Free affine actions on linear Λ-trees

Shane O Rourke

Cork Institute of Technology
October 11, 2012

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example
■ $\Lambda=\mathbb{R}$

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example
■ $\Lambda=\mathbb{R}$
■ $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example
■ $\Lambda=\mathbb{R}$

- $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)
- $\Lambda=\mathbb{Z}^{n}(n \in \mathbb{N})$

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example
■ $\Lambda=\mathbb{R}$

- $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)
- $\Lambda=\mathbb{Z}^{n}(n \in \mathbb{N})$

There is a natural notion of Λ-metric space (distances between points are non-negative elements of Λ).

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example

- $\Lambda=\mathbb{R}$
- $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)
- $\Lambda=\mathbb{Z}^{n}(n \in \mathbb{N})$

There is a natural notion of Λ-metric space (distances between points are non-negative elements of Λ).

Let $d(\lambda, \mu)=|\lambda-\mu|=\max \{\lambda-\mu, \mu-\lambda\}$.
This makes Λ itself a Λ-metric space.

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example

- $\Lambda=\mathbb{R}$

■ $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)

- $\Lambda=\mathbb{Z}^{n}(n \in \mathbb{N})$

There is a natural notion of Λ-metric space (distances between points are non-negative elements of Λ).

Let $d(\lambda, \mu)=|\lambda-\mu|=\max \{\lambda-\mu, \mu-\lambda\}$.
This makes Λ itself a Λ-metric space. In fact, Λ is a Λ-tree. I'll call Λ itself considered as a Λ-tree a line.

Let Λ (or more precisely $(\Lambda,+, \leq)$) be a (linearly) ordered abelian group.
For example

- $\Lambda=\mathbb{R}$

■ $\Lambda=\mathbb{Z} \times \mathbb{Z}$ (lexicographic order)
■ $\Lambda=\mathbb{Z}^{n}(n \in \mathbb{N})$
There is a natural notion of Λ-metric space (distances between points are non-negative elements of Λ).

Let $d(\lambda, \mu)=|\lambda-\mu|=\max \{\lambda-\mu, \mu-\lambda\}$.
This makes Λ itself a Λ-metric space. In fact, Λ is a Λ-tree. I'll call Λ itself considered as a Λ-tree a line. I will only look at actions on lines today.

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.
Which groups admit a free isometric action on a line?

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.
Which groups admit a free isometric action on a line?
Note:
1 An ordered abelian group Λ acts freely on itself by translation, as does every subgroup of Λ.

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.
Which groups admit a free isometric action on a line?
Note:
1 An ordered abelian group Λ acts freely on itself by translation, as does every subgroup of Λ.
2. Every torsion-free abelian group admits a linear order making it an ordered abelian group.

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.
Which groups admit a free isometric action on a line?
Note:
1 An ordered abelian group Λ acts freely on itself by translation, as does every subgroup of Λ.
2. Every torsion-free abelian group admits a linear order making it an ordered abelian group.
3 The group of isometries of Λ is isomorphic to $\Lambda \rtimes C_{2}$.

Actions of groups on Λ-trees by isometries have been studied (particularly free actions). Such actions are generally assumed to be without inversions.
Which groups admit a free isometric action on a line?
Note:
1 An ordered abelian group Λ acts freely on itself by translation, as does every subgroup of Λ.
2. Every torsion-free abelian group admits a linear order making it an ordered abelian group.
3 The group of isometries of Λ is isomorphic to $\Lambda \rtimes C_{2}$.
Therefore a group admits a free isometric action (without inversions) on a line if and only if it is torsion-free abelian.

Actions of groups on Λ-trees by affine automorphisms have also been studied.

- $\Lambda=\mathbb{R}$:
I. Liousse 'Actions affines sur les arbres réels'. Math. Z. (2001).

Actions of groups on Λ-trees by affine automorphisms have also been studied.

- $\Lambda=\mathbb{R}$:
I. Liousse 'Actions affines sur les arbres réels'.

Math. Z. (2001).
■ General Λ :
SOR 'Affine actions on non-archimedean trees'. To appear in IJAC. See arxiv.org/abs/1112.4832 (2011).

Actions of groups on Λ-trees by affine automorphisms have also been studied.

- $\Lambda=\mathbb{R}$:
I. Liousse 'Actions affines sur les arbres réels'.

Math. Z. (2001).

- General Λ :

SOR 'Affine actions on non-archimedean trees'.
To appear in IJAC. See arxiv.org/abs/1112.4832 (2011).
An affine automorphism ϕ of a real metric space X is a surjective function $X \rightarrow X$ for which there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y)
$$

Such an α_{ϕ} must be positive (assuming $|X|>1$).

