Ashot Minasyan (Joint work with Yago Antolín)

University of Southampton

Group Theory Webinar, 27.09.2012

TH 161

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

→ ∃ →

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

- A 🖻 🕨

Let H be a finitely generated subgroup of $GL_n(F)$ for some field F. Then either H is virtually solvable or H contains a non-abelian free subgroup.

Similar results have later been proved for other classes of groups. We were motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is either virtually abelian or large.

Recall: a group *G* is large is there is a finite index subgroup $K \leq G$ s.t. *K* maps onto \mathbb{F}_2 .

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H contains a copy of \mathbb{F}_2 .

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

< ∃ > <

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H is large.

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H contains a copy of \mathbb{F}_2 .

Thus Tits's result tells us that $GL_n(F)$ satisfies the Tits Alternative rel. to C_{vsol} .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H is large.

The thm. of Noskov-Vinberg implies that Coxeter gps. satisfy the Strong Tits Alternative rel. to C_{vab} .

Graph products naturally generalize free and direct products.

→ ∃ →

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_{v} \mid v \in V\Gamma \}$ be a family of gps.

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

/□ > < ∃ > < ∃

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma$$

/□ > < ∃ > < ∃

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma$$

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

$$[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma$$

Figure : $\Gamma \mathfrak{G} \cong (G_1 * G_3) \times (G_2 * G_4)$

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

Basic examples of graph products are

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

Basic examples of graph products are

• right angled Artin gps. [RAAGs]

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

Basic examples of graph products are

• right angled Artin gps. [RAAGs], if all vertex gps. are \mathbb{Z} ;

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are Z;
- right angled Coxeter gps.

▲ ศ型 ▶ ▲ 国 ▶ ▲ 国

Graph products naturally generalize free and direct products.

Let Γ be a graph and let $\mathfrak{G} = \{ \mathbf{G}_v \mid v \in V\Gamma \}$ be a family of gps.

The graph product $\Gamma \mathfrak{G}$ is obtained from the free product $*_{v \in V\Gamma} G_v$ by adding the relations

 $[a, b] = 1 \ \forall a \in G_u, \forall b \in G_v \text{ whenever } (u, v) \in E\Gamma.$

Basic examples of graph products are

- right angled Artin gps. [RAAGs], if all vertex gps. are Z;
- right angled Coxeter gps., if all vertex gps. are $\mathbb{Z}/2\mathbb{Z}$;

▲ ศ型 ▶ ▲ 国 ▶ ▲ 国

Special subgroups

If $A \subseteq V\Gamma$ and Γ_A is the full subgraph of Γ spanned by A then $\mathfrak{G}_A := \{G_v \mid v \in A\}$ generates a special subgroup G_A of $G = \Gamma\mathfrak{G}$ which is naturally isomorphic to $\Gamma_A\mathfrak{G}_A$.

伺 ト イヨ ト イヨト

Special subgroups

If $A \subseteq V\Gamma$ and Γ_A is the full subgraph of Γ spanned by A then $\mathfrak{G}_A := \{G_v \mid v \in A\}$ generates a special subgroup G_A of $G = \Gamma\mathfrak{G}$ which is naturally isomorphic to $\Gamma_A\mathfrak{G}_A$.

Figure : $G_{\{1,2\}} \cong G_1 \times G_2$, $G_{\{1,3\}} \cong G_1 * G_3$

) (<u>)</u> (<u>)</u> (<u>)</u>

Special subgroups

If $A \subseteq V\Gamma$ and Γ_A is the full subgraph of Γ spanned by A then $\mathfrak{G}_A := \{G_v \mid v \in A\}$ generates a special subgroup G_A of $G = \Gamma\mathfrak{G}$ which is naturally isomorphic to $\Gamma_A\mathfrak{G}_A$.

