Rational sets in arbitrary monoids: Definition 1

Let M be a monoid.
For $L \subseteq M$ let L^{*} denote the submonoid of M generated by L.
The set $\operatorname{Rat}(M) \subseteq 2^{M}$ of all rational subsets of M is the smallest set such that:

- Every finite subset of M belongs to $\operatorname{Rat}(M)$.
- If $L_{1}, L_{2} \in \operatorname{Rat}(M)$, then also $L_{1} \cup L_{2}, L_{1} L_{2} \in \operatorname{Rat}(M)$.
- If $L \in \operatorname{Rat}(M)$, then also $L^{*} \in \operatorname{Rat}(M)$.

Rational sets in arbitrary monoids: Definition 2

A finite automaton over M is a tuple $A=\left(Q, \Delta, q_{0}, F\right)$ where

- Q is a finite set of states,
- $q_{0} \in Q, F \subseteq Q$, and
- $\Delta \subseteq Q \times M \times Q$ is finite.

The subset $L(A) \subseteq M$ is the set of all products $m_{1} m_{2} \cdots m_{k}$ such that there exist $q_{1}, \ldots, q_{k} \in Q$ with

$$
\left(q_{i-1}, m_{i}, q_{i}\right) \in \Delta \text { for } 1 \leq i \leq k \text { and } q_{k} \in F
$$

Then:
$L \in \operatorname{Rat}(M) \quad \Longleftrightarrow \quad \exists$ finite automaton A over $M: L(A)=L$

Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G.

Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G.
Let Σ be a finite (group) generating set for G.

Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G.
Let Σ be a finite (group) generating set for G.
Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

Rational sets in groups

In this talk: M will be always a finitely generated (f.g.) group G.
Let Σ be a finite (group) generating set for G.
Elements of G can be represented by finite words over $\Sigma \cup \Sigma^{-1}$.

The rational subset membership problem for $G(\operatorname{RatMP}(G))$ is the following computational problem:

INPUT: A finite automaton A over G and $g \in G$
QUESTION: $g \in L(A)$?

Membership in submonoids/subgroups

The submonoid membership problem for G is the following computational problem:

INPUT: A finite subset $A \subseteq G$ and $g \in G$ QUESTION: $g \in A^{*}$?

The subgroup membership problem for G (or generalized word problem for G) is the following computational problem:

INPUT: A finite subset $A \subseteq G$ and $g \in G$ QUESTION: $g \in\langle A\rangle\left(=\left(A \cup A^{-1}\right)^{*}\right)$?

The generalized word problem is a widely studied problem in combinatorial group theory.

Some results

Benois 1969

Let F be a finitely generated free group. Then $\operatorname{RatMP}(F)$ is decidable.

Benois 1969

Let F be a finitely generated free group. Then $\operatorname{RatMP}(F)$ is decidable.

Mikhailova 1966

Let F_{2} be the free group of rank 2. The subgroup membership problem for $F_{2} \times F_{2}$ is undecidable.

Benois 1969

Let F be a finitely generated free group. Then $\operatorname{RatMP}(F)$ is decidable.

Mikhailova 1966

Let F_{2} be the free group of rank 2. The subgroup membership problem for $F_{2} \times F_{2}$ is undecidable.

Rips 1982

There are hyperbolic groups with an undecidable subgroup membership problem.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E)=\langle A| a b=b a$ for all $(a, b) \in E\rangle$.

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E)=\langle A| a b=b a$ for all $(a, b) \in E\rangle$.

Kapovich, Myasnikov, Weidmann 2005:
The subgroup membership problem for $G(A, E)$ is decidable if (A, E) is a chordal graph (no induced cycle of length ≥ 4).

Graph groups

Let (A, E) be a finite undirected graph. The corresponding graph group is $G(A, E)=\langle A| a b=b a$ for all $(a, b) \in E\rangle$.

Kapovich, Myasnikov, Weidmann 2005:

The subgroup membership problem for $G(A, E)$ is decidable if (A, E) is a chordal graph (no induced cycle of length ≥ 4).

L, Steinberg 2006

The following are equivalent:

- RatMP $(G(A, E))$ is decidable
- The submonoid membership problem for $G(A, E)$ is decidable.
- The graph (A, E) does not contain an induced subgraph of one of the following two forms (C4 and P4):

Nilpotent groups

Malcev 1958
Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r, c}$ be the free nilpotent group of class c, generated by r elements.

Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r, c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with $\operatorname{RatMP}\left(N_{r, c}\right)$ is undecidable.

Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r, c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with $\operatorname{RatMP}\left(N_{r, c}\right)$ is undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

Nilpotent groups

Malcev 1958

Polycyclic groups (and hence nilpotent groups) are subgroup separable; hence the subgroup membership problem is decidable.

Let $N_{r, c}$ be the free nilpotent group of class c, generated by r elements.

Roman'kov 1999

For every $c \geq 2$ there is $r \in \mathbb{N}$ with $\operatorname{RatMP}\left(N_{r, c}\right)$ is undecidable.

Roman'kov uses the undecidability of Hilbert's 10th problem (solvability of polynomial equations over \mathbb{Z}).

Open problem
When is the submonoid membership problem for $N_{r, c}$ decidable?

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.
Equivalent: G metabelian $\Longleftrightarrow[G, G]$ Abelian.

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.
Equivalent: G metabelian $\Longleftrightarrow[G, G]$ Abelian.

Romanovskiï 1974
Every finitely generated metabelian group has a decidable subgroup membership problem.

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.
Equivalent: G metabelian $\Longleftrightarrow[G, G]$ Abelian.

Romanovskiĭ 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_{2}) is undecidable.

Metabelian groups

A group G is metabelian if it is solvable of derived length ≤ 2.
Equivalent: G metabelian $\Longleftrightarrow[G, G]$ Abelian.

Romanovskiĭ 1974

Every finitely generated metabelian group has a decidable subgroup membership problem.

L, Steinberg 2009

The submonoid membership problem for the free metabelian group generated by 2 elements (M_{2}) is undecidable.

For the proof, one encodes a tiling problem of the Euclidean plane into the submonoid membership problem for M_{2}.

Wreath products

Let A and B be groups and let

$$
K=\bigoplus_{b \in B} A
$$

be the direct sum of copies of A.

Wreath products

Let A and B be groups and let

$$
K=\bigoplus_{b \in B} A
$$

be the direct sum of copies of A.
Elements of K can be thought as mappings $k: B \rightarrow A$ with finite support (i.e., $k^{-1}(A \backslash 1)$ is finite).

Wreath products

Let A and B be groups and let

$$
K=\bigoplus_{b \in B} A
$$

be the direct sum of copies of A.
Elements of K can be thought as mappings $k: B \rightarrow A$ with finite support (i.e., $k^{-1}(A \backslash 1)$ is finite).

The wreath product A B is the set of all pairs $K \times B$ with the following multiplication, where $\left(k_{1}, b_{1}\right),\left(k_{2}, b_{2}\right) \in K \times B$:

$$
\left(k_{1}, b_{1}\right)\left(k_{2}, b_{2}\right)=\left(k, b_{1} b_{2}\right) \text { with } \forall b \in B: k(b)=k_{1}(b) k_{2}\left(b_{1}^{-1} b\right) .
$$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Wreath product $\mathbb{Z}_{2}\left\langle F(a, b)\right.$ with $\mathbb{Z}_{2}=\left\langle c \mid c^{2}=1\right\rangle$

$c b c b^{-1} c a b c b^{-1} c a:$

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \backslash(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H 2(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \succ(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \succ(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \succ(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \succ(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \succ(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

Rational subsets in wreath products: Undecidability

L, Steinberg 2009

For every nontrivial group H, $\operatorname{RatMP}(H \backslash(\mathbb{Z} \times \mathbb{Z}))$ is undecidable.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows to encode a tiling problem.

L, Steinberg, Zetzsche 2012

The submonoid membership problem for the wreath product $\mathbb{Z} \backslash \mathbb{Z}$ (again a metabelian group) is undecidable.

Proof is based on reduction from 2-counter machines:

Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012
$\operatorname{RatMP}(H / V)$ is decidable for every finite group H and virtually free group V.

Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H/V) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$
G=H \imath F(a, b)
$$

with H finite and $F(a, b)$ the free group generated by a and b.

Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H l V) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$
G=H \imath F(a, b)
$$

with H finite and $F(a, b)$ the free group generated by a and b.
G is generated as a monoid by $H \cup\left\{a, b, a^{-1}, b^{-1}\right\}$.

Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H l V) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$
G=H \imath F(a, b)
$$

with H finite and $F(a, b)$ the free group generated by a and b.
G is generated as a monoid by $H \cup\left\{a, b, a^{-1}, b^{-1}\right\}$.
Fix an automaton $A=\left(Q, \Delta, q_{0}, F\right)$ over the finite alphabet $H \cup\left\{a, b, a^{-1}, b^{-1}\right\}$.

Rational subsets in wreath products: Decidability

L, Steinberg, Zetzsche 2012

RatMP(H/V) is decidable for every finite group H and virtually free group V.

We only consider a wreath product

$$
G=H \imath F(a, b)
$$

with H finite and $F(a, b)$ the free group generated by a and b.
G is generated as a monoid by $H \cup\left\{a, b, a^{-1}, b^{-1}\right\}$.
Fix an automaton $A=\left(Q, \Delta, q_{0}, F\right)$ over the finite alphabet $H \cup\left\{a, b, a^{-1}, b^{-1}\right\}$.

We want to check, whether there exists $w \in L(A)$ with $w=1$ in G.

Loops

Let $p, q \in Q, d \in\left\{a, b, a^{-1}, b^{-1}\right\}$. A (p, d, q)-loop is an A-path

$$
\pi=\left(p=p_{0} \xrightarrow{d} p_{1} \xrightarrow{\alpha_{1}} p_{2} \xrightarrow{\alpha_{2}} p_{3} \cdots \xrightarrow{\alpha_{n-1}} p_{n} \xrightarrow{d^{-1}} p_{n+1}=q\right)
$$

with the following properties, where $\alpha_{1} \cdots \alpha_{i}=\left(k_{i}, u_{i}\right) \in H 2 F_{2}$ for $1 \leq i \leq n-1$:

Let $p, q \in Q, d \in\left\{a, b, a^{-1}, b^{-1}\right\}$. A (p, d, q)-loop is an A-path

$$
\pi=\left(p=p_{0} \xrightarrow{d} p_{1} \xrightarrow{\alpha_{1}} p_{2} \xrightarrow{\alpha_{2}} p_{3} \cdots \xrightarrow{\alpha_{n-1}} p_{n} \xrightarrow{d^{-1}} p_{n+1}=q\right)
$$

with the following properties, where $\alpha_{1} \cdots \alpha_{i}=\left(k_{i}, u_{i}\right) \in H 2 F_{2}$ for $1 \leq i \leq n-1$:

- For all $1 \leq i \leq n-1$, the unique reduced word for u_{i} does not start with d^{-1}.

Let $p, q \in Q, d \in\left\{a, b, a^{-1}, b^{-1}\right\}$. A (p, d, q)-loop is an A-path

$$
\pi=\left(p=p_{0} \xrightarrow{d} p_{1} \xrightarrow{\alpha_{1}} p_{2} \xrightarrow{\alpha_{2}} p_{3} \cdots \xrightarrow{\alpha_{n-1}} p_{n} \xrightarrow{d^{-1}} p_{n+1}=q\right)
$$

with the following properties, where $\alpha_{1} \cdots \alpha_{i}=\left(k_{i}, u_{i}\right) \in H 2 F_{2}$ for $1 \leq i \leq n-1$:

- For all $1 \leq i \leq n-1$, the unique reduced word for u_{i} does not start with d^{-1}.
- $u_{n-1}=1$ in F_{2}.

Let $p, q \in Q, d \in\left\{a, b, a^{-1}, b^{-1}\right\}$. A (p, d, q)-loop is an A-path

$$
\pi=\left(p=p_{0} \xrightarrow{d} p_{1} \xrightarrow{\alpha_{1}} p_{2} \xrightarrow{\alpha_{2}} p_{3} \cdots \xrightarrow{\alpha_{n-1}} p_{n} \xrightarrow{d^{-1}} p_{n+1}=q\right)
$$

with the following properties, where $\alpha_{1} \cdots \alpha_{i}=\left(k_{i}, u_{i}\right) \in H$ 活 for $1 \leq i \leq n-1$:

- For all $1 \leq i \leq n-1$, the unique reduced word for u_{i} does not start with d^{-1}.
- $u_{n-1}=1$ in F_{2}.