Theorem (I. Liousse (2001))

There are groups that admit free affine actions on \mathbb{R}-trees that don't admit free isometric actions on any \mathbb{R}-tree. An example is

$$
\Gamma_{0}=\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[x_{1}, y_{1}\right]=\left[x_{2}, y_{2}\right]=\left[x_{3}, y_{3}\right]\right\rangle .
$$

Theorem (I. Liousse (2001))

There are groups that admit free affine actions on \mathbb{R}-trees that don't admit free isometric actions on any \mathbb{R}-tree. An example is

$$
\Gamma_{0}=\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[x_{1}, y_{1}\right]=\left[x_{2}, y_{2}\right]=\left[x_{3}, y_{3}\right]\right\rangle
$$

Liousse's examples are obtained by considering affine foliations on singular surfaces.
(The group Γ_{0} above is the fundamental group of three punctured tori with their boundaries identified.)

Theorem (I. Liousse (2001))

There are groups that admit free affine actions on \mathbb{R}-trees that don't admit free isometric actions on any \mathbb{R}-tree. An example is

$$
\Gamma_{0}=\left\langle x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \mid\left[x_{1}, y_{1}\right]=\left[x_{2}, y_{2}\right]=\left[x_{3}, y_{3}\right]\right\rangle .
$$

Liousse's examples are obtained by considering affine foliations on singular surfaces.
(The group Γ_{0} above is the fundamental group of three punctured tori with their boundaries identified.)
In earlier work we have shown

Theorem (A. Martino, SOR (2004))

Liousse's groups do admit a free isometric action on a \mathbb{Z}^{n}-tree for some n.

Recall that $\phi: X \rightarrow X$ is an affine automorphism if there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y) \forall x, y
$$

Recall that $\phi: X \rightarrow X$ is an affine automorphism if there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y) \forall x, y
$$

How to generalise this to Λ-metric spaces?

Recall that $\phi: X \rightarrow X$ is an affine automorphism if there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y) \forall x, y
$$

How to generalise this to Λ-metric spaces?

Note that multiplication of real numbers by positive real scalars corresponds precisely to order-preserving automorphisms of the additive real group.

Recall that $\phi: X \rightarrow X$ is an affine automorphism if there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y) \forall x, y
$$

How to generalise this to Λ-metric spaces?

Note that multiplication of real numbers by positive real scalars corresponds precisely to order-preserving automorphisms of the additive real group.
So let

$$
\left.\begin{array}{rl}
\alpha: G & \rightarrow \operatorname{Aut}^{+}(\Lambda) \\
g & \mapsto \alpha_{g}
\end{array}\right\}
$$

be a homomorphism (Aut ${ }^{+}$denotes the group of order-preserving automorphisms).

Recall that $\phi: X \rightarrow X$ is an affine automorphism if there exists $\alpha=\alpha_{\phi} \in \mathbb{R}$ such that

$$
d(\phi x, \phi y)=\alpha_{\phi} d(x, y) \forall x, y
$$

How to generalise this to Λ-metric spaces?

Note that multiplication of real numbers by positive real scalars corresponds precisely to order-preserving automorphisms of the additive real group.
So let

$$
\left.\begin{array}{rl}
\alpha: G & \rightarrow \operatorname{Aut}^{+}(\Lambda) \\
g & \mapsto \alpha_{g}
\end{array}\right\}
$$

be a homomorphism (Aut ${ }^{+}$denotes the group of order-preserving automorphisms). An α-affine action of G on a Λ-tree X is an action satisfying

$$
d(g x, g y)=\alpha_{g} d(x, y) \quad \forall x, y \in X
$$

Some features of affine actions on general Λ-trees.
1 The based length function (Lyndon length function) $L_{x}: g \mapsto d(x, g x)$ can be defined and in fact determines an affine action much as in the isometric case. (The hyperbolic length function does not generalise usefully however.)

Some features of affine actions on general Λ-trees.
1 The based length function (Lyndon length function) $L_{x}: g \mapsto d(x, g x)$ can be defined and in fact determines an affine action much as in the isometric case. (The hyperbolic length function does not generalise usefully however.)
2 The class ATF of groups that admit a free affine action on a Λ-tree for some Λ is closed under free products and ultraproducts.

Some features of affine actions on general Λ-trees.
1 The based length function (Lyndon length function) $L_{x}: g \mapsto d(x, g x)$ can be defined and in fact determines an affine action much as in the isometric case. (The hyperbolic length function does not generalise usefully however.)
2 The class ATF of groups that admit a free affine action on a Λ-tree for some Λ is closed under free products and ultraproducts.
3 As in the isometric case, a group G is

- locally in ATF or
- fully residually in ATF if and only if G is in ATF.

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ.

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ. Which groups admit a free affine action on a line?

