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Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .
Then either H is virtually solvable or H contains a non-abelian free
subgroup.
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were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either
virtually abelian or large.
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Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .
Then either H is virtually solvable or H contains a non-abelian free
subgroup.

Similar results have later been proved for other classes of groups. We
were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either
virtually abelian or large.

Recall: a group G is large is there is a finite index subgroup K 6 G
s.t. K maps onto F2.
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Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.
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Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.
to Cvsol .
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Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.
to Cvsol .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative
rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H is large.
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Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C
if for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.
to Cvsol .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative
rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H is large.

The thm. of Noskov-Vinberg implies that Coxeter gps. satisfy the
Strong Tits Alternative rel. to Cvab.
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Graph products of groups

Graph products naturally generalize free and direct products.
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Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv by
adding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.
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Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv by
adding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

G3 G2

G1

Figure : ΓG ∼= G1 ∗ G2 ∗ G3
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Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv by
adding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

G1 G2

G3G4

Figure : ΓG ∼= (G1 ∗ G3)× (G2 ∗ G4)
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Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv by
adding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are
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Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv by
adding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

right angled Coxeter gps., if all vertex gps. are Z/2Z;
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Special subgroups

If A ⊆ VΓ and ΓA is the full subgraph of Γ spanned by A then
GA := {Gv | v ∈ A} generates a special subgroup GA of G = ΓG
which is naturally isomorphic to ΓAGA.
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Special subgroups

If A ⊆ VΓ and ΓA is the full subgraph of Γ spanned by A then
GA := {Gv | v ∈ A} generates a special subgroup GA of G = ΓG
which is naturally isomorphic to ΓAGA.

G1 G2

G3G4

Figure : G{1,2}
∼= G1 × G2, G{1,3}

∼= G1 ∗ G3
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Special subgroups

If A ⊆ VΓ and ΓA is the full subgraph of Γ spanned by A then
GA := {Gv | v ∈ A} generates a special subgroup GA of G = ΓG
which is naturally isomorphic to ΓAGA.

G1 G2

G3G4

Figure : G{1,2}
∼= G1 × G2, G{1,3}

∼= G1 ∗ G3

There is a natural retraction ρA : G = ΓG → GA defined by

ρA(g) =
{

g if g ∈ Gu for some u ∈ A
1 if g ∈ Gv for some v ∈ VΓ \ A
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Natural splittings

Graph product naturally split as amalgamated products over special
subgroups:

Ashot Minasyan Tits alternatives for graph products



Natural splittings

Graph product naturally split as amalgamated products over special
subgroups:

∀ v ∈ VΓ, let A = VΓ \ {v}, C = link(v) and B = C ∪ {v}
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Natural splittings

Graph product naturally split as amalgamated products over special
subgroups:

∀ v ∈ VΓ, let A = VΓ \ {v}, C = link(v) and B = C ∪ {v}

A

C

v

B
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Natural splittings

Graph product naturally split as amalgamated products over special
subgroups:

∀ v ∈ VΓ, let A = VΓ \ {v}, C = link(v) and B = C ∪ {v}

A

C

v

B

then
G = GA ∗GC

GB and GB
∼= GC × Gv .
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product
G = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,
satisfies this alternative.
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product
G = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,
satisfies this alternative.

Evidently the conditions (P0)–(P4) are necessary.
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Tits Alternative for graph products

Consider the following properties of the class of “small” groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product
G = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,
satisfies this alternative.

Corollary

If all vertex gps. are linear then G = ΓG satisfies the Tits Alternative
rel. to Cvsol .

Ashot Minasyan Tits alternatives for graph products



Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;
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(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.
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Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.
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Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

(P5) is necessary, b/c if L 6= {1} has no proper f.i. sbgps., then L ∗ L
cannot be large.
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(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5):
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Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps,
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(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic
gps.,
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(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic
gps., virt. nilpotent gps.,
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Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic
gps., virt. nilpotent gps., (virt.) solvable gps.,
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Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic
gps., virt. nilpotent gps., (virt.) solvable gps., elementary amenable
gps.
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Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product
G = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,
v ∈ VΓ, satisfies this alternative.

Corollary

Suppose C = Csol−m for some m ≥ 2 or C = Cvsol−n for some n ≥ 1.
Let G be a graph product of gps. from C. Then any f.g. sbgp. of G
either belongs to C or is large.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H maps
onto F2.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H maps
onto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not map
onto F2.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H maps
onto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not map
onto F2.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to
Cab.
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The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest Tits
Alternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H maps
onto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not map
onto F2.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to
Cab.

Observe that if L ∗ L maps onto F2 then L must have an epimorphism
onto Z.

Ashot Minasyan Tits alternatives for graph products



Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;
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Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.
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Strongest Tits Alternative for graph products
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each Gv , v ∈ VΓ, satisfies this alternative.
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One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.
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Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto F2.

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schützenberger we also get

Corollary

If G is a RAAG and a, b, c ∈ G satisfy ambn = cp, for m, n, p ≥ 2, then
a, b, c pairwise commute.
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Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof.
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Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.
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Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.
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First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.

(1) ρ{v}(H) 6= {1} for all v ∈ VΓ.
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Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.

(1) ρ{v}(H) 6= {1} for all v ∈ VΓ.

Now argue by induction on |VΓ|. The case |VΓ| ≤ 2 is easy.
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Idea of the proof

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.

(1) ρ{v}(H) 6= {1} for all v ∈ VΓ.

Now argue by induction on |VΓ|. The case |VΓ| ≤ 2 is easy. So
assume that |VΓ| ≥ 3.
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Idea of the proof

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.

(1) ρ{v}(H) 6= {1} for all v ∈ VΓ.

