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Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Ashot Minasyan Tits alternatives for graph products



Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Ashot Minasyan Tits alternatives for graph products



Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Ashot Minasyan Tits alternatives for graph products



Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Ashot Minasyan Tits alternatives for graph products



Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Similar results have later been proved for other classes of groups. We
were motivated by

Ashot Minasyan Tits alternatives for graph products



Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Similar results have later been proved for other classes of groups. We
were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either
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Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GL,(F) for some field F.
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Similar results have later been proved for other classes of groups. We
were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either
virtually abelian or large.

Recall: a group G is large is there is a finite index subgroup K < G
s.t. K maps onto F,.
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Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H < G either H € C or H contains a copy of FF».
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Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H < G either H € C or H contains a copy of FF».

Thus Tits’s result tells us that GL,(F ) satisfies the Tits Alternative rel.
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Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H < G either H € C or H contains a copy of FF».

Thus Tits’s result tells us that GL,(F ) satisfies the Tits Alternative rel.
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Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative
rel. to C if for any f.g. sbgp. H < G either H € C or H is large.
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Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H < G either H € C or H contains a copy of FF».

Thus Tits’s result tells us that GL,(F ) satisfies the Tits Alternative rel.
to Cysol -

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative
rel. to C if for any f.g. sbgp. H < G either H € C or H is large.

The thm. of Noskov-Vinberg implies that Coxeter gps. satisfy the
Strong Tits Alternative rel. to Cyap.
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Graph products of groups

Graph products naturally generalize free and direct products.
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Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.
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Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

G
el

L o
GS G2

Figure : T® = Gy * G, * G3
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Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

G1

GS G2

Figure: T® 2 G; x G, x G3
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Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

G, G,

G4 GS

Figure : T 2 (G * G3) x (G2 * Gy)
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Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
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[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

Basic examples of graph products are
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Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

Basic examples of graph products are
@ right angled Artin gps. [RAAGS]

Ashot Minasyan Tits alternatives for graph products



Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

Basic examples of graph products are
@ right angled Artin gps. [RAAGs], if all vertex gps. are Z;

Ashot Minasyan Tits alternatives for graph products



Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

Basic examples of graph products are

@ right angled Artin gps. [RAAGs], if all vertex gps. are Z;
@ right angled Coxeter gps.

Ashot Minasyan Tits alternatives for graph products



Graph products of groups

Graph products naturally generalize free and direct products.

Let I be agraph and let & = {G, | v € VI'} be a family of gps.

The graph product I'® is obtained from the free product %,y rGy by
adding the relations

[a,b] = 1Vae Gy, Vb € G, whenever (u,v) € ET.

Basic examples of graph products are

@ right angled Artin gps. [RAAGs], if all vertex gps. are Z;
@ right angled Coxeter gps., if all vertex gps. are Z/2Z;
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Special subgroups

If A C VI and I, is the full subgraph of I' spanned by A then
& :={Gy | v € A} generates a special subgroup G, of G =T'®
which is naturally isomorphic to Mz ®a.
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Special subgroups

If A C VI and I, is the full subgraph of I' spanned by A then
& :={Gy | v € A} generates a special subgroup G, of G =T'®
which is naturally isomorphic to Mz ®a.

G, Gy

G4 G3

Figure . G{l’z} ~ G; x Gy, G{l’g} ~ Gy *xG3
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Special subgroups

If A C VI and I, is the full subgraph of I' spanned by A then
& :={Gy | v € A} generates a special subgroup G, of G =T'®
which is naturally isomorphic to Mz ®a.

G, Gy

G4 G3

Figure: Gyi1oy 2 Gy X Gy, Gy 3y X Gy * G3
{1,2} {1,3}

There is a natural retraction pa : G = ' — G, defined by

(9) = g ifgeGyforsomeucA
PA8) =1 1 ifg € G, forsomev e VI'\ A
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Natural splittings

Graph product naturally split as amalgamated products over special
subgroups:
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Vv eVl letA=VI\{v} C=link(v)andB=CuU{v}
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Graph product naturally split as amalgamated products over special
subgroups:
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B
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Natural splittings

Graph product naturally split as amalgamated products over special
subgroups
VveVrl, letA=VI\{v}, C=link(v)andB=CuU{v}

B

then
G =Ga *Ge Gg and Gg = G¢ x Gy.