We define

- depth $(\pi)=\max \left\{\left|u_{i}\right|+1 \mid 1 \leq i \leq n-1\right\}$

Let $p, q \in Q, d \in\left\{a, b, a^{-1}, b^{-1}\right\}$. A (p, d, q)-loop is an A-path

$$
\pi=\left(p=p_{0} \xrightarrow{d} p_{1} \xrightarrow{\alpha_{1}} p_{2} \xrightarrow{\alpha_{2}} p_{3} \cdots \xrightarrow{\alpha_{n-1}} p_{n} \xrightarrow{d^{-1}} p_{n+1}=q\right)
$$

with the following properties, where $\alpha_{1} \cdots \alpha_{i}=\left(k_{i}, u_{i}\right) \in H 2 F_{2}$ for $1 \leq i \leq n-1$:

- For all $1 \leq i \leq n-1$, the unique reduced word for u_{i} does not start with d^{-1}.
- $u_{n-1}=1$ in F_{2}.

We define

- $\operatorname{depth}(\pi)=\max \left\{\left|u_{i}\right|+1 \mid 1 \leq i \leq n-1\right\}$
- effect $(\pi)=d \alpha_{1} \cdots \alpha_{n-1} d^{-1} \in K$.

Loops

For all types $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ define

$$
C_{t}=\left\{a, a^{-1}, b, b^{-1}\right\} \backslash\left\{t^{-1}\right\}
$$

Loops

For all types $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ define

$$
\begin{aligned}
& C_{t}=\left\{a, a^{-1}, b, b^{-1}\right\} \backslash\left\{t^{-1}\right\} \\
& X_{t}=\left\{(p, d, q) \mid d \in C_{t}, \exists(p, d, q) \text {-loop }\right\}
\end{aligned}
$$

Loops

For all types $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ define

$$
\begin{aligned}
& C_{t}=\left\{a, a^{-1}, b, b^{-1}\right\} \backslash\left\{t^{-1}\right\} \\
& X_{t}=\left\{(p, d, q) \mid d \in C_{t}, \exists(p, d, q) \text {-loop }\right\}
\end{aligned}
$$

The alphabet X_{t} can be computed.

Loops

For all types $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ define

$$
\begin{aligned}
& C_{t}=\left\{a, a^{-1}, b, b^{-1}\right\} \backslash\left\{t^{-1}\right\} \\
& X_{t}=\left\{(p, d, q) \mid d \in C_{t}, \exists(p, d, q) \text {-loop }\right\}
\end{aligned}
$$

The alphabet X_{t} can be computed.

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.
A loop pattern at t is a word

$$
w=\left(p_{1}, d_{1}, q_{1}\right)\left(p_{2}, d_{2}, q_{2}\right) \cdots\left(p_{n}, d_{n}, q_{n}\right) \in X_{t}^{*}
$$

such that for every $1 \leq i \leq n$ there exists a $\left(p_{i}, d_{i}, q_{i}\right)$-loop π_{i} with $\operatorname{effect}\left(\pi_{1}\right) \operatorname{effect}\left(\pi_{2}\right) \cdots \operatorname{effect}\left(\pi_{n}\right)=1$ in K.

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.
A loop pattern at t is a word

$$
w=\left(p_{1}, d_{1}, q_{1}\right)\left(p_{2}, d_{2}, q_{2}\right) \cdots\left(p_{n}, d_{n}, q_{n}\right) \in X_{t}^{*}
$$

such that for every $1 \leq i \leq n$ there exists a $\left(p_{i}, d_{i}, q_{i}\right)$-loop π_{i} with

$$
\operatorname{effect}\left(\pi_{1}\right) \operatorname{effect}\left(\pi_{2}\right) \cdots \operatorname{effect}\left(\pi_{n}\right)=1 \text { in } K
$$

The depth of this loop pattern is $\min \left(\max _{1 \leq i \leq n} \operatorname{depth}\left(\pi_{i}\right)\right)$, where the min is taken over all π_{1}, \ldots, π_{n} as above.