Now argue by induction on |VΓ|. The case |VΓ| ≤ 2 is easy. So
assume that |VΓ| ≥ 3.

If ρA(H) is non-abelian for some A $ VΓ then H ։ ρA(H) ։ F2 by
induction, as ρA(H) 6 GA

∼= ΓAGA and |A| < |VΓ|.
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Idea of the proof

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Idea of the proof. Let K be a RAAG and let H 6 K be a f.g. sbgp.

First we prove that one can embed H into another RAAG G
(corresponding to a finite graph Γ) s.t.

(1) ρ{v}(H) 6= {1} for all v ∈ VΓ.

Now argue by induction on |VΓ|. The case |VΓ| ≤ 2 is easy. So
assume that |VΓ| ≥ 3.

If ρA(H) is non-abelian for some A $ VΓ then H ։ ρA(H) ։ F2 by
induction, as ρA(H) 6 GA

∼= ΓAGA and |A| < |VΓ|.
Thus we can suppose that

(2) ρA(H) is abelian for every A $ VΓ.
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Idea of the proof, cont.

Γ is irreducible if the complement graph Γc is connected,
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Idea of the proof, cont.

Γ is irreducible if the complement graph Γc is connected, where

VΓc := VΓ and EΓc := {(u, v) ∈ VΓ× VΓ | (u, v) /∈ EΓ}.
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Γ is irreducible if the complement graph Γc is connected, where

VΓc := VΓ and EΓc := {(u, v) ∈ VΓ× VΓ | (u, v) /∈ EΓ}.

Note: Γ is reducible iff G = ΓG splits as a direct product of two special
sbgps.
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Idea of the proof, cont.

Γ is irreducible if the complement graph Γc is connected, where

VΓc := VΓ and EΓc := {(u, v) ∈ VΓ× VΓ | (u, v) /∈ EΓ}.

Note: Γ is reducible iff G = ΓG splits as a direct product of two special
sbgps.

If Γ is reducible then VΓ = A ⊔ B and G = GA × GB. Thus
H 6 ρA(H) × ρB(H) is abelian by (2).
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Idea of the proof, cont.

Γ is irreducible if the complement graph Γc is connected, where

VΓc := VΓ and EΓc := {(u, v) ∈ VΓ× VΓ | (u, v) /∈ EΓ}.

Note: Γ is reducible iff G = ΓG splits as a direct product of two special
sbgps.

Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.
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Idea of the proof, cont.

Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:
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A := VΓ \ {v}, ΓA is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:

∃ A $ VΓ and g ∈ G s.t. H ⊆ gGAg−1;
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Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:

∃ A $ VΓ and g ∈ G s.t. H ⊆ gGAg−1;

H ∼= Z;

H contains a copy of F2.
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Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.
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If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:

∃ A $ VΓ and g ∈ G s.t. H ⊆ gGAg−1;

H ∼= Z;

H contains a copy of F2.

Applying this thm. to ρA(H) 6 GA, we see that ρA(H) is cyclic by (1).
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Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:

∃ A $ VΓ and g ∈ G s.t. H ⊆ gGAg−1;

H ∼= Z;

H contains a copy of F2.

Applying this thm. to ρA(H) 6 GA, we see that ρA(H) is cyclic by (1).

It follows that ρA(H) ∩ hGCh−1 = {1} ∀ h ∈ GA.
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Note: If Γ is irreducible and |VΓ| ≥ 2, then ∃ v ∈ VΓ s.t. for
A := VΓ \ {v}, ΓA is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
|VΓ| ≥ 2 and H 6 G then one of the following holds:

∃ A $ VΓ and g ∈ G s.t. H ⊆ gGAg−1;

H ∼= Z;

H contains a copy of F2.

Applying this thm. to ρA(H) 6 GA, we see that ρA(H) is cyclic by (1).

It follows that ρA(H) ∩ hGCh−1 = {1} ∀ h ∈ GA.

Hence
H ∩ gGCg−1 = {1} ∀ g ∈ G.
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(3) H ∩ gGCg−1 = {1} ∀ g ∈ G.
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(3) H ∩ gGCg−1 = {1} ∀ g ∈ G.

Recall that G = GA ∗GC
GB .
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(3) H ∩ gGCg−1 = {1} ∀ g ∈ G.

Recall that G = GA ∗GC
GB . By gen. Kurosh Thm. (3) =⇒

H = H1 ∗ · · · ∗ Hk ∗ F ,
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(3) H ∩ gGCg−1 = {1} ∀ g ∈ G.

Recall that G = GA ∗GC
GB . By gen. Kurosh Thm. (3) =⇒

H = H1 ∗ · · · ∗ Hk ∗ F ,

where F is free, and Hi 6 giGAg−1
i or Hi 6 giGBg−1

i for some gi ∈ G.
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Idea of the proof, cont.

(3) H ∩ gGCg−1 = {1} ∀ g ∈ G.

Recall that G = GA ∗GC
GB . By gen. Kurosh Thm. (3) =⇒

H = H1 ∗ · · · ∗ Hk ∗ F ,

where F is free, and Hi 6 giGAg−1
i or Hi 6 giGBg−1

i for some gi ∈ G.

Since each Hi maps onto Z (follows from (P6)), we deduce that H
maps onto Z ∗ Z ∼= F2.

Ashot Minasyan Tits alternatives for graph products


	Background and motivation
	Various forms of Tits Alternative

	Graph products of groups
	Special subgroups
	Natural splittings

	Tits Alternative for graph products
	Strong Tits Alternative for graph products
	The Strongest Tits Alternative
	Strongest Tits Alternative for graph products
	Applications of Theorem C
	Idea of the proof-1
	Idea of the proof-2
	Idea of the proof-3


