Tits alternatives for graph products

Ashot Minasyan
(Joint work with Yago Antolín)

University of Southampton
Group Theory Webinar, 27.09.2012

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of $\mathrm{GL}_{n}(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

Recall: a group G is large is there is a finite index subgroup $K \leqslant G$ s.t. K maps onto \mathbb{F}_{2}.

Various forms of Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_{2}.

Various forms of Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_{2}.

Thus Tits's result tells us that $\mathrm{GL}_{n}(F)$ satisfies the Tits Alternative rel. to $\mathcal{C}_{\text {vsol }}$.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_{2}.

Thus Tits's result tells us that $\mathrm{GL}_{n}(F)$ satisfies the Tits Alternative rel. to $\mathcal{C}_{\text {vsol }}$.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H is large.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H contains a copy of \mathbb{F}_{2}.

Thus Tits's result tells us that $\mathrm{GL}_{n}(F)$ satisfies the Tits Alternative rel. to $\mathcal{C}_{\text {vsol }}$.

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H is large.

The thm. of Noskov-Vinberg implies that Coxeter gps. satisfy the Strong Tits Alternative rel. to $\mathcal{C}_{\text {vab }}$.

Graph products of groups

Graph products naturally generalize free and direct products.

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

$$
\text { Figure : }\left\lceil\mathfrak{G} \cong G_{1} * G_{2} * G_{3}\right.
$$

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Figure : $\Gamma \mathfrak{G} \cong G_{1} \times G_{2} \times G_{3}$

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Figure : $\Gamma \mathfrak{G} \cong\left(G_{1} * G_{3}\right) \times\left(G_{2} * G_{4}\right)$

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Basic examples of graph products are

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs]

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are \mathbb{Z};

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are \mathbb{Z};
- right angled Coxeter gps.

Graph products of groups

Graph products naturally generalize free and direct products.
Let Γ be a graph and let $\mathfrak{G}=\left\{G_{v} \mid v \in V \Gamma\right\}$ be a family of gps.
The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V \Gamma} G_{v}$ by adding the relations

$$
[a, b]=1 \forall a \in G_{u}, \forall b \in G_{v} \text { whenever }(u, v) \in E \Gamma
$$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are \mathbb{Z};
- right angled Coxeter gps., if all vertex gps. are $\mathbb{Z} / 2 \mathbb{Z}$;

Special subgroups

If $A \subseteq V \Gamma$ and Γ_{A} is the full subgraph of Γ spanned by A then $\mathfrak{G}_{A}:=\left\{G_{v} \mid v \in A\right\}$ generates a special subgroup G_{A} of $G=\Gamma \mathfrak{G}$ which is naturally isomorphic to $\Gamma_{A} \mathfrak{G}_{A}$.

Special subgroups

If $A \subseteq V \Gamma$ and Γ_{A} is the full subgraph of Γ spanned by A then $\mathfrak{G}_{A}:=\left\{G_{v} \mid v \in A\right\}$ generates a special subgroup G_{A} of $G=\Gamma \mathfrak{G}$ which is naturally isomorphic to $\Gamma_{A} \mathfrak{G}_{A}$.

Figure: $G_{\{1,2\}} \cong G_{1} \times G_{2}, G_{\{1,3\}} \cong G_{1} * G_{3}$

Special subgroups

If $A \subseteq V \Gamma$ and Γ_{A} is the full subgraph of Γ spanned by A then $\mathfrak{G}_{A}:=\left\{G_{v} \mid v \in A\right\}$ generates a special subgroup G_{A} of $G=\Gamma \mathfrak{G}$ which is naturally isomorphic to $\Gamma_{A} \mathfrak{G}_{A}$.