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.
A loop pattern at t is a word

$$
w=\left(p_{1}, d_{1}, q_{1}\right)\left(p_{2}, d_{2}, q_{2}\right) \cdots\left(p_{n}, d_{n}, q_{n}\right) \in X_{t}^{*}
$$

such that for every $1 \leq i \leq n$ there exists a $\left(p_{i}, d_{i}, q_{i}\right)$-loop π_{i} with

$$
\operatorname{effect}\left(\pi_{1}\right) \operatorname{effect}\left(\pi_{2}\right) \cdots \operatorname{effect}\left(\pi_{n}\right)=1 \text { in } K
$$

The depth of this loop pattern is $\min \left(\max _{1 \leq i \leq n} \operatorname{depth}\left(\pi_{i}\right)\right)$, where the min is taken over all π_{1}, \ldots, π_{n} as above.

Let P_{t} be the set of all loop patterns at t.

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.
A loop pattern at t is a word

$$
w=\left(p_{1}, d_{1}, q_{1}\right)\left(p_{2}, d_{2}, q_{2}\right) \cdots\left(p_{n}, d_{n}, q_{n}\right) \in X_{t}^{*}
$$

such that for every $1 \leq i \leq n$ there exists a $\left(p_{i}, d_{i}, q_{i}\right)$-loop π_{i} with

$$
\operatorname{effect}\left(\pi_{1}\right) \operatorname{effect}\left(\pi_{2}\right) \cdots \operatorname{effect}\left(\pi_{n}\right)=1 \text { in } K
$$

The depth of this loop pattern is $\min \left(\max _{1 \leq i \leq n} \operatorname{depth}\left(\pi_{i}\right)\right)$, where the min is taken over all π_{1}, \ldots, π_{n} as above.

Let P_{t} be the set of all loop patterns at t.
We will show:

- P_{t} is regular and

Loop patterns

Let $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ be a type.
A loop pattern at t is a word

$$
w=\left(p_{1}, d_{1}, q_{1}\right)\left(p_{2}, d_{2}, q_{2}\right) \cdots\left(p_{n}, d_{n}, q_{n}\right) \in X_{t}^{*}
$$

such that for every $1 \leq i \leq n$ there exists a $\left(p_{i}, d_{i}, q_{i}\right)$-loop π_{i} with

$$
\operatorname{effect}\left(\pi_{1}\right) \operatorname{effect}\left(\pi_{2}\right) \cdots \operatorname{effect}\left(\pi_{n}\right)=1 \text { in } K
$$

The depth of this loop pattern is $\min \left(\max _{1 \leq i \leq n} \operatorname{depth}\left(\pi_{i}\right)\right)$, where the min is taken over all π_{1}, \ldots, π_{n} as above.

Let P_{t} be the set of all loop patterns at t.
We will show:

- P_{t} is regular and
- an automaton for P_{t} can be computed.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \preceq (on a set A) such that for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ there exist $i<j$ with $a_{i} \preceq a_{j}$.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \preceq (on a set A) such that for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ there exist $i<j$ with $a_{i} \preceq a_{j}$.

For a group H, we define a partial order \preceq_{H} on $X^{*}(X$ any finite alphabet) as follows: $u \preceq_{H} v$ iff there exist factorizations

$$
\begin{aligned}
u & =x_{1} x_{2} \cdots x_{n} \quad\left(x_{i} \in X\right) \\
v & =v_{0} x_{1} v_{1} x_{2} \cdots v_{n-1} x_{n} v_{n}
\end{aligned}
$$

such that for every homomorphism $\varphi: X^{*} \rightarrow H$ we have $\varphi\left(v_{0}\right)=\varphi\left(v_{1}\right)=\cdots \varphi\left(v_{n}\right)=1$.

A well quasi order

A WQO (well quasi order) is a reflexive and transitive relation \preceq (on a set A) such that for every infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ there exist $i<j$ with $a_{i} \preceq a_{j}$.

For a group H, we define a partial order \preceq_{H} on $X^{*}(X$ any finite alphabet) as follows: $u \preceq_{H} v$ iff there exist factorizations

$$
\begin{aligned}
u & =x_{1} x_{2} \cdots x_{n} \quad\left(x_{i} \in X\right) \\
v & =v_{0} x_{1} v_{1} x_{2} \cdots v_{n-1} x_{n} v_{n}
\end{aligned}
$$

such that for every homomorphism $\varphi: X^{*} \rightarrow H$ we have $\varphi\left(v_{0}\right)=\varphi\left(v_{1}\right)=\cdots \varphi\left(v_{n}\right)=1$.