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ.
Which groups admit a free affine action on a line?
Define an action of $\Gamma=\langle a, t\rangle$ on $\mathbb{Z} \times \mathbb{R}$ via

$$
\begin{aligned}
& a \cdot(m, x)=(m, \quad x+1) \\
& t \cdot(m, x)=(m+1, \quad r x) \text {. }
\end{aligned}
$$

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ.
Which groups admit a free affine action on a line?
Define an action of $\Gamma=\langle a, t\rangle$ on $\mathbb{Z} \times \mathbb{R}$ via

$$
\left.\begin{array}{ll}
a \cdot(m, x) & =(m,
\end{array} \quad x+1\right), ~(m) .
$$

This action is affine (define $\alpha: \Gamma \rightarrow$ Aut $^{+}(\mathbb{Z} \times \mathbb{R})$ via $\left.\alpha_{t a}=\alpha_{t}:(m, x)=(m, r x)\right)$ and free.

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ.
Which groups admit a free affine action on a line?
Define an action of $\Gamma=\langle a, t\rangle$ on $\mathbb{Z} \times \mathbb{R}$ via

$$
\left.\begin{array}{ll}
a \cdot(m, x) & =(m,
\end{array} \quad x+1\right), ~(m) .
$$

This action is affine (define $\alpha: \Gamma \rightarrow$ Aut $^{+}(\mathbb{Z} \times \mathbb{R})$ via $\left.\alpha_{t a}=\alpha_{t}:(m, x)=(m, r x)\right)$ and free.
In fact, $\Gamma \cong B S(1, r)=\left\langle a, t \mid t a t^{-1}=a^{r}\right\rangle$.

We will assume from now on that all affine actions on a given line Λ preserve the orientation of Λ.
Which groups admit a free affine action on a line?
Define an action of $\Gamma=\langle a, t\rangle$ on $\mathbb{Z} \times \mathbb{R}$ via

$$
\left.\begin{array}{ll}
a \cdot(m, x) & =(m,
\end{array} \quad x+1\right), ~(m) .
$$

This action is affine (define $\alpha: \Gamma \rightarrow$ Aut $^{+}(\mathbb{Z} \times \mathbb{R})$ via $\left.\alpha_{t a}=\alpha_{t}:(m, x)=(m, r x)\right)$ and free.
In fact, $\Gamma \cong B S(1, r)=\left\langle a, t \mid t a t^{-1}=a^{r}\right\rangle$.
This action is also rigid in the sense that $g[x, y] \subseteq[x, y]$ implies $g[x, y]=[x, y]$ (and hence $g=1$ since the action is free).

Note that

- $\operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right) \cong \mathrm{UT}(n, \mathbb{Z})$.

Note that
■ $\operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right) \cong \mathrm{UT}(n, \mathbb{Z})$.
■ for affine automorphisms g of Λ, there exists $\mu_{g} \in \Lambda$ such that $g \cdot \lambda=\alpha_{g}(\lambda)+\mu_{g}$ and thus

$$
\left(\begin{array}{cc}
\alpha_{g} & \mu_{g} \\
0 & 1
\end{array}\right)\binom{\lambda}{1}=\binom{g \cdot \lambda}{1}
$$

Note that

- $\operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right) \cong \mathrm{UT}(n, \mathbb{Z})$.

■ for affine automorphisms g of Λ, there exists $\mu_{g} \in \Lambda$ such that $g \cdot \lambda=\alpha_{g}(\lambda)+\mu_{g}$ and thus

$$
\left(\begin{array}{cc}
\alpha_{g} & \mu_{g} \\
0 & 1
\end{array}\right)\binom{\lambda}{1}=\binom{g \cdot \lambda}{1}
$$

- The group of all (order-preserving) affine automorphisms of Λ is $\Lambda \rtimes \operatorname{Aut}^{+}(\Lambda)$, and can be represented by matrices as above.

Note that
■ $\operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right) \cong \mathrm{UT}(n, \mathbb{Z})$.
■ for affine automorphisms g of Λ, there exists $\mu_{g} \in \Lambda$ such that $g \cdot \lambda=\alpha_{g}(\lambda)+\mu_{g}$ and thus

$$
\left(\begin{array}{cc}
\alpha_{g} & \mu_{g} \\
0 & 1
\end{array}\right)\binom{\lambda}{1}=\binom{g \cdot \lambda}{1}
$$

- The group of all (order-preserving) affine automorphisms of Λ is $\Lambda \rtimes \operatorname{Aut}^{+}(\Lambda)$, and can be represented by matrices as above.
- It follows that any G that admits a free affine action on \mathbb{Z}^{n} must embed in $\mathrm{UT}(n+1, \mathbb{Z}) \cong \mathbb{Z}^{n} \rtimes \operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right)$.

