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Let Λ (or more precisely (Λ,+,≤)) be a (linearly) ordered abelian
group.

For example

Λ = R
Λ = Z× Z (lexicographic order)

Λ = Zn (n ∈ N)

There is a natural notion of Λ-metric space (distances between
points are non-negative elements of Λ).

Let d(λ, µ) = |λ− µ| = max{λ− µ, µ− λ}.

This makes Λ itself a Λ-metric space.
In fact, Λ is a Λ-tree. I’ll call Λ itself considered as a Λ-tree a line.
I will only look at actions on lines today.
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Actions of groups on Λ-trees by isometries have been studied
(particularly free actions). Such actions are generally assumed to
be without inversions.

Which groups admit a free isometric action on a line?
Note:

1 An ordered abelian group Λ acts freely on itself by translation,
as does every subgroup of Λ.

2 Every torsion-free abelian group admits a linear order making
it an ordered abelian group.

3 The group of isometries of Λ is isomorphic to Λ o C2.

Therefore a group admits a free isometric action (without
inversions) on a line if and only if it is torsion-free abelian.
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Actions of groups on Λ-trees by affine automorphisms have also
been studied.

Λ = R:
I. Liousse ‘Actions affines sur les arbres réels’.
Math. Z. (2001).

General Λ:
SOR ‘Affine actions on non-archimedean trees’.
To appear in IJAC. See arxiv.org/abs/1112.4832 (2011).

An affine automorphism φ of a real metric space X is a surjective
function X → X for which there exists α = αφ ∈ R such that

d(φx , φy) = αφd(x , y).

Such an αφ must be positive (assuming |X | > 1).
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Theorem (I. Liousse (2001))

There are groups that admit free affine actions on R-trees that
don’t admit free isometric actions on any R-tree. An example is

Γ0 = 〈x1, x2, x3, y1, y2, y3 | [x1, y1] = [x2, y2] = [x3, y3]〉.

Liousse’s examples are obtained by considering affine foliations on
singular surfaces.
(The group Γ0 above is the fundamental group of three punctured
tori with their boundaries identified.)
In earlier work we have shown

Theorem (A. Martino, SOR (2004))

Liousse’s groups do admit a free isometric action on a Zn-tree for
some n.
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Recall that φ : X � X is an affine automorphism if there exists
α = αφ ∈ R such that

d(φx , φy) = αφd(x , y) ∀x , y .

How to generalise this to Λ-metric spaces?

Note that multiplication of real numbers by positive real scalars
corresponds precisely to order-preserving automorphisms of the
additive real group.
So let

α : G → Aut+(Λ)
g 7→ αg

}
be a homomorphism (Aut+ denotes the group of order-preserving
automorphisms). An α-affine action of G on a Λ-tree X is an
action satisfying

d(gx , gy) = αgd(x , y) ∀x , y ∈ X
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Some features of affine actions on general Λ-trees.

1 The based length function (Lyndon length function)
Lx : g 7→ d(x , gx) can be defined and in fact determines an
affine action much as in the isometric case. (The hyperbolic
length function does not generalise usefully however.)

2 The class ATF of groups that admit a free affine action on a
Λ-tree for some Λ is closed under free products and
ultraproducts.

3 As in the isometric case, a group G is

locally in ATF or
fully residually in ATF

if and only if G is in ATF.
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We will assume from now on that all affine actions on a given line
Λ preserve the orientation of Λ.

Which groups admit a free affine action on a line?
Define an action of Γ = 〈a, t〉 on Z× R via

a · (m, x) = (m, x + 1)
t · (m, x) = (m + 1, rx).

This action is affine (define α : Γ → Aut+(Z× R) via
αta = αt : (m, x) = (m, rx)) and free.
In fact, Γ ∼= BS(1, r) = 〈a, t | tat−1 = ar 〉.

This action is also rigid in the sense that g [x , y ] ⊆ [x , y ] implies
g [x , y ] = [x , y ] (and hence g = 1 since the action is free).
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Note that

Aut+(Zn) ∼= UT(n, Z).

for affine automorphisms g of Λ, there exists µg ∈ Λ such that
g · λ = αg (λ) + µg and thus(

αg µg

0 1

) (
λ
1

)
=

(
g · λ

1

)
.

The group of all (order-preserving) affine automorphisms of Λ
is Λ o Aut+(Λ), and can be represented by matrices as above.

It follows that any G that admits a free affine action on Zn

must embed in UT(n + 1, Z) ∼= Zn o Aut+(Zn).

But the natural action of UT(n + 1, Z) on Zn is not free.
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Call a matrix A ∈ UT(m + 1, Z) (or even T (m + 1, R)) admissible
if A = I or if the lowest non-zero entry of A− I lies in the last
column and is strictly lower than any other non-zero entry.

So A 6= I is admissible if and only if A fixes no point and is rigid.

