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University of Neuchâtel, Switzerland

Webinar, Nov. 8, 2012



Motivation

Question: (Loeffler, Meier, Worthington, IJAC 2002)

Can two non-isomorphic right-angled Artin groups have the same
geodesic growth series?



Motivation

Question: (Loeffler, Meier, Worthington, IJAC 2002)

Can two non-isomorphic right-angled Artin groups have the same
geodesic growth series?

Answer: (A–C 2012) Yes.
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Broader theme: geodesic rigidity of groups

Let G1 and G2 be in same family of groups (Coxeter, Artin etc.).

Assume G1 and G2 have the same geodesic growth w.r.t. standard
generating sets.

◮ Are G1 and G2 isomorphic? Quasi-isometric?

◮ What kind of combinatorial properties do the graphs that
define G1 and G2 have in common?

◮ How does standard (spherical) growth compare to geodesic
growth from the point of view of rigidity?
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◮ a labelling map m : E → {1, 2, 3, . . . }.
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〈

a, b, c , d , e
a2 = b2 = c2 = d2 = e2 = 1
(bc)6 = (cd)4 = (de)5 = 1
(eb)3 = (ea)2 = (ac)4 = 1

〉
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◮ The system is right-angled if m only takes the value 2.

• The right-angled Coxeter group (RACG) G determined by Γ is

〈s ∈ S | s2 = 1 ∀s ∈ S , and (ss ′)2 = 1 ∀{s, s ′} ∈ E 〉.

• The right-angled Artin group (RAAG) H determined by Γ is

〈s ∈ S | ss ′ = s ′s ∀{s, s ′} ∈ E 〉.
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Types of growth

• G - group generated by S

• |g | - the word length of g ∈ G with respect to S

• π : S∗ → G the natural projection

The spherical (standard) growth function σ : N → N is given by

σ(r) = |{g ∈ G | |g | = r}|.

The geodesic growth function γ : N → N is given by

γ(r) = |{w ∈ S∗ | |w | = |π(w)| = r}|.
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◮ Geodesic growth series

G(G ,X )(z) =

∞
∑

n=0

γ(n)zn
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a

b c

d

〈

a, b, c , d
a2, b2, c2, d2

(ab)2, (bc)2, (cd)2, (da)2

〉

Elements

◮ 1

◮ 4

◮ 8

◮ 12

Geodesics

◮ 1

◮ 4

◮ 12

◮ 28

28=|V |(|V | − 1)2 − 2|E |
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Spherical growth for right-angled Coxeter groups

Let an be the number of n-cliques of Γ. The f -polynomial of Γ is

fΓ(x) = a0 + a1x + a2x
2 + a3x

3 + . . . amx
m

Theorem (Steinberg (1968))

1

S(GΓ)(z)
= fΓ

(

−z

1 + z

)



The spherical growth of RACGs and RAAGs

◮ Only depends on the f -polynomial of the simplicial graph.

Ex: Two trees with the same number of vertices have the
same spherical growth.

• • • • • • •

•

f (x) = 1 + 4x + 3x2



The geodesic growth of RACGs and RAAGs

◮ There exist graphs with same f -polynomial but different
geodesic growth.

• • • • • • •

•
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◮ All the groups in this talk have regular languages of geodesics
with respect to the standard generating sets =⇒

◮ All geodesic growth series are rational.

◮ All Coxeter groups have regular languages of geodesics
(Brink-Howlett 1993).

◮ All Garside groups and lots of Artin groups have regular
languages of geodesics (spherical, large etc.)

◮ Changing the generating sets will modify all statements above.



Main questions

Can two non-isomorphic RAAGs (or RACGs) have the
same geodesic growth?



Main questions

Can two non-isomorphic RAAGs (or RACGs) have the
same geodesic growth?

YES.



We have THREE different versions of the answer.



We have THREE different versions of the answer.

Theorem (A – C)
Let Γ be a link-regular graph. Then the geodesic growth of the
right-angled Coxeter (or Artin) group based on Γ is a function of the
sizes of the links and the f -polynomial.



We have THREE different versions of the answer.

Theorem (A – C)
Let Γ be a link-regular graph. Then the geodesic growth of the
right-angled Coxeter (or Artin) group based on Γ is a function of the
sizes of the links and the f -polynomial.

Theorem (A – C)
Let Γ be a r-regular, triangle-free graph. Then

G(Γ) =
1− (r − 3)t + 2t2

1 + (−|V | − r + 3)t + (−2|V |+ 2 + r |V |)t2
.



We have THREE different versions of the answer.

Theorem (A – C)
Let Γ be a link-regular graph. Then the geodesic growth of the
right-angled Coxeter (or Artin) group based on Γ is a function of the
sizes of the links and the f -polynomial.

Theorem (A – C)
Let Γ be a r-regular, triangle-free graph. Then

G(Γ) =
1− (r − 3)t + 2t2

1 + (−|V | − r + 3)t + (−2|V |+ 2 + r |V |)t2
.