Figure : $G_{\{1,2\}} \cong G_1 \times G_2$, $G_{\{1,3\}} \cong G_1 * G_3$

There is a natural retraction $\rho_A : \mathbf{G} = \Gamma \mathfrak{G} \to \mathbf{G}_A$ defined by

$$\rho_A(g) = \begin{cases} g & \text{if } g \in G_u \text{ for some } u \in A \\ 1 & \text{if } g \in G_v \text{ for some } v \in V\Gamma \setminus A \end{cases}$$

Graph product naturally split as amalgamated products over special subgroups:

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Graph product naturally split as amalgamated products over special subgroups:

 $\forall v \in V\Gamma$, let $A = V\Gamma \setminus \{v\}$, C = link(v) and $B = C \cup \{v\}$

< 回 ト < 三 ト < 三 ト

Graph product naturally split as amalgamated products over special subgroups:

 $\forall v \in V\Gamma$, let $A = V\Gamma \setminus \{v\}$, C = link(v) and $B = C \cup \{v\}$

Graph product naturally split as amalgamated products over special subgroups:

 $\forall v \in V\Gamma$, let $A = V\Gamma \setminus \{v\}$, C = link(v) and $B = C \cup \{v\}$

then

$$G = G_A \ast_{G_C} G_B \text{ and } G_B \cong G_C \times G_v.$$

Consider the following properties of the class of "small" groups C:

Consider the following properties of the class of "small" groups C:

(P0) if $L \in C$ and $M \cong L$ then $M \in C$;

Consider the following properties of the class of "small" groups C:

(P0) if $L \in C$ and $M \cong L$ then $M \in C$;

(P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;

Consider the following properties of the class of "small" groups C:

(P0) if $L \in C$ and $M \cong L$ then $M \in C$;

(P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;

(P2) if $L, M \in C$ are f.g. then $L \times M \in C$;

Consider the following properties of the class of "small" groups C:

```
(P0) if L \in C and M \cong L then M \in C;
(P1) if L \in C and M \leq L is f.g. then M \in C;
(P2) if L, M \in C are f.g. then L \times M \in C;
```

(P3) $\mathbb{Z} \in C$;

Consider the following properties of the class of "small" groups C:

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;

(P3) $\mathbb{Z} \in C$;

(P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.
Consider the following properties of the class of "small" groups C:

```
(P0) if L \in C and M \cong L then M \in C;
```

- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;

(P3) $\mathbb{Z} \in C$;

(P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Consider the following properties of the class of "small" groups C:

```
(P0) if L \in C and M \cong L then M \in C;
```

- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Evidently the conditions (P0)–(P4) are necessary.

.

Consider the following properties of the class of "small" groups C:

```
(P0) if L \in C and M \cong L then M \in C;
```

- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Corollary

If all vertex gps. are linear then $G = \Gamma \mathfrak{G}$ satisfies the Tits Alternative rel. to \mathcal{C}_{vsol} .

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;

伺 ト イ ヨ ト イ ヨ ト

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

) (<u>)</u> (<u>)</u> (<u>)</u>

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

A E A 4

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

(P5) is necessary, b/c if $L \neq \{1\}$ has no proper f.i. sbgps., then L * L cannot be large.

/₽ ▶ < ∃ ▶ < ∃

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)-(P5):

.

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps,

/╗▶ ◀ ⋽▶ ◀ ⋽

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps.,

/□ > < ∃ > < ∃

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps.,

/□ > < ∃ > < ∃

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps.,

/□ > < ∃ > < ∃

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclic gps., virt. nilpotent gps., (virt.) solvable gps., elementary amenable gps.

A > + = + + =

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P4) if $\mathbb{Z}/2\mathbb{Z} \in \mathcal{C}$ then $\mathbb{D}_{\infty} \in \mathcal{C}$;
- (P5) if $L \in C$ is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strong Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Corollary

Suppose $C = C_{sol-m}$ for some $m \ge 2$ or $C = C_{vsol-n}$ for some $n \ge 1$. Let G be a graph product of gps. from C. Then any f.g. sbgp. of G either belongs to C or is large.

Let C be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H maps onto \mathbb{F}_2 .

Let C be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H maps onto \mathbb{F}_2 .

Example

The gp. $G := \langle a, b, c \mid a^2 b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Let C be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H maps onto \mathbb{F}_2 .

Example

The gp. $G := \langle a, b, c \mid a^2 b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to C_{ab} .

Let C be a class of gps. A gp. G satisfies the Strongest Tits Alternative rel. to C if for any f.g. sbgp. $H \leq G$ either $H \in C$ or H maps onto \mathbb{F}_2 .

Example

The gp. $G := \langle a, b, c \mid a^2 b^2 = c^2 \rangle$ is t.-f. and large but does not map onto \mathbb{F}_2 .

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. to C_{ab} .

Observe that if L * L maps onto \mathbb{F}_2 then L must have an epimorphism onto \mathbb{Z} .

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;

(P3) $\mathbb{Z} \in C$;

伺 ト イヨ ト イヨト

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

) (<u>)</u> (<u>)</u> (<u>)</u>

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

.