Figure: $G_{\{1,2\}} \cong G_{1} \times G_{2}, G_{\{1,3\}} \cong G_{1} * G_{3}$

There is a natural retraction $\rho_{A}: G=\Gamma \mathfrak{G} \rightarrow G_{A}$ defined by

$$
\rho_{A}(g)= \begin{cases}g & \text { if } g \in G_{u} \text { for some } u \in A \\ 1 & \text { if } g \in G_{v} \text { for some } v \in V \Gamma \backslash A\end{cases}
$$

Natural splittings

Graph product naturally split as amalgamated products over special subgroups:

Natural splittings

Graph product naturally split as amalgamated products over special subgroups:
$\forall v \in V \Gamma$, let $A=V \Gamma \backslash\{v\}, C=\operatorname{link}(v)$ and $B=C \cup\{v\}$

Natural splittings

Graph product naturally split as amalgamated products over special subgroups:
$\forall v \in V \Gamma$, let $A=V \Gamma \backslash\{v\}, C=\operatorname{link}(v)$ and $B=C \cup\{v\}$

Natural splittings

Graph product naturally split as amalgamated products over special subgroups:
$\forall v \in V \Gamma$, let $A=V \Gamma \backslash\{v\}, C=\operatorname{link}(v)$ and $B=C \cup\{v\}$

then

$$
G=G_{A} * G_{C} G_{B} \text { and } G_{B} \cong G_{C} \times G_{v} .
$$

Tits Alternative for graph products
Consider the following properties of the class of "small" groups \mathcal{C} :

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Tits Alternative for graph products

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P4). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Tits Alternative for graph products

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P4). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Evidently the conditions (P0)-(P4) are necessary.

Tits Alternative for graph products

Consider the following properties of the class of "small" groups \mathcal{C} :
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P4). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Corollary

If all vertex gps. are linear then $G=\Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to $\mathcal{C}_{\text {vsol }}$.

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;

Strong Tits Alternative for graph products

(P0) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.
(P5) is necessary, b/c if $L \neq\{1\}$ has no proper f.i. sbgps., then $L * L$ cannot be large.

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5):

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5): virt. abelian gps,

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5): virt. abelian gps, (virt.) polycyclic gps.,

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps.,

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps.,

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps., elementary amenable gps.

Strong Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P4) if $\mathbb{Z} / 2 \mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
(P5) if $L \in \mathcal{C}$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P5). Then a graph product $G=\left\lceil\mathfrak{G}\right.$ satisfies the Strong Tits Alternative rel. to \mathcal{C} iff each G_{v}, $v \in V \Gamma$, satisfies this alternative.

Corollary

Suppose $\mathcal{C}=\mathcal{C}_{\text {sol }-m}$ for some $m \geq 2$ or $\mathcal{C}=\mathcal{C}_{\text {vsol }-n}$ for some $n \geq 1$. Let G be a graph product of gps. from \mathcal{C}. Then any f.g. sbgp. of G either belongs to \mathcal{C} or is large.

The Strongest Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_{2}.

The Strongest Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_{2}.

Example

The gp. $G:=\left\langle a, b, c \mid a^{2} b^{2}=c^{2}\right\rangle$ is t.-f. and large but does not map onto \mathbb{F}_{2}.

The Strongest Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_{2}.

Example

The gp. $G:=\left\langle a, b, c \mid a^{2} b^{2}=c^{2}\right\rangle$ is t.-f. and large but does not map onto \mathbb{F}_{2}.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to $\mathcal{C}_{a b}$.

The Strongest Tits Alternative

Definition

Let \mathcal{C} be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to \mathcal{C} if for any f.g. sbgp. $H \leqslant G$ either $H \in \mathcal{C}$ or H maps onto \mathbb{F}_{2}.

Example

The gp. $G:=\left\langle a, b, c \mid a^{2} b^{2}=c^{2}\right\rangle$ is t.-f. and large but does not map onto \mathbb{F}_{2}.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to $\mathcal{C}_{a b}$.

Observe that if $L * L$ maps onto \mathbb{F}_{2} then L must have an epimorphism onto \mathbb{Z}.

Strongest Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;

Strongest Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (PO)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6):
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6): t.-f. abelian gps,
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps,
(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

Strongest Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.

Strongest Tits Alternative for graph products

(PO) if $L \in \mathcal{C}$ and $M \cong L$ then $M \in \mathcal{C}$;
(P1) if $L \in \mathcal{C}$ and $M \leqslant L$ is f.g. then $M \in \mathcal{C}$;
(P2) if $L, M \in \mathcal{C}$ are f.g. then $L \times M \in \mathcal{C}$;
(P3) $\mathbb{Z} \in \mathcal{C}$;
(P6) if $L \in \mathcal{C}$ is non-trivial and f.g. then L maps onto \mathbb{Z}.