Ashot Minasyan Tits alternatives for graph products



Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(PO) ifLeCand M = Lthen M € C;
(P1) ifLeCand M < Lisf.g.thenM € C;
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Consider the following properties of the class of “small” groups C:

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;
(P2) ifL,M € C aref.g.thenL x M €;
(P3) Z e C;

(P4) ifZ/2Z € C then Dy, € C.

Theorem A (Antolin-M.)

Let C be a class of gps. with (P0)—(P4). Then a graph product
G = I'® satisfies the Tits Alternative rel. to C iff each Gy, v € VT,
satisfies this alternative.
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;
(P2) ifL,M € C aref.g.thenL x M €;
(P3) Z e C;

(P4) ifZ/2Z € C then Dy, € C.

Theorem A (Antolin-M.)

Let C be a class of gps. with (P0)—(P4). Then a graph product
G = I'® satisfies the Tits Alternative rel. to C iff each Gy, v € VT,
satisfies this alternative.

Evidently the conditions (P0)—(P4) are necessary.
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;
(P2) ifL,M € C aref.g.thenL x M €;
(P3) Z e C;

(P4) ifZ/2Z € C then Dy, € C.

Theorem A (Antolin-M.)

Let C be a class of gps. with (P0)—(P4). Then a graph product
G = I'® satisfies the Tits Alternative rel. to C iff each Gy, v € VT,

satisfies this alternative.

If all vertex gps. are linear then G = I'® satisfies the Tits Alternative
rel. to Cysol -
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;
(P2) ifL,M € C aref.g.thenL x M € C;
(P3) Z e ¢C;

(P4) ifZ/2Z € C then Dy, € C;
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let C be a class of gps. with (P0)—(P5). Then a graph product
G = I'® satisfies the Strong Tits Alternative rel. to C iff each G,,
v € VI, satisfies this alternative.
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let C be a class of gps. with (P0)—(P5). Then a graph product
G = I'® satisfies the Strong Tits Alternative rel. to C iff each G,,
v € VI, satisfies this alternative.

(P5) is necessary, bic if L # {1} has no proper f.i. sbgps., then L x L
cannot be large.
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Let C be a class of gps. with (P0)—(P5). Then a graph product
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Examples of gps. with (P0)—(P5): virt. abelian gps, (virt.) polycyclic
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let C be a class of gps. with (P0)—(P5). Then a graph product
G = I'® satisfies the Strong Tits Alternative rel. to C iff each G,,
v € VI, satisfies this alternative.

Examples of gps. with (P0)—(P5): virt. abelian gps, (virt.) polycyclic
gps., virt. nilpotent gps., (virt.) solvable gps.,
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let C be a class of gps. with (P0)—(P5). Then a graph product
G = I'® satisfies the Strong Tits Alternative rel. to C iff each G,,
v € VI, satisfies this alternative.

Examples of gps. with (P0)—(P5): virt. abelian gps, (virt.) polycyclic
gps., virt. nilpotent gps., (virt.) solvable gps., elementary amenable
gps.
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Strong Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z e¢;

(P4) if Z/2Z € C then D, € C;

(P5) if L € C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolin-M.)

Let C be a class of gps. with (P0)—(P5). Then a graph product
G = I'® satisfies the Strong Tits Alternative rel. to C iff each G,,
v € VI, satisfies this alternative.

Suppose C = Cso_m for some m > 2 or C = Cygo/_pn for some n > 1.
Let G be a graph product of gps. from C. Then any f.g. sbgp. of G
either belongs to C or is large.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H < G either H € C or H maps
onto IF5.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H < G either H € C or H maps
onto IF5.

The gp. G := (a,b,c | a%b? = c?) is t.-f. and large but does not map
onto F».
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H < G either H € C or H maps
onto IF5.

The gp. G := (a,b,c | a%b? = c?) is t.-f. and large but does not map
onto F».

4

Any residually free gp. satisfies the Strongest Tits Alternative rel. to
Cab-
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H < G either H € C or H maps
onto IF5.

The gp. G := (a,b,c | a%b? = c?) is t.-f. and large but does not map
onto F».