Note that
■ $\operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right) \cong \mathrm{UT}(n, \mathbb{Z})$.
■ for affine automorphisms g of Λ, there exists $\mu_{g} \in \Lambda$ such that $g \cdot \lambda=\alpha_{g}(\lambda)+\mu_{g}$ and thus

$$
\left(\begin{array}{cc}
\alpha_{g} & \mu_{g} \\
0 & 1
\end{array}\right)\binom{\lambda}{1}=\binom{g \cdot \lambda}{1}
$$

- The group of all (order-preserving) affine automorphisms of Λ is $\Lambda \rtimes \operatorname{Aut}^{+}(\Lambda)$, and can be represented by matrices as above.
- It follows that any G that admits a free affine action on \mathbb{Z}^{n} must embed in $\mathrm{UT}(n+1, \mathbb{Z}) \cong \mathbb{Z}^{n} \rtimes \operatorname{Aut}^{+}\left(\mathbb{Z}^{n}\right)$.
But the natural action of $\mathrm{UT}(n+1, \mathbb{Z})$ on \mathbb{Z}^{n} is not free.

Call a matrix $A \in \mathrm{UT}(m+1, \mathbb{Z})$ (or even $T(m+1, \mathbb{R})$) admissible if $A=I$ or if the lowest non-zero entry of $A-I$ lies in the last column and is strictly lower than any other non-zero entry.

Call a matrix $A \in \mathrm{UT}(m+1, \mathbb{Z})$ (or even $T(m+1, \mathbb{R})$) admissible if $A=I$ or if the lowest non-zero entry of $A-I$ lies in the last column and is strictly lower than any other non-zero entry.

So $A \neq I$ is admissible if and only if A fixes no point and is rigid.

Call a matrix $A \in \mathrm{UT}(m+1, \mathbb{Z})$ (or even $T(m+1, \mathbb{R})$) admissible if $A=I$ or if the lowest non-zero entry of $A-I$ lies in the last column and is strictly lower than any other non-zero entry.

So $A \neq I$ is admissible if and only if A fixes no point and is rigid.
Question: Which groups admit a representation as admissible matrices in $\mathrm{UT}(m+1, \mathbb{Z})$ for some m ?

Example: Consider $x:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}, n_{2}+1, n_{3}\right)$ and $y:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}+1, n_{2}, n_{3}+n_{2}\right)$.

Example: Consider $x:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}, n_{2}+1, n_{3}\right)$ and $y:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}+1, n_{2}, n_{3}+n_{2}\right)$.
We can represent x and y by matrices as follows.

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{x}\left(\begin{array}{c}
n_{3} \\
n_{2} \\
n_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
n_{3} \\
n_{2}+1 \\
n_{1} \\
1
\end{array}\right) \\
& \underbrace{\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)}_{y}\left(\begin{array}{c}
n_{3} \\
n_{2} \\
n_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
n_{3}+n_{2} \\
n_{2} \\
n_{1}+1 \\
1
\end{array}\right)
\end{aligned}
$$

Example: Consider $x:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}, n_{2}+1, n_{3}\right)$ and $y:\left(n_{1}, n_{2}, n_{3}\right) \mapsto\left(n_{1}+1, n_{2}, n_{3}+n_{2}\right)$.
We can represent x and y by matrices as follows.

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{x}\left(\begin{array}{c}
n_{3} \\
n_{2} \\
n_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
n_{3} \\
n_{2}+1 \\
n_{1} \\
1
\end{array}\right) \\
& \underbrace{\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)}_{y}\left(\begin{array}{c}
n_{3} \\
n_{2} \\
n_{1} \\
1
\end{array}\right)=\left(\begin{array}{c}
n_{3}+n_{2} \\
n_{2} \\
n_{1}+1 \\
1
\end{array}\right)
\end{aligned}
$$

This gives a representation of $\langle x, y\rangle$ as admissible matrices in $\mathrm{UT}(4, \mathbb{Z})$, and thus a free rigid affine action on \mathbb{Z}^{3}.

The group $\langle x, y\rangle$ is in fact isomorphic to the discrete Heisenberg group $H_{3}(\mathbb{Z})=\mathrm{UT}(3, \mathbb{Z})$.

The group $\langle x, y\rangle$ is in fact isomorphic to the discrete Heisenberg group $H_{3}(\mathbb{Z})=\mathrm{UT}(3, \mathbb{Z})$.

Question: Do all unitriangular groups $\mathrm{UT}(n, \mathbb{Z})$ admit a faithful representation as admissible matrices?

The group $\langle x, y\rangle$ is in fact isomorphic to the discrete Heisenberg group $H_{3}(\mathbb{Z})=\mathrm{UT}(3, \mathbb{Z})$.

Question: Do all unitriangular groups $\mathrm{UT}(n, \mathbb{Z})$ admit a faithful representation as admissible matrices?

Hint (K. Dekimpe): Look at affine structures on $\mathrm{UT}(n, \mathbb{Z})$, left symmetric algebras.
(See K. Dekimpe, W. Malfait
'Affine structures on a class of virtually nilpotent groups',
Top. Appl. 1996 for more details.)