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6):

御 ▶ ▲ ヨ ▶ ▲ ヨ

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps,

御 ▶ ▲ ヨ ▶ ▲ ヨ

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps,

伺 ト イ ヨ ト イ ヨ

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

御 ▶ ▲ ヨ ▶ ▲ ヨ

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

- (P0) if $L \in C$ and $M \cong L$ then $M \in C$;
- (P1) if $L \in C$ and $M \leq L$ is f.g. then $M \in C$;
- (P2) if $L, M \in C$ are f.g. then $L \times M \in C$;
- (P3) $\mathbb{Z} \in C$;
- (P6) if $L \in C$ is non-trivial and f.g. then L maps onto \mathbb{Z} .

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graph product $G = \Gamma \mathfrak{G}$ satisfies the Strongest Tits Alternative rel. to C iff each G_v , $v \in V\Gamma$, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f. nilpotent gps, many classes of locally indicable gps.

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

//// ▲ 注 ▶ ▲ 注 ▶

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Any non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schützenberger we also get

Corollary

If G is a RAAG and a, b, $c \in G$ satisfy $a^m b^n = c^p$, for $m, n, p \ge 2$, then a, b, c pairwise commute.

Idea of the proof

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof.

→ < 코 > < 코

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

- **- -** ► ►

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed *H* into another RAAG *G* (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

- **- -** ► ►

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed *H* into another RAAG *G* (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

Now argue by induction on $|V\Gamma|$.

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

Now argue by induction on $|V\Gamma|$. The case $|V\Gamma| \le 2$ is easy.
Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

Now argue by induction on $|V\Gamma|.$ The case $|V\Gamma|\leq 2$ is easy. So assume that $|V\Gamma|\geq 3.$

- **→ → →**

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

Now argue by induction on $|V\Gamma|.$ The case $|V\Gamma|\leq 2$ is easy. So assume that $|V\Gamma|\geq 3.$

If $\rho_A(H)$ is non-abelian for some $A \subsetneq V\Gamma$ then $H \twoheadrightarrow \rho_A(H) \twoheadrightarrow \mathbb{F}_2$ by induction, as $\rho_A(H) \leqslant G_A \cong \Gamma_A \mathfrak{G}_A$ and $|A| < |V\Gamma|$.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto \mathbb{F}_2 .

Idea of the proof. Let *K* be a RAAG and let $H \leq K$ be a f.g. sbgp.

First we prove that one can embed H into another RAAG G (corresponding to a finite graph Γ) s.t.

(1)
$$\rho_{\{v\}}(H) \neq \{1\} \text{ for all } v \in V\Gamma.$$

Now argue by induction on $|V\Gamma|.$ The case $|V\Gamma|\leq 2$ is easy. So assume that $|V\Gamma|\geq 3.$

If $\rho_A(H)$ is non-abelian for some $A \subseteq V\Gamma$ then $H \twoheadrightarrow \rho_A(H) \twoheadrightarrow \mathbb{F}_2$ by induction, as $\rho_A(H) \leqslant G_A \cong \Gamma_A \mathfrak{G}_A$ and $|A| < |V\Gamma|$. Thus we can suppose that

(2)
$$\rho_A(H)$$
 is abelian for every $A \subseteq V\Gamma$.

 Γ is irreducible if the complement graph Γ^c is connected,

→ ∃ →

 Γ is irreducible if the complement graph Γ^c is connected, where

 $V\Gamma^{c} := V\Gamma$ and $E\Gamma^{c} := \{(u, v) \in V\Gamma \times V\Gamma \mid (u, v) \notin E\Gamma\}.$

• • = • • = •

 Γ is irreducible if the complement graph Γ^c is connected, where

$$V\Gamma^{c} := V\Gamma$$
 and $E\Gamma^{c} := \{(u, v) \in V\Gamma \times V\Gamma \mid (u, v) \notin E\Gamma\}.$

Note: Γ is reducible iff $G = \Gamma \mathfrak{G}$ splits as a direct product of two special sbgps.

 Γ is irreducible if the complement graph Γ^c is connected, where

$$V\Gamma^{c} := V\Gamma$$
 and $E\Gamma^{c} := \{(u, v) \in V\Gamma \times V\Gamma \mid (u, v) \notin E\Gamma\}.$

Note: Γ is reducible iff $G = \Gamma \mathfrak{G}$ splits as a direct product of two special sbgps.