Theorem C (Antolín-M.)

Let \mathcal{C} be a class of gps. with (P0)-(P3) and (P6). Then a graph product $G=\Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to \mathcal{C} iff each $G_{v}, v \in V \Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.

Applications of Theorem C

Corollary
Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.

Applications of Theorem C

Corollary
Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.

One can use this to recover
Theorem (Baudisch, 1981)
A 2-generator sbgp. of a RAAG is either free or free abelian.

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.

One can use this to recover
Theorem (Baudisch, 1981)
A 2-generator sbgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schützenberger we also get

Corollary

If G is a RAAG and $a, b, c \in G$ satisfy $a^{m} b^{n}=c^{p}$, for $m, n, p \geq 2$, then a, b, c pairwise commute.

Idea of the proof

Corollary
Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.
(1)

$$
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma .
$$

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

$$
\begin{equation*}
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma . \tag{1}
\end{equation*}
$$

Now argue by induction on $|V \Gamma|$.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

$$
\begin{equation*}
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma \text {. } \tag{1}
\end{equation*}
$$

Now argue by induction on $|V \Gamma|$. The case $|V \Gamma| \leq 2$ is easy.

Corollary
Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

$$
\begin{equation*}
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma . \tag{1}
\end{equation*}
$$

Now argue by induction on $|V \Gamma|$. The case $|V \Gamma| \leq 2$ is easy. So assume that $|V \Gamma| \geq 3$.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

$$
\begin{equation*}
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma . \tag{1}
\end{equation*}
$$

Now argue by induction on $|V \Gamma|$. The case $|V \Gamma| \leq 2$ is easy. So assume that $|V \Gamma| \geq 3$.
If $\rho_{A}(H)$ is non-abelian for some $A \varsubsetneqq V \Gamma$ then $H \rightarrow \rho_{A}(H) \rightarrow \mathbb{F}_{2}$ by induction, as $\rho_{A}(H) \leqslant G_{A} \cong \Gamma_{A} \mathfrak{G}_{A}$ and $|A|<|V \Gamma|$.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_{2}.
Idea of the proof. Let K be a RAAG and let $H \leqslant K$ be a f.g. sbgp.
First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

$$
\begin{equation*}
\rho_{\{v\}}(H) \neq\{1\} \text { for all } v \in V \Gamma \text {. } \tag{1}
\end{equation*}
$$

Now argue by induction on $|V \Gamma|$. The case $|V \Gamma| \leq 2$ is easy. So assume that $|V \Gamma| \geq 3$.
If $\rho_{A}(H)$ is non-abelian for some $A \varsubsetneqq V \Gamma$ then $H \rightarrow \rho_{A}(H) \rightarrow \mathbb{F}_{2}$ by induction, as $\rho_{A}(H) \leqslant G_{A} \cong \Gamma_{A} \mathfrak{G}_{A}$ and $|A|<|V \Gamma|$.
Thus we can suppose that

$$
\begin{equation*}
\rho_{A}(H) \text { is abelian for every } A \varsubsetneqq V \Gamma \text {. } \tag{2}
\end{equation*}
$$

Idea of the proof, cont.

Γ is irreducible if the complement graph Γ^{c} is connected,
Γ is irreducible if the complement graph Γ^{c} is connected, where

$$
V \Gamma^{c}:=V \Gamma \text { and } E \Gamma^{c}:=\{(u, v) \in V \Gamma \times V \Gamma \mid(u, v) \notin E \Gamma\} .
$$

Γ is irreducible if the complement graph Γ^{c} is connected, where

$$
V \Gamma^{c}:=V \Gamma \text { and } E \Gamma^{c}:=\{(u, v) \in V \Gamma \times V \Gamma \mid(u, v) \notin E \Gamma\} .
$$

Note: Γ is reducible iff $G=\lceil\mathfrak{G}$ splits as a direct product of two special sbgps.
Γ is irreducible if the complement graph Γ^{c} is connected, where

$$
V \Gamma^{c}:=V \Gamma \text { and } E \Gamma^{c}:=\{(u, v) \in V \Gamma \times V \Gamma \mid(u, v) \notin E \Gamma\} .
$$

Note: Γ is reducible iff $G=\lceil\mathfrak{G}$ splits as a direct product of two special sbgps.