■ Consider $\mathfrak{g}=\mathfrak{u t}(n, \mathbb{Q})$;

$$
[x, y]=x y-y x .(\text { Lie bracket on } \mathfrak{g})
$$

■ Consider $\mathfrak{g}=\mathfrak{u t}(n, \mathbb{Q})$;

$$
[x, y]=x y-y x .(\text { Lie bracket on } \mathfrak{g})
$$

If x_{i} has all entries equal to zero apart from those on the i th superdiagonal, put

$$
x_{i} \cdot x_{j}=\frac{j}{i+j}\left[x_{i}, x_{j}\right] .
$$

Extend to a binary operation on \mathfrak{g} using bilinearity.

■ Consider $\mathfrak{g}=\mathfrak{u t}(n, \mathbb{Q})$;

$$
[x, y]=x y-y x .(\text { Lie bracket on } \mathfrak{g})
$$

If x_{i} has all entries equal to zero apart from those on the i th superdiagonal, put

$$
x_{i} \cdot x_{j}=\frac{j}{i+j}\left[x_{i}, x_{j}\right] .
$$

Extend to a binary operation on \mathfrak{g} using bilinearity. This gives a left symmetric structure on \mathfrak{g}. That is, \cdot is a bilinear operator satisfying
$1[x, y] \cdot z=x \cdot(y \cdot z)-y \cdot(x \cdot z)$;
$2[x, y]=x \cdot y-y \cdot x$.

■ Put $m=n(n-1) / 2$ and let $t: \mathfrak{g} \rightarrow \mathbb{Q}^{m}$ be the linear isomorphism obtained by 'stacking the superdiagonals'.

■ Put $m=n(n-1) / 2$ and let $t: \mathfrak{g} \rightarrow \mathbb{Q}^{m}$ be the linear isomorphism obtained by 'stacking the superdiagonals'.
For example, if $n=4$ then $t:\left(\begin{array}{cccc}0 & s & v & w \\ 0 & 0 & r & u \\ 0 & 0 & 0 & q \\ 0 & 0 & 0 & 0\end{array}\right) \mapsto\left(\begin{array}{c}w \\ v \\ u \\ \hline s \\ r \\ q\end{array}\right)$.

■ Put $m=n(n-1) / 2$ and let $t: \mathfrak{g} \rightarrow \mathbb{Q}^{m}$ be the linear isomorphism obtained by 'stacking the superdiagonals'.
For example, if $n=4$ then $t:\left(\begin{array}{cccc}0 & s & v & w \\ 0 & 0 & r & u \\ 0 & 0 & 0 & q \\ 0 & 0 & 0 & 0\end{array}\right) \mapsto\left(\begin{array}{c}w \\ v \\ u \\ \hline s \\ r \\ q\end{array}\right)$.

- Define

$$
\begin{aligned}
\lambda: \mathfrak{g} & \rightarrow \mathfrak{g l}(m, \mathbb{Q}) \\
\lambda(x): t(y) & \mapsto t(x \cdot y)
\end{aligned}
$$

■ Put $m=n(n-1) / 2$ and let $t: \mathfrak{g} \rightarrow \mathbb{Q}^{m}$ be the linear isomorphism obtained by 'stacking the superdiagonals'.
For example, if $n=4$ then $t:\left(\begin{array}{cccc}0 & s & v & w \\ 0 & 0 & r & u \\ 0 & 0 & 0 & q \\ 0 & 0 & 0 & 0\end{array}\right) \mapsto\left(\begin{array}{c}w \\ v \\ u \\ \hline s \\ r \\ q\end{array}\right)$.

- Define

$$
\begin{aligned}
\lambda: \mathfrak{g} & \rightarrow \mathfrak{g l}(m, \mathbb{Q}) \\
\lambda(x): t(y) & \mapsto t(x \cdot y)
\end{aligned}
$$

Then $\lambda(x)$ is an $m \times m$ upper triangular matrix.

- Put $d \bar{\gamma}(x)=\left(\begin{array}{ll}\lambda(x) & t(x) \\ 0 & 0\end{array}\right)$.
- Put $d \bar{\gamma}(x)=\left(\begin{array}{ll}\lambda(x) & t(x) \\ 0 & 0\end{array}\right)$.

Then $d \bar{\gamma}$ is a complete affine structure meaning that
1 the linear part $\lambda(x)$ of each $d \bar{\gamma}(x)$ is a nilpotent matrix;
2 the translation part t of $d \bar{\gamma}$ is a vector space isomorphism.

- Put $d \bar{\gamma}(x)=\left(\begin{array}{ll}\lambda(x) & t(x) \\ 0 & 0\end{array}\right)$.