Question: Which groups admit a representation as admissible
matrices in UT(m + 1, Z) for some m?
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1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

x


n3

n2

n1

1

 =


n3

n2 + 1
n1

1




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


︸ ︷︷ ︸

y


n3

n2

n1

1

 =


n3 + n2

n2

n1 + 1
1



This gives a representation of 〈x , y〉 as admissible matrices in
UT(4, Z), and thus a free rigid affine action on Z3.
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The group 〈x , y〉 is in fact isomorphic to the discrete Heisenberg
group H3(Z) = UT(3, Z).

Question: Do all unitriangular groups UT(n, Z) admit a faithful
representation as admissible matrices?

Hint (K. Dekimpe): Look at affine structures on UT(n, Z), left
symmetric algebras.

(See K. Dekimpe, W. Malfait
‘Affine structures on a class of virtually nilpotent groups’,
Top. Appl. 1996 for more details.)
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Consider g = ut(n, Q);

[x , y ] = xy − yx . (Lie bracket on g)

If xi has all entries equal to zero apart from those on the ith
superdiagonal, put

xi · xj =
j

i + j
[xi , xj ].

Extend to a binary operation on g using bilinearity. This gives
a left symmetric structure on g. That is, · is a bilinear
operator satisfying

1 [x , y ] · z = x · (y · z)− y · (x · z);
2 [x , y ] = x · y − y · x .
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Put m = n(n − 1)/2 and let t : g → Qm be the linear
isomorphism obtained by ‘stacking the superdiagonals’.

For example, if n = 4 then t :


0 s v w
0 0 r u
0 0 0 q
0 0 0 0

 7→



w

v
u

s
r
q

.

Define

λ : g → gl(m, Q)

λ(x) : t(y) 7→ t(x · y)

Then λ(x) is an m ×m upper triangular matrix.
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Put d γ̄(x) =

(
λ(x) t(x)
0 0

)
.

Then d γ̄ is a complete affine structure meaning that

1 the linear part λ(x) of each d γ̄(x) is a nilpotent matrix;
2 the translation part t of d γ̄ is a vector space isomorphism.

This defines d γ̄ : ut(n, Q) → ut(m + 1, Q).

Let γ̄ : g 7→ exp ·d γ̄ · log(g)

Proposition

γ̄ : UT(n, Q) → UT(m + 1, Q) is an injective group
homomorphism with admissible image.
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Example: If n = 3 and xi =

 0 si vi

0 0 ri
0 0 0

 (i = 1, 2), then

x1 · x2 =

 0 0 r2s1
2 − r1s2

2
0 0 0
0 0 0

,

t(x2) =

 v2

s2
r2

 t(x1 · x2) =

 r2s1
2 − r1s2

2
0
0


This gives λ(x1) =

 0 − r1
2

s1
2

0 0 0
0 0 0



and hence d γ̄(x1) =


0 − r1

2
s1
2 v1

0 0 0 s1
0 0 0 r1
0 0 0 0

.
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It follows that if g =

 1 s v
0 1 r
0 0 1

 then

γ̄(g) = exp ·d γ̄ · log(g) =


1 −r/2 s/2 v − rs/2
0 1 0 s
0 0 1 r
0 0 0 1


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1 The proposition above shows that UT(n, Q) has a free rigid
affine action on Qm.

2 It follows that every finitely generated subgroup of UT(n, Q)
(such as UT(n, Z)) has a free rigid affine action on Zm.

3 Every finitely generated torsion-free nilpotent group embeds in
UT(n, Z) for some n. (P. Hall)

Theorem

The groups that admit free affine actions on Zn for some n are
precisely finitely generated torsion-free nilpotent groups.
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Corollary

1 Every locally residually torsion-free nilpotent group admits a
free rigid affine action on a line.

2 Every free polynilpotent group (of given class row) admits a
free rigid affine action on a line.
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Recall (once more) that BS(1, r) admits a free rigid action on
Z× R, via

a · (m, x) = (m, x + 1)
t · (m, x) = (m + 1, rx).

.

This can be naturally extended to an action on R× R

, and can be
represented by matrices via

a 7→

 1 0 1
0 1 0
0 0 1



t 7→

 r 0 0
0 1 1
0 0 1

 .

So what other (non-nilpotent) groups of upper triangular matrices
admit free affine actions on Rn for some n?
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Let B = T ∗(n, R) denote the group of all upper triangular
matrices with real entries and positive diagonal entries.

Then B = U o D∗, where U denotes unipotent matrices and D∗

denotes diagonal matrices with positive diagonal entries.

Theorem

The group T ∗(n, R) admits an embedding in T ∗(m + n + 1, R)
with admissible image. Thus T ∗(n, R) admits a free rigid affine
action on Rm+n (considered as an Rm+n-tree).

The proof loosely follows an argument of John Milnor (see the
proof of Theorem 1.2 in ‘On Fundamental Groups of Complete
Affinely Flat Manifolds’ (Adv. Math. 1977)).