Lemma

For every finite group H, \preceq_{H} is a $W Q O$.

The set of loop patterns is regular

Lemma

For every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$, the set of loop patterns P_{t} is upward closed w.r.t. \preceq н.

The set of loop patterns is regular

Lemma

For every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$, the set of loop patterns P_{t} is upward closed w.r.t. \preceq_{H}.

This implies that P_{t} is regular, but can we compute an NFA for P_{t} ?

Some definitions

$$
Y_{t}=X_{t} \cup((Q \times H \times Q) \cap \Delta)
$$

Some definitions

$Y_{t}=X_{t} \cup((Q \times H \times Q) \cap \Delta)$,
$\pi_{t}: Y_{t}^{*} \rightarrow X_{t}^{*}$ is the projection homomorphism onto X_{t}^{*} :

Some definitions

$Y_{t}=X_{t} \cup((Q \times H \times Q) \cap \Delta)$,
$\pi_{t}: Y_{t}^{*} \rightarrow X_{t}^{*}$ is the projection homomorphism onto X_{t}^{*} : $\nu_{t}: Y_{t}^{*} \rightarrow H$ is the homomorphism with

$$
\begin{aligned}
\nu_{t}(p, d, q) & =1 \text { for }(p, d, q) \in X_{t} \\
\nu_{t}(p, h, q) & =h \text { for }(p, h, q) \in Y_{t} \backslash X_{t} .
\end{aligned}
$$

$Y_{t}=X_{t} \cup((Q \times H \times Q) \cap \Delta)$,
$\pi_{t}: Y_{t}^{*} \rightarrow X_{t}^{*}$ is the projection homomorphism onto X_{t}^{*} :
$\nu_{t}: Y_{t}^{*} \rightarrow H$ is the homomorphism with

$$
\begin{aligned}
& \nu_{t}(p, d, q)=1 \text { for }(p, d, q) \in X_{t} \\
& \nu_{t}(p, h, q)=h \text { for }(p, h, q) \in Y_{t} \backslash X_{t} .
\end{aligned}
$$

For $p, q \in Q$ and $t \in T$ define the regular set

$$
R_{p, q}^{t}=\left\{\left(p_{0}, g_{1}, p_{1}\right)\left(p_{1}, g_{2}, p_{2}\right) \cdots\left(p_{n-1}, g_{n}, p_{n}\right) \in Y_{t}^{*} \mid p_{0}=p, p_{n}=q\right\}
$$

$Y_{t}=X_{t} \cup((Q \times H \times Q) \cap \Delta)$,
$\pi_{t}: Y_{t}^{*} \rightarrow X_{t}^{*}$ is the projection homomorphism onto X_{t}^{*} :
$\nu_{t}: Y_{t}^{*} \rightarrow H$ is the homomorphism with

$$
\begin{aligned}
\nu_{t}(p, d, q) & =1 \text { for }(p, d, q) \in X_{t} \\
\nu_{t}(p, h, q) & =h \text { for }(p, h, q) \in Y_{t} \backslash X_{t}
\end{aligned}
$$

For $p, q \in Q$ and $t \in T$ define the regular set
$R_{p, q}^{t}=\left\{\left(p_{0}, g_{1}, p_{1}\right)\left(p_{1}, g_{2}, p_{2}\right) \cdots\left(p_{n-1}, g_{n}, p_{n}\right) \in Y_{t}^{*} \mid p_{0}=p, p_{n}=q\right\}$.
For $t \in T, d \in C_{t}$, define a regular substitution $\sigma_{t, d}: X_{t} \rightarrow \operatorname{Reg}\left(Y_{d}\right)$ by

$$
\begin{aligned}
\sigma_{t, d}(p, d, q) & =\bigcup\left\{R_{p^{\prime}, q^{\prime}}^{d} \mid\left(p, d, p^{\prime}\right),\left(q^{\prime}, d^{-1}, q\right) \in \Delta\right\} \\
\sigma_{t, d}(p, u, q) & =\{\varepsilon\} \text { for } u \in C_{t} \backslash\{d\} .
\end{aligned}
$$