Then $d \bar{\gamma}$ is a complete affine structure meaning that
1 the linear part $\lambda(x)$ of each $d \bar{\gamma}(x)$ is a nilpotent matrix;
2 the translation part t of $d \bar{\gamma}$ is a vector space isomorphism.
This defines $d \bar{\gamma}: \mathfrak{u t}(n, \mathbb{Q}) \rightarrow \mathfrak{u t}(m+1, \mathbb{Q})$.
■ Let $\bar{\gamma}: g \mapsto \exp \cdot d \bar{\gamma} \cdot \log (g)$

- Put $d \bar{\gamma}(x)=\left(\begin{array}{ll}\lambda(x) & t(x) \\ 0 & 0\end{array}\right)$.

Then $d \bar{\gamma}$ is a complete affine structure meaning that
1 the linear part $\lambda(x)$ of each $d \bar{\gamma}(x)$ is a nilpotent matrix;
2 the translation part t of $d \bar{\gamma}$ is a vector space isomorphism.
This defines $d \bar{\gamma}: \mathfrak{u t}(n, \mathbb{Q}) \rightarrow \mathfrak{u t}(m+1, \mathbb{Q})$.
■ Let $\bar{\gamma}: g \mapsto \exp \cdot d \bar{\gamma} \cdot \log (g)$

Proposition

$\bar{\gamma}: \mathrm{UT}(n, \mathbb{Q}) \rightarrow \mathrm{UT}(m+1, \mathbb{Q})$ is an injective group homomorphism with admissible image.

Example: If $n=3$ and $x_{i}=\left(\begin{array}{ccc}0 & s_{i} & v_{i} \\ 0 & 0 & r_{i} \\ 0 & 0 & 0\end{array}\right)(i=1,2)$, then
$x_{1} \cdot x_{2}=\left(\begin{array}{ccc}0 & 0 & \frac{r_{2} s_{1}}{2}-\frac{r_{1} s_{2}}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
$t\left(x_{2}\right)=\left(\begin{array}{c}v_{2} \\ s_{2} \\ r_{2}\end{array}\right) t\left(x_{1} \cdot x_{2}\right)=\left(\begin{array}{c}\frac{r_{2} s_{1}}{2}-\frac{r_{1} s_{2}}{2} \\ 0 \\ 0\end{array}\right)$
This gives $\lambda\left(x_{1}\right)=\left(\begin{array}{ccc}0 & -\frac{r_{1}}{2} & \frac{s_{1}}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
and hence $d \bar{\gamma}\left(x_{1}\right)=\left(\begin{array}{ccc|c}0 & -\frac{r_{1}}{2} & \frac{s_{1}}{2} & v_{1} \\ 0 & 0 & 0 & s_{1} \\ 0 & 0 & 0 & r_{1} \\ \hline 0 & 0 & 0 & 0\end{array}\right)$.

$$
\begin{aligned}
& \text { It follows that if } g=\left(\begin{array}{lll}
1 & s & v \\
0 & 1 & r \\
0 & 0 & 1
\end{array}\right) \text { then } \\
& \bar{\gamma}(g)=\exp \cdot d \bar{\gamma} \cdot \log (g)=\left(\begin{array}{cccc}
1 & -r / 2 & s / 2 & v-r s / 2 \\
0 & 1 & 0 & s \\
0 & 0 & 1 & r \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

1 The proposition above shows that $\mathrm{UT}(n, \mathbb{Q})$ has a free rigid affine action on \mathbb{Q}^{m}.

1 The proposition above shows that $\mathrm{UT}(n, \mathbb{Q})$ has a free rigid affine action on \mathbb{Q}^{m}.
2 It follows that every finitely generated subgroup of $\mathrm{UT}(n, \mathbb{Q})$ (such as $\mathrm{UT}(n, \mathbb{Z})$) has a free rigid affine action on \mathbb{Z}^{m}.

1 The proposition above shows that $\mathrm{UT}(n, \mathbb{Q})$ has a free rigid affine action on \mathbb{Q}^{m}.
2 It follows that every finitely generated subgroup of $\mathrm{UT}(n, \mathbb{Q})$ (such as $\mathrm{UT}(n, \mathbb{Z})$) has a free rigid affine action on \mathbb{Z}^{m}.
3 Every finitely generated torsion-free nilpotent group embeds in $\mathrm{UT}(n, \mathbb{Z})$ for some n. (P. Hall)

1 The proposition above shows that $\mathrm{UT}(n, \mathbb{Q})$ has a free rigid affine action on \mathbb{Q}^{m}.
2 It follows that every finitely generated subgroup of $\mathrm{UT}(n, \mathbb{Q})$ (such as $\mathrm{UT}(n, \mathbb{Z})$) has a free rigid affine action on \mathbb{Z}^{m}.
3 Every finitely generated torsion-free nilpotent group embeds in $\mathrm{UT}(n, \mathbb{Z})$ for some n. (P. Hall)

Theorem

The groups that admit free affine actions on \mathbb{Z}^{n} for some n are precisely finitely generated torsion-free nilpotent groups.