4

Any residually free gp. satisfies the Strongest Tits Alternative rel. to
Cab-

Observe that if L * L maps onto IF, then L must have an epimorphism
onto Z.
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Strongest Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;
(P2) ifL,M € C aref.g.thenL x M € C;
(P3) Z e ¢C;

Ashot Minasyan Tits alternatives for graph products
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(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z ec;

(P6) if L € C is non-trivial and f.g. then L maps onto Z.
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Strongest Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z ec;

(P6) if L € C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolin-M.)

Let C be a class of gps. with (P0)—(P3) and (P6). Then a graph
product G = I'® satisfies the Strongest Tits Alternative rel. to C iff
each Gy, v € VT, satisfies this alternative.
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Strongest Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z ec;

(P6) if L € C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolin-M.)

Let C be a class of gps. with (P0)—(P3) and (P6). Then a graph
product G = I'® satisfies the Strongest Tits Alternative rel. to C iff
each Gy, v € VT, satisfies this alternative.

Examples of gps. with (PO)—(P3) and (P6):
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Strongest Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z ec;

(P6) if L € C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolin-M.)

Let C be a class of gps. with (P0)—(P3) and (P6). Then a graph
product G = I'® satisfies the Strongest Tits Alternative rel. to C iff
each Gy, v € VT, satisfies this alternative.

Examples of gps. with (PO)-(P3) and (P6): t.-f. abelian gps,
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Strongest Tits Alternative for graph products

(PO) ifLeCand M = Lthen M € C;

(P1) ifLeCand M < Lisf.g.thenM € C;

(P2) ifL,M € C aref.g.thenL x M € C;

(P3) Z ec;

(P6) if L € C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolin-M.)

Let C be a class of gps. with (P0)—(P3) and (P6). Then a graph
product G = I'® satisfies the Strongest Tits Alternative rel. to C iff
each Gy, v € VT, satisfies this alternative.

Examples of gps. with (P0)—(P3) and (P6): t.-f. abelian gps, t.-f.
nilpotent gps,
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nilpotent gps, many classes of locally indicable gps.
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Any f.g. non-abelian sbgp. of a RAAG maps onto .
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(PO) ifLeCand M = Lthen M € C;
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Any non-abelian sbgp. of a RAAG maps onto .

Ashot Minasyan Tits alternatives for graph products




Applications of Theorem C

Any non-abelian sbgp. of a RAAG maps onto F,.
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Applications of Theorem C

Any non-abelian sbgp. of a RAAG maps onto F,.

One can use this to recover

Theorem (Baudisch, 1981)
A 2-generator shgp. of a RAAG is either free or free abelian.
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Applications of Theorem C

Any non-abelian sbgp. of a RAAG maps onto F,.

One can use this to recover

Theorem (Baudisch, 1981)
A 2-generator shgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schiitzenberger we also get

If G is a RAAG and a, b, c € G satisfy a™b" = cP, form,n,p > 2, then
a, b, c pairwise commute.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

Ashot Minasyan Tits alternatives for graph products



Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.

Now argue by induction on |VT|.
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Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.

Now argue by induction on |VT|. The case |VI| < 2 is easy.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.

Now argue by induction on |[VT|. The case |VI| < 2 is easy. So
assume that [VI| > 3.
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.

Now argue by induction on |[VT|. The case |VI| < 2 is easy. So
assume that [VI| > 3.

If pa(H) is non-abelian for some A G VI then H — pa(H) — F2 by
induction, as pa(H) < Ga X Ta®a and |A| < VT
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Idea of the proof

Any f.g. non-abelian sbgp. of a RAAG maps onto .

Idea of the proof. Let K be a RAAG and let H < K be a f.g. shgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph ') s.t.

(1) pevy(H) # {1} forallv € VT.

Now argue by induction on |[VT|. The case |VI| < 2 is easy. So
assume that [VI| > 3.

If pa(H) is non-abelian for some A G VI then H — pa(H) — F2 by
induction, as pa(H) < Ga X Ta®a and |A| < VT
Thus we can suppose that

2 pa(H) is abelian for every A G VT.
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Idea of the proof, cont.