A fixpoint characterization of P_{t}

Lemma

$\left(P_{t}\right)_{t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ we have $\varepsilon \in P_{t}$ and

$$
\bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}\right) \cap \nu_{d}^{-1}(1)\right) \subseteq P_{t} .
$$

A fixpoint characterization of P_{t}

Lemma

$\left(P_{t}\right)_{t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ we have $\varepsilon \in P_{t}$ and

$$
\bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}\right) \cap \nu_{d}^{-1}(1)\right) \subseteq P_{t} .
$$

Proof: For each $i \in \mathbb{N}$, let $P_{t}^{(i)} \subseteq X_{t}^{*}$ be the set of loop patterns whose depth is at most i.

A fixpoint characterization of P_{t}

Lemma

$\left(P_{t}\right)_{t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ we have $\varepsilon \in P_{t}$ and

$$
\bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}\right) \cap \nu_{d}^{-1}(1)\right) \subseteq P_{t} .
$$

Proof: For each $i \in \mathbb{N}$, let $P_{t}^{(i)} \subseteq X_{t}^{*}$ be the set of loop patterns whose depth is at most i. Then:

$$
\begin{aligned}
P_{t}^{(0)} & =\{\varepsilon\} \\
P_{t}^{(i+1)} & =P_{t}^{(i)} \cup \bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}^{(i)}\right) \cap \nu_{d}^{-1}(1)\right)
\end{aligned}
$$

A fixpoint characterization of P_{t}

Lemma

$\left(P_{t}\right)_{t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}}$ is the smallest tuple (w.r.t. to componentwise inclusion) such that for every $t \in\left\{1, a, a^{-1}, b, b^{-1}\right\}$ we have $\varepsilon \in P_{t}$ and

$$
\bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}\right) \cap \nu_{d}^{-1}(1)\right) \subseteq P_{t} .
$$

Proof: For each $i \in \mathbb{N}$, let $P_{t}^{(i)} \subseteq X_{t}^{*}$ be the set of loop patterns whose depth is at most i. Then:

$$
\begin{aligned}
P_{t}^{(0)} & =\{\varepsilon\} \\
P_{t}^{(i+1)} & =P_{t}^{(i)} \cup \bigcap_{d \in C_{t}} \sigma_{t, d}^{-1}\left(\pi_{d}^{-1}\left(P_{d}^{(i)}\right) \cap \nu_{d}^{-1}(1)\right) .
\end{aligned}
$$

The lemma follows since $P_{t}=\bigcup_{i \geq 0} P_{t}^{(i)}$.

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2} \imath \mathbb{Z}\right)$ primitive recursive?

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2}(\mathbb{Z})\right.$ primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but $\operatorname{RatMP}(G)$ is undecidable?

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2} \imath \mathbb{Z}\right)$ primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but $\operatorname{RatMP}(G)$ is undecidable?
- Rational subset membership problem for the Grigorchuk group

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2} \backslash \mathbb{Z}\right)$ primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but $\operatorname{RatMP}(G)$ is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products $H_{2} V$ with V virtually free and H a f.g. infinite torsion group.

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2} \backslash \mathbb{Z}\right)$ primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but $\operatorname{RatMP}(G)$ is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products $H_{2} V$ with V virtually free and H a f.g. infinite torsion group.
- Rational subset membership problem for wreath products $H \imath G$ with $H \neq 1$ and G not virtually-free.

Open problems

- What is the complexity of $\operatorname{RatMP}(H \imath V)$ for H finite and V virtually-free? In particular: Is $\operatorname{RatMP}\left(\mathbb{Z}_{2} \backslash \mathbb{Z}\right)$ primitive recursive?
- Is there a (necessarily one-ended) group G, for which the submonoid membership problem is decidable but $\operatorname{RatMP}(G)$ is undecidable?
- Rational subset membership problem for the Grigorchuk group
- Rational subset membership problem for wreath products $H_{2} V$ with V virtually free and H a f.g. infinite torsion group.
- Rational subset membership problem for wreath products H < G with $H \neq 1$ and G not virtually-free.
- Conjecture: Whenevery H is non-trivial and G is not virtually-free, then $\operatorname{RatMP}(H / G)$ is undecidable.