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



Let B = T ∗(n, R) denote the group of all upper triangular
matrices with real entries and positive diagonal entries.

Then B = U o D∗, where U denotes unipotent matrices and D∗

denotes diagonal matrices with positive diagonal entries.

Theorem

The group T ∗(n, R) admits an embedding in T ∗(m + n + 1, R)
with admissible image. Thus T ∗(n, R) admits a free rigid affine
action on Rm+n (considered as an Rm+n-tree).

The proof loosely follows an argument of John Milnor (see the
proof of Theorem 1.2 in ‘On Fundamental Groups of Complete
Affinely Flat Manifolds’ (Adv. Math. 1977)).

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



Let B = T ∗(n, R) denote the group of all upper triangular
matrices with real entries and positive diagonal entries.

Then B = U o D∗, where U denotes unipotent matrices and D∗

denotes diagonal matrices with positive diagonal entries.

Theorem

The group T ∗(n, R) admits an embedding in T ∗(m + n + 1, R)
with admissible image. Thus T ∗(n, R) admits a free rigid affine
action on Rm+n (considered as an Rm+n-tree).

The proof loosely follows an argument of John Milnor (see the
proof of Theorem 1.2 in ‘On Fundamental Groups of Complete
Affinely Flat Manifolds’ (Adv. Math. 1977)).

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



Let B = T ∗(n, R) denote the group of all upper triangular
matrices with real entries and positive diagonal entries.

Then B = U o D∗, where U denotes unipotent matrices and D∗

denotes diagonal matrices with positive diagonal entries.

Theorem

The group T ∗(n, R) admits an embedding in T ∗(m + n + 1, R)
with admissible image. Thus T ∗(n, R) admits a free rigid affine
action on Rm+n (considered as an Rm+n-tree).

The proof loosely follows an argument of John Milnor (see the
proof of Theorem 1.2 in ‘On Fundamental Groups of Complete
Affinely Flat Manifolds’ (Adv. Math. 1977)).

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



We already have an admissible embedding
ϕ = γ̄ : U → UT(m + 1, R). Write

ϕ(u) =

(
ϕ0(u) b(u)

0 1

)
where ϕ0(u) ∈ UT(m, R) and b(u) ∈ Rm.

For
d = diag(d1, . . . , dn), let

d∗ = diag(d1
dn

; d1
dn−1

, d2
dn

; . . . ; d1
d2

, d2
d3

, . . . dn−1

dn
), an m ×m diagonal

matrix.
Let log(d) denote the column vector (log d1, . . . , log dn)

T .

Now define ϕ̄(u) =

 ϕ0(u) 0 b(u)
0 In 0
0 0 1


and

ϕ̄(d) =

 d∗ 0 0
0 In log(d)
0 0 1


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Then

Proposition

1 ϕ̄(dud−1) = ϕ̄(d)ϕ̄(u)ϕ̄(d−1).

2 ϕ̄ : T ∗(n, R) → T ∗(m + n + 1, R) is an injective
homomorphism with admissible image.

Consequently,

Theorem

T ∗(n, R) admits a free rigid affine action on Rm+n.
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Example: n = 3
A typical element of T ∗(3, R) is expressible in the form ud where

u =

 1 y z
0 1 x
0 0 1

 and d =

 r 0 0
0 s 0
0 0 t

.

Now ϕ(u) =


1 −x/2 y/2 z − xy/2
0 1 0 y
0 0 1 x

0 0 0 1

 so that

ϕ0(u) =

 1 −x/2 y/2
0 1 0
0 0 1

 and b(u) =

 z − xy/2
y
x

.

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



Example: n = 3
A typical element of T ∗(3, R) is expressible in the form ud where

u =

 1 y z
0 1 x
0 0 1

 and d =

 r 0 0
0 s 0
0 0 t

.

Now ϕ(u) =


1 −x/2 y/2 z − xy/2
0 1 0 y
0 0 1 x

0 0 0 1

 so that

ϕ0(u) =

 1 −x/2 y/2
0 1 0
0 0 1

 and b(u) =

 z − xy/2
y
x

.

Shane O Rourke Cork Institute of Technology

Free affine actions on linear Λ-trees



Also d∗ =

 r/t 0 0
0 r/s 0
0 0 s/t

 so that ϕ̄(ud) = ϕ̄(u)ϕ̄(d)

where

ϕ̄(u) =



1 −x/2 y/2 0 0 0 z − xy/2
0 1 0 0 0 0 y
0 0 1 0 0 0 x

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 1


and

ϕ̄(d) =



r/t 0 0 0 0 0 0
0 r/s 0 0 0 0 0
0 0 s/t 0 0 0 0

0 0 0 1 0 0 log(r)
0 0 0 0 1 0 log(s)
0 0 0 0 0 1 log(t)

0 0 0 0 0 0 1


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
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Go raibh maith agaibh!
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