I is irreducible if the complement graph ¢ is connected,
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Idea of the proof, cont.

I is irreducible if the complement graph ¢ is connected, where

VIC:=VIand ET®:={(u,v) € VI x VI | (u,v) & ET}.
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Idea of the proof, cont.

I is irreducible if the complement graph ¢ is connected, where

VIC:=VIand ET®:={(u,v) € VI x VI | (u,v) & ET}.

Note: T is reducible iff G = I'& splits as a direct product of two special
sbgps.

Ashot Minasyan Tits alternatives for graph products



Idea of the proof, cont.

I is irreducible if the complement graph ¢ is connected, where
VI¢:=VrandElr® :={(u,v) e VI x VI | (u,v) ¢ ET}.
Note: T is reducible iff G = I'& splits as a direct product of two special

sbgps.

If T is reducible then VI = AUB and G = Gp x Gg. Thus
H < pa(H) x pg(H) is abelian by (2).
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Idea of the proof, cont.

I is irreducible if the complement graph ¢ is connected, where
VI¢:=VrandElr® :={(u,v) e VI x VI | (u,v) ¢ ET}.

Note: T is reducible iff G = I'& splits as a direct product of two special
sbgps.

Note: If ' is irreducible and |VI| > 2, then 3v € VT s.t. for
A:=VTI\ {v}, Isisalsoirreducible.
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Idea of the proof, cont.

Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:
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Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gs.t H CgGag™;
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Idea of the proof, cont.

Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gs.t H CgGag™;
o H=7Z;
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Idea of the proof, cont.

Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gst HCgGag™;
o H=Z;
@ H contains a copy of 5.
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Idea of the proof, cont.

Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gst HCgGag™;
o H=Z;
@ H contains a copy of 5.

Applying this thm. to pa(H) < Ga, we see that pa(H) is cyclic by (1).
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Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gst HCgGag™;
o H=Z;
@ H contains a copy of 5.

Applying this thm. to pa(H) < Ga, we see that pa(H) is cyclic by (1).
It follows that pa(H) NhGch=! = {1} Vh € Ga.
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Idea of the proof, cont.

Note: If I is irreducible and |VI| > 2, then 3 v € VT s.t. for
A:=VTI\ {v}, sis alsoirreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph I with
[VI| > 2 and H < G then one of the following holds:

@ JACVrandg e Gst HCgGag™;
o H=Z;
@ H contains a copy of 5.

Applying this thm. to pa(H) < Ga, we see that pa(H) is cyclic by (1).
It follows that pa(H) NhGch=! = {1} Vh € Ga.

Hence
HNgGeg ! = {1} Vg eG.
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Idea of the proof, cont.

(3) HNgGeg ™t = {1} Vg eG.
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Idea of the proof, cont.

(3) HNgGeg ™t = {1} Vg eG.

Recall that G = Gp *Ge Gsg.
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Idea of the proof, cont.

(3) HNgGeg ™t = {1} Vg eG.
Recall that G = G *g, Gg. By gen. Kurosh Thm. (3) =

H:Hl*-'-*Hk*F,
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Idea of the proof, cont.

(3) HNgGeg ™t = {1} Vg eG.
Recall that G = G *g, Gg. By gen. Kurosh Thm. (3) =
H :Hl*-'-*Hk*F,

where F is free, and H; < giGag, ' or H; < giGgg, " for some g; € G.
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Idea of the proof, cont.

(3) HNgGeg ™t = {1} Vg eG.
Recall that G = G *g, Gg. By gen. Kurosh Thm. (3) =
H :Hl*-'-*Hk*F,

where F is free, and H; < giGag, ' or H; < giGgg, " for some g; € G.

Since each H; maps onto Z (follows from (P6)), we deduce that H
maps onto Z x Z = 5. O

Ashot Minasyan Tits alternatives for graph products



	Background and motivation
	Various forms of Tits Alternative

	Graph products of groups
	Special subgroups
	Natural splittings

	Tits Alternative for graph products
	Strong Tits Alternative for graph products
	The Strongest Tits Alternative
	Strongest Tits Alternative for graph products
	Applications of Theorem C
	Idea of the proof-1
	Idea of the proof-2
	Idea of the proof-3