Theorem (A – C)
Let (Γ,m) be an even Coxeter system with Γ triangle-free and
star-regular. Then G(Γ) is a function of the star of a vertex and |V |.



Corollary. Let G and G ′ be two right-angled Artin or Coxeter
groups that are link-regular and have the same f -polynomial. Then
G and G ′ have the same geodesic growth.



The smallest example

• • • •

• • • •

• • • •

• • • •

Figure: Two RACGs or RAAGs with the same geodesic growth
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Proof:

For a RACG: describe and analyze an automaton that accepts the
language of geodesics.

For a RAAG: use a result of Droms and Sevatius that connects
Cayley graphs of RACSs and RAAGs.
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Explanation:

◮ Reaching a state σ = {x , y , z} means that the word read up
to σ has a suffix containing all of {x , y , z} ... and x , y , z
commute.

◮ For u ∈ σ, σ
u
−→ the fail state.

◮ For u /∈ σ, σ
u
−→ u ∪ those letters among {x , y , z} which

commute with u.
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Regular graph implies ‘nice’ automaton

◮ An automaton state φ ∈ A is a j-state if |φ| = j .

◮ The number of transitions from σ to j-states is

degj(σ) = |{v ∈ V \ σ : |St(v) ∩ σ| = j}|

Lemma
If Γ is link-regular, then degj(σ) depends only on |σ|, j and
| Lk(τ)|, τ ∈ A.

◮ So we can write βi,j = ♯ transitions from any fixed i -state to
all j-states.

Corollary

If Γ is link-regular, βi,j only depends on the f -polynomial and
| Lk(τ)|, τ ∈ A.
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Proof of the Theorem (RACGs):

Let Γ be a link-regular graph. Then G(Γ) only depends on the sizes
of the links and the f -polynomial.

Proof.

Bj(m) = ♯ geodesics of length m accepted by some j-state

G(Γ) = 1 +

∞
∑

m=1

d
∑

j=1

Bj(m)

By induction: Bj(m) only depends on j , m, f -poly and | Lk(τ)|
τ ∈ A.

◮ m < j then Bj(m) = 0;

◮ m = j then Bj(m) = j!(♯ j-cliques);

◮ m > j then Bj(m) =
∑d

i=0 βi ,jBi(m − 1).
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Automatic growth for RACGs

The previous result was inspired by a result of Glover and Scott.

• A = the set of nonempty cliques in Γ

• A = {wσ ∈ G | σ ∈ A}, where wσ = Πs∈σs

• A is a generating set for G , called the automatic generating set

• The automatic growth: spherical growth of G with respect to A.

Example: For the group

G = 〈a, b, c | a2 = b2 = c2 = 1, [a, b] = [b, c] = 1〉,

A = {a, b, c , ab, bc}.



RACGs with same automatic growth

Theorem [R. Glover and R. Scott, Involve, 2009].

Let G and G ′ be two right-angled Coxeter groups with link-regular
nerves and same f -polynomial. Then G and G ′ have the same
automatic growth.

Questions
If two RACGs have the same geodesic growth, does it imply that
they have the same automatic growth, and vice versa?



The Theorem for RAAGs

Droms and Servatius: the Cayley graph of the RAAG based on a
graph Γ is isomorphic as undirected graph to the Cayley graph of
the RACG based on Γ2, the double of Γ :

Figure: The hexagon and the double of the hexagon.
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Theorem 2. [A – C]

Let (W ,S) be an even Coxeter system with graph Γ, where Γ is
triangle-free and star-regular. The geodesic growth of W depends
only on |S | and the isomorphism class of the star of the vertices.

In particular, if (W1,S1) and (W2,S2) are triangle-free,
star-regular, even Coxeter systems with |S1| = |S2| and
St(v) ∼= St(u), ∀v ∈ V Γ1, u ∈ V Γ2, then W1 and W2 have the
same geodesic growth.
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Figure: Two even Coxeter groups with the same geodesic growth
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The proof

◮ Understand centralizers of generators in even Coxeter groups.

◮ Construct and analyze the automata recognizing geodesics in
even Coxeter groups.

◮ For ‘nice’ regular graphs Γ, these automata also have ‘nice’
graph-theoretic properties, and one can simplify the counting
as in the previous theorem.
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geodesic words over V .



The Automaton

For a Coxeter system (G ,S), let w(s, t;ms,t) be the left-hand side
of the relation involving generators s, t. Define

Z (s, t,m) := {g | g is a right-divisor of w ,w ≡ w(s, t;m)}

◮ The states of the automaton are in bijection with the sets
σ = Z (s, t,m), where s, t ∈ S and m ≤ ms,t .

◮ The transition is given by g
v
−→ h, g ∈ σ, if |gv | = |g |+ 1 and

h is a maximal alternating right-divisor of gv .
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Thank you for logging in!