If Γ is reducible then $V \Gamma=A \sqcup B$ and $G=G_{A} \times G_{B}$. Thus $H \leqslant \rho_{A}(H) \times \rho_{B}(H)$ is abelian by (2).
Γ is irreducible if the complement graph Γ^{c} is connected, where

$$
V \Gamma^{c}:=V \Gamma \text { and } E \Gamma^{c}:=\{(u, v) \in V \Gamma \times V \Gamma \mid(u, v) \notin E \Gamma\} .
$$

Note: Γ is reducible iff $G=\lceil\mathfrak{G}$ splits as a direct product of two special sbgps.

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;
- $H \cong \mathbb{Z}$;

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;
- $H \cong \mathbb{Z}$;
- H contains a copy of \mathbb{F}_{2}.

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
$|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;
- $H \cong \mathbb{Z}$;
- H contains a copy of \mathbb{F}_{2}.

Applying this thm. to $\rho_{A}(H) \leqslant G_{A}$, we see that $\rho_{A}(H)$ is cyclic by (1).

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
$|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;
- $H \cong \mathbb{Z}$;
- H contains a copy of \mathbb{F}_{2}.

Applying this thm. to $\rho_{A}(H) \leqslant G_{A}$, we see that $\rho_{A}(H)$ is cyclic by (1). It follows that $\rho_{A}(H) \cap h G_{C} h^{-1}=\{1\} \forall h \in G_{A}$.

Note: If Γ is irreducible and $|V \Gamma| \geq 2$, then $\exists v \in V \Gamma$ s.t. for $A:=V \Gamma \backslash\{v\}, \Gamma_{A}$ is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with
$|V \Gamma| \geq 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \varsubsetneqq V \Gamma$ and $g \in G$ s.t. $H \subseteq g G_{A} g^{-1}$;
- $H \cong \mathbb{Z}$;
- H contains a copy of \mathbb{F}_{2}.

Applying this thm. to $\rho_{A}(H) \leqslant G_{A}$, we see that $\rho_{A}(H)$ is cyclic by (1). It follows that $\rho_{A}(H) \cap h G_{C} h^{-1}=\{1\} \forall h \in G_{A}$.

Hence

$$
H \cap g G_{C} g^{-1}=\{1\} \quad \forall g \in G .
$$

(3)

$$
H \cap g G_{c} g^{-1}=\{1\} \forall g \in G .
$$

(3)

$$
H \cap g G_{C} g^{-1}=\{1\} \forall g \in G .
$$

Recall that $G=G_{A}{ }^{*} G_{C} G_{B}$.
(3)

$$
H \cap g G_{C} g^{-1}=\{1\} \forall g \in G .
$$

Recall that $G=G_{A} * G_{C} G_{B}$. By gen. Kurosh Thm. (3) \Longrightarrow

$$
H=H_{1} * \cdots * H_{k} * F
$$

$$
\begin{equation*}
H \cap g G_{C} g^{-1}=\{1\} \forall g \in G . \tag{3}
\end{equation*}
$$

Recall that $G=G_{A} * G_{C} G_{B}$. By gen. Kurosh Thm. (3) \Longrightarrow

$$
H=H_{1} * \cdots * H_{k} * F
$$

where F is free, and $H_{i} \leqslant g_{i} G_{A} g_{i}^{-1}$ or $H_{i} \leqslant g_{i} G_{B} g_{i}^{-1}$ for some $g_{i} \in G$.

$$
\begin{equation*}
H \cap g G_{c} g^{-1}=\{1\} \forall g \in G . \tag{3}
\end{equation*}
$$

Recall that $G=G_{A} * G_{C} G_{B}$. By gen. Kurosh Thm. (3) \Longrightarrow

$$
H=H_{1} * \cdots * H_{k} * F,
$$

where F is free, and $H_{i} \leqslant g_{i} G_{A} g_{i}^{-1}$ or $H_{i} \leqslant g_{i} G_{B} g_{i}^{-1}$ for some $g_{i} \in G$.
Since each H_{i} maps onto \mathbb{Z} (follows from (P6)), we deduce that H maps onto $\mathbb{Z} * \mathbb{Z} \cong \mathbb{F}_{2}$.