Corollary

1 Every locally residually torsion-free nilpotent group admits a free rigid affine action on a line.
2 Every free polynilpotent group (of given class row) admits a free rigid affine action on a line.

Recall (once more) that $B S(1, r)$ admits a free rigid action on $\mathbb{Z} \times \mathbb{R}$, via

$$
\begin{aligned}
& a \cdot(m, x)=(m, \quad x+1) \\
& t \cdot(m, x)=(m+1, \quad r x) \text {. }
\end{aligned}
$$

This can be naturally extended to an action on $\mathbb{R} \times \mathbb{R}$

Recall (once more) that $B S(1, r)$ admits a free rigid action on $\mathbb{Z} \times \mathbb{R}$, via

$$
\begin{aligned}
& a \cdot(m, x)=(m, \quad x+1) \\
& t \cdot(m, x)=(m+1, r x) .
\end{aligned}
$$

This can be naturally extended to an action on $\mathbb{R} \times \mathbb{R}$, and can be represented by matrices via

$$
\begin{aligned}
& a \mapsto\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& t \mapsto\left(\begin{array}{lll}
r & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Recall (once more) that $B S(1, r)$ admits a free rigid action on $\mathbb{Z} \times \mathbb{R}$, via

$$
\begin{aligned}
& a \cdot(m, x)=(m, \quad x+1) \\
& t \cdot(m, x)=(m+1, \quad r x) \text {. }
\end{aligned}
$$

This can be naturally extended to an action on $\mathbb{R} \times \mathbb{R}$, and can be represented by matrices via

$$
\begin{aligned}
& a \mapsto\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& t \mapsto\left(\begin{array}{lll}
r & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

So what other (non-nilpotent) groups of upper triangular matrices admit free affine actions on \mathbb{R}^{n} for some n ?

Let $B=T^{*}(n, \mathbb{R})$ denote the group of all upper triangular matrices with real entries and positive diagonal entries.

Let $B=T^{*}(n, \mathbb{R})$ denote the group of all upper triangular matrices with real entries and positive diagonal entries.

Then $B=U \rtimes D^{*}$, where U denotes unipotent matrices and D^{*} denotes diagonal matrices with positive diagonal entries.

Let $B=T^{*}(n, \mathbb{R})$ denote the group of all upper triangular matrices with real entries and positive diagonal entries.

Then $B=U \rtimes D^{*}$, where U denotes unipotent matrices and D^{*} denotes diagonal matrices with positive diagonal entries.

Theorem

The group $T^{*}(n, \mathbb{R})$ admits an embedding in $T^{*}(m+n+1, \mathbb{R})$ with admissible image. Thus $T^{*}(n, \mathbb{R})$ admits a free rigid affine action on \mathbb{R}^{m+n} (considered as an \mathbb{R}^{m+n}-tree).

Let $B=T^{*}(n, \mathbb{R})$ denote the group of all upper triangular matrices with real entries and positive diagonal entries.

Then $B=U \rtimes D^{*}$, where U denotes unipotent matrices and D^{*} denotes diagonal matrices with positive diagonal entries.

Theorem

The group $T^{*}(n, \mathbb{R})$ admits an embedding in $T^{*}(m+n+1, \mathbb{R})$ with admissible image. Thus $T^{*}(n, \mathbb{R})$ admits a free rigid affine action on \mathbb{R}^{m+n} (considered as an \mathbb{R}^{m+n}-tree).

The proof loosely follows an argument of John Milnor (see the proof of Theorem 1.2 in 'On Fundamental Groups of Complete Affinely Flat Manifolds' (Adv. Math. 1977)).

We already have an admissible embedding $\varphi=\bar{\gamma}: U \rightarrow \mathrm{UT}(m+1, \mathbb{R})$. Write

$$
\varphi(u)=\left(\begin{array}{cc}
\varphi_{0}(u) & b(u) \\
0 & 1
\end{array}\right)
$$

where $\varphi_{0}(u) \in \mathrm{UT}(m, \mathbb{R})$ and $b(u) \in \mathbb{R}^{m}$.

We already have an admissible embedding $\varphi=\bar{\gamma}: U \rightarrow \mathrm{UT}(m+1, \mathbb{R})$. Write

$$
\varphi(u)=\left(\begin{array}{cc}
\varphi_{0}(u) & b(u) \\
0 & 1
\end{array}\right)
$$

where $\varphi_{0}(u) \in \mathrm{UT}(m, \mathbb{R})$ and $b(u) \in \mathbb{R}^{m}$. For $d=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, let
$d^{*}=\operatorname{diag}\left(\frac{d_{1}}{d_{n}} ; \frac{d_{1}}{d_{n-1}}, \frac{d_{2}}{d_{n}} ; \ldots ; \frac{d_{1}}{d_{2}}, \frac{d_{2}}{d_{3}}, \ldots \frac{d_{n-1}}{d_{n}}\right)$, an $m \times m$ diagonal matrix.
Let $\log (d)$ denote the column vector $\left(\log d_{1}, \ldots, \log d_{n}\right)^{T}$.