If Γ is reducible then $V\Gamma = A \sqcup B$ and $G = G_A \times G_B$. Thus $H \leq \rho_A(H) \times \rho_B(H)$ is abelian by (2).

 Γ is irreducible if the complement graph Γ^c is connected, where

$$V\Gamma^{c} := V\Gamma$$
 and $E\Gamma^{c} := \{(u, v) \in V\Gamma \times V\Gamma \mid (u, v) \notin E\Gamma\}.$

Note: Γ is reducible iff $G = \Gamma \mathfrak{G}$ splits as a direct product of two special sbgps.

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

🗇 🕨 🖉 🖻 🕨 🖉 🗖

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

A E A 4

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

• $\exists A \subseteq V\Gamma$ and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

•
$$\exists A \subsetneq V\Gamma$$
 and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;

•
$$H \cong \mathbb{Z};$$

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

- $\exists A \subsetneq V\Gamma$ and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;
- $H \cong \mathbb{Z}$;
- *H* contains a copy of \mathbb{F}_2 .

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

•
$$\exists A \subsetneq V\Gamma$$
 and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;

- $H \cong \mathbb{Z}$;
- *H* contains a copy of \mathbb{F}_2 .

Applying this thm. to $\rho_A(H) \leq G_A$, we see that $\rho_A(H)$ is cyclic by (1).

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

•
$$\exists A \subsetneq V\Gamma$$
 and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;

- $H \cong \mathbb{Z}$;
- *H* contains a copy of \mathbb{F}_2 .

Applying this thm. to $\rho_A(H) \leq G_A$, we see that $\rho_A(H)$ is cyclic by (1). It follows that $\rho_A(H) \cap hG_Ch^{-1} = \{1\} \forall h \in G_A$.

Note: If Γ is irreducible and $|V\Gamma| \ge 2$, then $\exists v \in V\Gamma$ s.t. for $A := V\Gamma \setminus \{v\}$, Γ_A is also irreducible.

Theorem (Structure Thm.)

If G is a RAAG corresponding to a finite irreducible graph Γ with $|V\Gamma| \ge 2$ and $H \leqslant G$ then one of the following holds:

•
$$\exists A \subsetneq V\Gamma$$
 and $g \in G$ s.t. $H \subseteq gG_Ag^{-1}$;

- $H \cong \mathbb{Z}$;
- *H* contains a copy of \mathbb{F}_2 .

Applying this thm. to $\rho_A(H) \leq G_A$, we see that $\rho_A(H)$ is cyclic by (1).

It follows that $\rho_A(H) \cap hG_C h^{-1} = \{1\} \forall h \in G_A$.

Hence

$$H \cap gG_Cg^{-1} = \{1\} \ \forall g \in G.$$

 $H \cap gG_C g^{-1} = \{1\} \ \forall g \in G.$

・聞き ・ ヨキ ・ ヨキ

 $H \cap gG_Cg^{-1} = \{1\} \ \forall g \in G.$

Recall that $G = G_A *_{G_C} G_B$.

▶ < 토▶ < 토▶

$$H \cap gG_C g^{-1} = \{1\} \quad \forall g \in G.$$

Recall that $G = G_A *_{G_C} G_B$. By gen. Kurosh Thm. (3) \Longrightarrow

$$H=H_1*\cdots*H_k*F,$$

▶ < E ▶ < E ▶

$$H \cap gG_C g^{-1} = \{1\} \quad \forall g \in G.$$

Recall that $G = G_A *_{G_C} G_B$. By gen. Kurosh Thm. (3) \Longrightarrow

 $H=H_1*\cdots*H_k*F,$

where *F* is free, and $H_i \leq g_i G_A g_i^{-1}$ or $H_i \leq g_i G_B g_i^{-1}$ for some $g_i \in G$.

$$H \cap gG_C g^{-1} = \{1\} \quad \forall g \in G.$$

Recall that $G = G_A *_{G_C} G_B$. By gen. Kurosh Thm. (3) \Longrightarrow

$$H=H_1*\cdots*H_k*F,$$

where *F* is free, and $H_i \leq g_i G_A g_i^{-1}$ or $H_i \leq g_i G_B g_i^{-1}$ for some $g_i \in G$. Since each H_i maps onto \mathbb{Z} (follows from (P6)), we deduce that *H* maps onto $\mathbb{Z} * \mathbb{Z} \cong \mathbb{F}_2$.