We already have an admissible embedding $\varphi=\bar{\gamma}: U \rightarrow \mathrm{UT}(m+1, \mathbb{R})$. Write

$$
\varphi(u)=\left(\begin{array}{cc}
\varphi_{0}(u) & b(u) \\
0 & 1
\end{array}\right)
$$

where $\varphi_{0}(u) \in \mathrm{UT}(m, \mathbb{R})$ and $b(u) \in \mathbb{R}^{m}$. For $d=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, let
$d^{*}=\operatorname{diag}\left(\frac{d_{1}}{d_{n}} ; \frac{d_{1}}{d_{n-1}}, \frac{d_{2}}{d_{n}} ; \ldots ; \frac{d_{1}}{d_{2}}, \frac{d_{2}}{d_{3}}, \ldots \frac{d_{n-1}}{d_{n}}\right)$, an $m \times m$ diagonal matrix.
Let $\log (d)$ denote the column vector $\left(\log d_{1}, \ldots, \log d_{n}\right)^{T}$.
Now define $\bar{\varphi}(u)=\left(\begin{array}{ccc}\varphi_{0}(u) & 0 & b(u) \\ 0 & I_{n} & 0 \\ 0 & 0 & 1\end{array}\right)$
and

$$
\bar{\varphi}(d)=\left(\begin{array}{ccc}
d^{*} & 0 & 0 \\
0 & I_{n} & \log (d) \\
0 & 0 & 1
\end{array}\right)
$$

Then

Proposition
$1 \bar{\varphi}\left(d u d^{-1}\right)=\bar{\varphi}(d) \bar{\varphi}(u) \bar{\varphi}\left(d^{-1}\right)$.
2 $\bar{\varphi}: T^{*}(n, \mathbb{R}) \rightarrow T^{*}(m+n+1, \mathbb{R})$ is an injective homomorphism with admissible image.

Then

Proposition

$1 \bar{\varphi}\left(d u d^{-1}\right)=\bar{\varphi}(d) \bar{\varphi}(u) \bar{\varphi}\left(d^{-1}\right)$.
$2 \bar{\varphi}: T^{*}(n, \mathbb{R}) \rightarrow T^{*}(m+n+1, \mathbb{R})$ is an injective homomorphism with admissible image.

Consequently,

Theorem

$T^{*}(n, \mathbb{R})$ admits a free rigid affine action on \mathbb{R}^{m+n}.

Example: $n=3$

A typical element of $T^{*}(3, \mathbb{R})$ is expressible in the form ud where

$$
u=\left(\begin{array}{ccc}
1 & y & z \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right) \text { and } d=\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & s & 0 \\
0 & 0 & t
\end{array}\right)
$$

Example: $n=3$
A typical element of $T^{*}(3, \mathbb{R})$ is expressible in the form $u d$ where
$u=\left(\begin{array}{lll}1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1\end{array}\right)$ and $d=\left(\begin{array}{ccc}r & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & t\end{array}\right)$.
Now $\varphi(u)=\left(\begin{array}{ccc|c}1 & -x / 2 & y / 2 & z-x y / 2 \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & x \\ \hline 0 & 0 & 0 & 1\end{array}\right)$ so that
$\varphi_{0}(u)=\left(\begin{array}{ccc}1 & -x / 2 & y / 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $b(u)=\left(\begin{array}{c}z-x y / 2 \\ y \\ x\end{array}\right)$.

$$
\text { Also } d^{*}=\left(\begin{array}{ccc}
r / t & 0 & 0 \\
0 & r / s & 0 \\
0 & 0 & s / t
\end{array}\right) \text { so that } \bar{\varphi}(u d)=\bar{\varphi}(u) \bar{\varphi}(d)
$$

$$
\begin{aligned}
& \text { Also } d^{*}=\left(\begin{array}{ccc}
r / t & 0 & 0 \\
0 & r / s & 0 \\
0 & 0 & s / t
\end{array}\right) \text { so that } \bar{\varphi}(u d)=\bar{\varphi}(u) \bar{\varphi}(d) \text { where } \\
& \bar{\varphi}(u)=\left(\begin{array}{ccc|ccc|c}
1 & -x / 2 & y / 2 & 0 & 0 & 0 & z-x y / 2 \\
0 & 1 & 0 & 0 & 0 & 0 & y \\
0 & 0 & 1 & 0 & 0 & 0 & x \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Also $d^{*}=\left(\begin{array}{ccc}r / t & 0 & 0 \\ 0 & r / s & 0 \\ 0 & 0 & s / t\end{array}\right)$ so that $\bar{\varphi}(u d)=\bar{\varphi}(u) \bar{\varphi}(d)$ where

Go raibh maith agaibh!

